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 Abstract:	This	study	explores	the	application	of	machine	learning	
models,	specifically	a	pretrained	ResNet-50	model	and	a	general	
SqueezeNet	model,	in	diagnosing	tuberculosis	(TB)	using	chest	X-ray	
images.	TB,	a	persistent	infectious	disease	affecting	humanity	for	
millennia,	poses	challenges	in	diagnosis,	especially	in	resource-limited	
settings.	Traditional	methods,	such	as	sputum	smear	microscopy	and	
culture,	are	inefficient,	prompting	the	exploration	of	advanced	
technologies	like	deep	learning	and	computer	vision.	
The	study	utilized	a	dataset	from	Kaggle,	consisting	of	4,200	chest	X-
rays,	to	develop	and	compare	the	performance	of	the	two	machine	
learning	models.	Preprocessing	involved	data	splitting,	augmentation,	
and	resizing	to	enhance	training	efficiency.	Evaluation	metrics,	including	
accuracy,	precision,	recall,	and	confusion	matrix,	were	employed	to	
assess	model	performance.	Results	showcase	that	the	SqueezeNet	
achieved	a	loss	of	32%,	accuracy	of	89%,	precision	of	98%,	recall	of	80%,	
and	an	F1	score	of	87%.	In	contrast,	the	ResNet-50	model	exhibited	a	
loss	of	54%,	accuracy	of	73%,	precision	of	88%,	recall	of	52%,	and	an	F1	
score	of	65%.	This	study	emphasizes	the	potential	of	machine	learning	in	
TB	detection	and	possible	implications	for	early	identification	and	
treatment	initiation.	The	possibility	of	integrating	such	models	into	
mobile	devices	expands	their	utility	in	areas	lacking	TB	detection	
resources.	However,	despite	promising	results,	the	need	for	continued	
development	of	faster,	smaller,	and	more	accurate	TB	detection	models	
remains	crucial	in	contributing	to	the	global	efforts	in	combating	TB.	

Introduction	

Tuberculosis	(TB)	is	an	infectious	
disease	that	has	been	impacting	humanity	for	
the	past	4,000	years	[5].	This	chronic	illness	

is	caused	by	the	bacillus	Mycobacterium	
tuberculosis.	TB	spreads	through	the	air,	
making	it	a	threat	in	highly	dense	areas	[5]	
[4].	As	of	2007,	there	have	been	an	estimated	
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9.27	million	incident	cases	of	TB,	13.7	million	
prevalent	cases,	and	1.32	million	deaths	from	
TB	globally	[5].	Eighty-six	percent	of	all	cases	
originate	from	Asia	and	Africa	alone.	The	lack	
of	needed	resources	for	both	detection	and	
treatment,	as	well	as	highly	densely	
populated	environments,	leads	to	many	
outbreaks	and	deaths	[6].	

The	main	strategy	for	diagnosing	TB	
includes	sputum	smear	microscopy	and	
culture.	However,	due	to	the	time	and	
resources	needed	to	utilize	these	strategies,	it	
is	very	inefficient,	especially	in	third-world	
countries	where	supplies	are	limited	[6].	
Currently,	X-rays	are	being	utilized	to	
diagnose	TB;	however,	this	method	also	has	
its	issues.	The	first	issue	is	time;	the	amount	
of	time	a	doctor	might	take	to	analyze	and	
determine	if	TB	is	present	takes	away	from	
treating	the	patient.	The	second	issue	is	
accuracy;	although	these	doctors	have	years	
of	experience	and	education,	mistakes	can	
still	occur,	which	is	detrimental	to	the	
patient's	health	[6].	

Advancements	in	deep	learning	(DL)	
and	computer	vision	(CV)	have	led	to	a	better	
understanding	of	TB	diagnosis,	providing	
more	efficient	and	accurate	alternatives	to	
traditional	methods	of	detection.	Deep	
learning	algorithms	can	be	trained	on	large	
datasets	of	chest	X-rays	and	can	quickly	and	
accurately	identify	patterns	associated	with	
TB	infections.	This	approach	not	only	reduces	
the	time	required	for	diagnosis	but	also	
makes	them	valuable	tools	in	resource-
limited	settings.	In	this	study,	we	sought	to	
compare	two	different	machine	learning	
models	in	diagnosing	TB	using	X-rays.	The	

purpose	of	this	was	to	evaluate	the	
practicality	of	these	models	in	the	real	world	
and	to	assess	the	speed	and	accuracy	of	these	
model.	With	limited	resources	around	the	
world,	it's	important	to	explore	more	cost-
effective	diagnostic	techniques	to	improve	
the	overall	health	of	underdeveloped	regions.		

Related	Research		

Machine	learning	(ML)	has	been	
extensively	used	in	the	medical	industry,	
ranging	from	detecting	to	diagnosing	various	
ailments.	The	Conference	on	Trends	in	
Electronics	and	Informatics	introduced	four	
computer	vision	models	(CV)	that	enable	fast	
detection	of	brain	tumors	from	MRI	
images[2].	These	models	consisted	of	a	CRF	
(Conditional	Random	Field),	an	SVM	
(Support	Vector	Machine),	a	CNN	
(Convolutional	Neural	Network),	and	a	GA	
(Genetic	Algorithm).	The	resulting	accuracy	
and	efficiency	were	89%	and	87.5%	for	the	
CRF,	84.5%	and	90.3%	for	the	SVM,	91%	and	
92.1%	for	the	CNN,	and	91%	and	92.7%	for	
the	GA[2].	This	study	showcased	the	
potential	of	utilizing	CV	models	in	detecting	
cancers	earlier,	ensuring	expedited	treatment	
for	the	patient	and	increasing	their	odds	of	
survival.	

The	International	Conference	on	
Smart	Electronics	and	Communication	
(ICOSEC)	introduced	a	CNN	model	for	
Alzheimer’s	disease	(AD)	detection[8].	The	
team's	CV	model	was	able	to	classify	AD	
using	MRI	images.	The	dataset	included	three	
classes	of	images	with	a	total	number	of	1512	
mild,	2633	normal,	and	2480	AD	cases[8].	An	
accuracy	of	99%	was	achieved,	showcasing	
the	potential	of	CV	in	detecting	AD	earlier	
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and	potentially	treating	the	patients	quickly	
to	minimize	brain	damage[8].	

These	research	projects	indicated	the	
potential	of	CV	in	the	medical	industry	and,	
more	importantly,	the	potential	for	aiding	
practitioners	in	the	detection	and	treatment	
of	many	diseases	earlier.	

Convolution	Neural	Networks			

	 A	general	understanding	of	Convolutional	
Neural	Networks	(CNN)	is	needed	to	grasp	
the	true	potential	of	ML	in	the	healthcare	
industry.	Convolutional	Neural	Networks	
(CNNs)	are	a	type	of	deep	learning	model	
specifically	designed	for	processing	images.	
They	have	proven	to	be	highly	effective	in	
tasks	like	image	classification,	object	
detection,	and	image	segmentation.	The	core	
building	blocks	of	CNNs	are	the	convolutional	
layers.	These	layers	use	small	filters	(also	
called	kernels)	that	slide	or	convolve	across	
the	input	image	to	extract	local	patterns	or	
features.	Each	filter	detects	specific	features	
like	edges,	textures,	or	more	complex	
structures.	Multiple	filters	are	used	in	
parallel	to	capture	different	aspects	of	the	
input.	This	is	what	makes	CNNs	particularly	
impactful	for	classification	tasks	like	tumor	
detection,	AD	detection,	and	even	TB	
detection.	The	ability	to	hone	in	on	a	
particular	segmentation	of	the	image	while	
ignoring	background	noise	allows	for	innate	
and	accurate	detections	of	medical	ailments.	

	 An	activation	function	(ReLU)	is	applied	to	
each	convolution	as	well	as	a	pooling	layer.	
This	allows	for	the	convolution	matrix	to	be	
processed	even	more	and	hone	in	on	a	
specific	feature	of	an	image	like	a	tumor	or	

TB	while	also	minimizing	background	noise.	
Finally,	the	resulting	3D	matrix	is	flattened	
and	fed	into	a	traditional	Neural	Network.	
This	allows	for	backpropagation	and	in-depth	
learning	of	images	to	occur,	increasing	
classification	performance.		

	

Figure	1.	Convolutional	Neural	Network	—	
CNN	architecture	[9]	

Model	Architectures	

						This	paper	outlines	two	different	
architectures:	a	SqueezeNet	(SN)	and	a	
ResNet-50	(RS50)	architecture.	An	
understanding	of	both	architectures,	as	well	
as	the	benefits	and	potential	applications	of	
each,	is	necessary	to	ensure	the	proper	
integration	of	these	architectures	in	the	
medical	field.	The	context	behind	choosing	
these	two	models	in	this	experiment	includes	
establishing	a	difference	between	a	relatively	
old	model	(RS50)	and	a	newer	model	(SN).	
This	difference	was	used	to	showcase	the	
continuous	improvement	of	CV	models	and	
the	potential	for	future	enhancements	of	
newer	models	like	the	SN	model.	

SqueezeNet	Architecture	

							The	overall	SN	architecture	is	similar	to	a	
traditional	CNN	architecture	but	with	one	
modification	to	the	convolution	layer.	The	
resulting	convolution	layer	seen	in	the	CNN	is	
replaced	with	a	fire	module	for	the	SN	
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convolution	layer.	This	module	consists	of	a	
squeeze	layer	followed	by	an	expand	layer.	
The	squeeze	layer	primarily	uses	1x1	
convolutions	to	reduce	the	number	of	input	
channels	(squeeze),	while	the	expand	layer	
uses	a	combination	of	1x1	and	3x3	
convolutions	to	increase	the	number	of	
channels	(expand)[3].	Using	a	1x1	
convolution	(squeeze	layer)	is	
computationally	less	expensive	compared	to	
larger	convolutions.	Additionally,	1x1	
convolutions	also	reduce	the	number	of	input	
channels	and,	subsequently,	the	number	of	
parameters	in	the	network,	making	the	
overall	model	smaller[3].	The	expand	layer	
follows	the	squeeze	layer	and	aims	to	
increase	the	number	of	channels	in	the	
feature	representation.	

						SqueezeNet	offers	superior	computational	
efficiency	and	a	reduced	model	size	through	
its	innovative	use	of	1x1	convolutions	and	
fire	modules,	making	it	well-suited	for	
resource-constrained	devices.	The	compact	
architecture	maintains	competitive	accuracy	
in	image	classification	tasks,	providing	a	
balance	between	model	performance	and	
deployment	feasibility.	SqueezeNet's	
strategic	design,	including	global	average	
pooling	and	bypass	connections,	enhances	
both	energy	efficiency	and	real-time	
inference	capabilities,	contributing	to	its	
versatility.	

 

Figure	2.	Architecture	of	fire	model	[3]	

Resnet50	Architecture	

									The	overall	architecture	of	ResNet-50	
(RS50)	is	similar	to	the	CNN	architecture	but	
with	a	few	additional	add-ons	to	the	
convolution	layers.	The	initial	layers	consist	
of	standard	convolutional	layers	that	extract	
low-level	features	from	the	input	image.	The	
subsequent	layers	are	the	core	innovation	of	
RS50:	the	residual	block.	Instead	of	simply	
stacking	layers	one	after	another,	a	residual	
block	includes	a	shortcut	connection	that	
skips	one	or	more	layers[10].	This	shortcut	
connection	allows	the	network	to	learn	
residuals	or	changes	to	the	input,	making	it	
easier	to	train	very	deep	networks.	The	
following	layers	follow	the	same	structure	as	
SN	and	CNN:	pooling,	flattening,	and	dense	
layers[10].	The	innovation	of	the	residual	
block	was	the	first	of	its	kind	and	
revolutionized	the	way	CV	models	are	built	
today.	

								ResNet-50's	skip	connections	enable	
effective	training	of	deep	neural	networks,	
addressing	the	vanishing	gradient	problem	
and	allowing	for	the	capture	of	complex	
hierarchical	features[10].	This	results	in	
higher	accuracy	and	faster	convergence	
during	training.	The	architecture's	versatility,	
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transfer	learning	capabilities,	and	efficient	
parameter	learning	make	it	a	widely	adopted	
choice	for	various	computer	vision	tasks,	
consistently	delivering	state-of-the-art	
performance.	

 

Figure	3.	Resnet50	residual	block	[7]	

Image	Processing	

							This	study	aimed	to	develop	a	
tuberculosis	(TB)	detection	model	utilizing	
chest	X-rays	obtained	from	datasets	on	
Kaggle.com.	The	dataset	comprised	4200	
chest	X-rays	with	dimensions	of	
512x512x3(pixel*pixel*filter),	consisting	of	
3500	normal	chest	X-rays	and	700	TB-
positive	chest	X-rays	for	model	development.	
The	images	were	in	digital	PNG	format,	RGB	
filters,	and	labeled	accordingly.	

	

Figure	4.	Example	of	the	original	TB	and	
Normal	X-rays.	

							The	initial	step	in	preprocessing	these	X-
rays	involved	balancing	the	dataset.	This	is	to	
ensure	a	model	that	can	generalize	to	both	
image	types,	not	just	one.	The	initial	dataset	
was	split	into	three	categories:	testing,	
validation,	and	training.	Six	hundred	TB	
images	and	600	non-TB	images	were	used	in	
training	to	achieve	proper	generalization.	
Then,	20%	of	the	training	data	was	used	as	
validation	data.	Finally,	100	TB	images	and	
101	non-TB	images	were	used	for	testing.	

						These	specific	splits	were	used	due	to	the	
imbalance	of	TB-positive	and	non-TB	images.	
The	training	splits	allow	for	proper	
generalization	and	prevent	the	model	from	
generalizing	to	one	type	of	image.	The	testing	
split	allows	for	an	even	number	of	TB	and	
non-TB	images	to	be	tested,	allowing	for	the	
model	to	be	evaluated	properly.	The	
corresponding	testing	and	
training/validation	data	were	organized	into	
two	directories,	with	TB	and	normal	data	
separated	within	each	directory.	

						The	second	step	in	preprocessing	the	
images	included	augmenting	the	training	
data.	Image	augmentation	aids	in	improving	
the	performance	of	classification	models	by	
exposing	them	to	a	broader	range	of	
variations	during	training.	For	example,	
rotating	and	flipping	images	helps	the	model	
learn	features	from	different	perspectives,	
making	it	more	adept	at	recognizing	objects	
from	various	angles.	Translating	and	scaling	
contribute	to	the	model's	ability	to	handle	
variations	in	object	size	and	position,	
enhancing	its	spatial	understanding.	
Introducing	color	variations	and	noise	
enables	the	model	to	adapt	to	diverse	lighting	
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conditions	and	real-world	imperfections,	
making	it	more	robust	and	less	prone	to	
overfitting	on	specific	patterns	from	the	
training	data.	Overall,	image	augmentation	
serves	as	a	regularization	technique,	
fostering	a	more	generalized	and	resilient	
model	capable	of	achieving	better	
performance	on	unseen	data.	

					The	training	data	underwent	several	
augmentation	techniques	to	enhance	the	
robustness	and	generalization	of	the	
classification	model.	Firstly,	the	rescaling	of	
the	original	image	by	1/255	normalized	the	
pixel	values,	allowing	for	efficient	and	fast	
training.	Rotation	within	a	range	of	40	
degrees	introduced	diversity	by	randomly	
rotating	images,	exposing	the	model	to	
variations	in	object	orientation.	Horizontal	
and	vertical	shifting	within	a	range	of	
0.2(scaling	factor)	simulated	changes	in	
object	position,	contributing	to	the	model's	
ability	to	recognize	objects	in	different	spatial	
locations.	Shearing	within	a	range	of	
0.2(scaling	factor)	introduced	distortions	
that	mimic	changes	in	perspective,	aiding	the	
model	in	handling	variations	in	object	shape.	
Zooming	within	a	range	of	0.2(scaling	factor)	
provided	exposure	to	different	object	sizes	
during	training,	which	is	crucial	for	scenarios	
with	varying	scales.	The	application	of	
horizontal	flipping	added	mirror	variations,	
making	the	model	invariant	to	left-right	
orientation	changes.	The	testing	and	
validation	data	were	rescaled	by	1/255	but	
not	augmented,	ensuring	a	fair	evaluation	of	
model	performance	on	unaltered	images,	and	
providing	a	realistic	measure	of	its	
generalization	capabilities.	

				The	final	preprocessing	step	involved	
resizing	all	images	from	a	
512x512x3(pixel*pixel*filter)	format	to	a	
64x64x3(pixel*pixel*filter)	format	to	
expedite	training	speed.	Additionally,	all	
images	were	randomized	within	their	
respective	directories	for	training,	validation,	
and	testing.	The	model	was	crafted	in	the	
Kaggle	IDE	using	TensorFlow	along	with	
various	Python	libraries.	

 

Figure	5.	Example	of	the	augmented	training	
data.	

Results	

					To	evaluate	the	models,	four	key	metrics	
were	employed:	accuracy,	precision,	recall,	
and	F1	score.	These	metrics	were	chosen	to	
comprehensively	assess	the	model's	
performance	on	unseen	data.	Specifically,	
precision	and	recall	offered	insights	into	the	
model's	classification	performance	on	the	
testing	set.	Precision	gauged	the	accuracy	of	
positive	predictions	made	by	the	model,	
while	recall	measured	the	model's	ability	to	
correctly	identify	all	relevant	instances	of	a	
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positive	class.	Additionally,	the	F1	score	
amalgamated	precision	and	recall	into	a	
single	value,	providing	a	well-balanced	
measure	of	the	model's	overall	performance.	
In	summary,	these	metrics	provided	a	
comprehensive	understanding	of	the	model's	
strength	in	tackling	the	TB	classification	task.	
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Metrics	 ResNet50	 SqueezeNet	

F1	Score	 65%	 87%	

Accuracy	 73%	 89%	

Loss	 54%	 32%	

Precision	 88%	 98%	

Recall	 52%	 80%	

Table	1.	Resulting	metrics	of	ResNet50	and	
SqueezeNet	model	from	testing	data.	

 

Figure	6.	Confusion	Matrix	of	the	testing	data	
from	the	SqueezeNet	model.	

	

	

Figure	7.	Confusion	Matrix	of	the	testing	data	
from	the	ResNet50	model.	

Conclusion	

				This	study	underscores	the	significant	
potential	of	machine	learning	in	
revolutionizing	the	detection	of	Tuberculosis	
(TB)	through	the	analysis	of	chest	X-ray	
images.	The	two	models	employed,	ResNet50	
and	SqueezeNet,	exhibited	varying	degrees	of	
performance,	highlighting	the	importance	of	
choosing	the	appropriate	model	for	specific	
use	cases.	

				The	SqueezeNet	model	demonstrated	
superior	metrics,	with	a	loss	of	32%,	an	
accuracy	of	89%,	precision	of	98%,	recall	of	
80%,	and	an	F1	score	of	87%,	surpassing	the	
performance	of	the	ResNet50	model,	which	
had	a	loss	of	54%,	an	accuracy	of	73%,	
precision	of	88%,	recall	of	52%,	and	an	F1	
score	of	65%.	This	suggests	that	SqueezeNet	
could	be	a	more	efficient	choice	for	TB	
detection,	especially	in	resource-constrained	
settings.	

				The	SqueezeNet	model's	lower	memory	
usage	compared	to	ResNet50	makes	it	a	
promising	candidate	for	deployment	on	
mobile	devices,	such	as	phones.	This	
characteristic	extends	the	reach	of	TB	
detection	capabilities	to	regions	with	limited	
access	to	traditional	diagnostic	resources,	
presenting	a	valuable	opportunity	for	early	
identification	and	timely	initiation	of	
treatment.	

				While	the	outcome	of	this	study	is	
promising,	it	is	crucial	to	recognize	the	
ongoing	need	for	advancements	in	TB	
detection	models.	Future	developments		
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should	focus	on	creating	faster,	smaller,	and	
even	more	accurate	models	to	ensure	precise	
and	efficient	TB	detection.	By	addressing	
these	challenges,	the	integration	of	machine	
learning	models	into	clinical	practice	can	
significantly	contribute	to	global	efforts	in	

combating	tuberculosis	and	implementing	
effective	control	strategies.	
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