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 Abstract:	An	 automatic	method	 developed	 to	 perform	 flare-finding	 on	
Level	 1	 extreme	 ultraviolet	 (EUV)	 data	 from	 the	 Atmospheric	 Imaging	
Assembly	 (AIA)	 is	 described	 in	 detail.	 The	 data	 are	 spatially	 binned,	
preprocessed,	and	compared	against	a	Gaussian	white	noise	background.	
The	methods	of	Berghmans	and	Clette	(1998)	provide	the	basis	 for	 the	
automated	detection	algorithm,	and	pertinent	adjustments	are	made	to	
address	 the	 high	 spatial	 resolution	 provided	 by	 AIA.	 Results	 for	 an	
observation	 of	 NOAA	 active	 region	 12712	 from	 16:00-16:45	 UTC	 on	
2018/05/29	are	presented.	Future	work	may	include	investigation	of	the	
link	 between	 EUV	 active	 regions	 and	 periodicities	 found	 in	 various	
observables,	 including	 radio	 emissions	 and	 magnetic	 field.	 Accurate	
determination	of	the	flare-frequency	distribution	for	small	flares	is	also	a	
promising	application	of	this	method.	

1.	Introduction	

Solar	flares	are	of	interest	to	those	who	
study	 the	 sun	 and	 its	 impact	 on	 the	 Earth.	
These	energetic	releases	of	charged	particles	
and	 electromagnetic	 radiation	 are	 closely	
connected	with	many	other	solar	phenomena.	
For	 example,	 recurring	 jets	 observed	 in	
extreme	 ultraviolet	 (EUV)	wavelengths	 have	
been	linked	to	the	magnetic	field	dynamics	at	
the	 footpoints	 of	 these	 events	 (Joshi	 et	 al.,	
2017).	Large	 flares	are	the	drivers	of	a	 large	
part	 of	what	 is	 collectively	 known	 as	 “space	
weather”,	 so	 understanding	 the	 physics	 of	
these	 events	 is	 vital	 to	 predicting	 the	 ever-
changing	space	weather	conditions.	In	1995,	it	
was	estimated	by	the	United	States	NOAA	that	
tens	of	millions	of	dollars	are	lost	per	year	due	
to	space	weather.	As	science	and	society	alike	

become	 more	 dependent	 on	 satellite	
technology	for	communication,	discovery,	and	
defense,	 our	 vulnerability	 increases	 as	 well.	
For	 this	 reason,	 many	 solar	 physicists	 are	
working	to	develop	more	accurate	models	to	
describe	 and	 forecast	 space	weather	 (Baker,	
1998).	

Smaller	 flares	 are	 also	 crucial	 to	 our	
understanding	 of	 the	 processes	 that	 drive	
solar	 activity.	 The	 specific	 mechanism	 or	
mechanisms	 that	 heat	 the	 solar	 corona	 to	
several	million	Kelvin	remain	undetermined.	
The	 coronal	 heating	 problem	 has	 many	
proposed	solutions,	one	of	which	involves	the	
subset	 of	 very	 small	 flares,	 known	 as	
nanoflares	 (Parker,	 1988).	 Nanoflares	 are	
considered	 to	 have	 comparable	 physical	
parameters	and	to	follow	the	same	process	as	
flares	and	microflares,	just	with	a	lower	total	
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energy	(Hudson,	1991).	If	these	small	events	
occur	with	a	sufficiently	high	 frequency,	 it	 is	
possible	 that	 they	provide	enough	energy	 to	
sustain	 the	 temperatures	 observed	 in	 the	
corona.	 Many	 studies	 have	 focused	 on	
determining	 the	 occurrence	 frequency	 of	 a	
certain	subset	of	flares;	some	of	their	results	
are	summarized	in	Figure	1.	

However,	 identifying	 flares	 —	
especially	small	nanoflares	—	in	vast	datasets	
is	 a	 time-consuming	 and	 largely	 inefficient	
step	of	this	research.	An	automated	detection	
method	 has	 been	 applied	 to	 data	 from	 the	
Extreme-Ultraviolet	Imaging	Telescope	(EIT),	
launched	in	1995	(Berghmans	&	Clette,	1998).	
The	higher-resolution	images	recorded	by	the	
newer	Atmospheric	 Imaging	Assembly	 (AIA)	
provide	 more	 valuable	 observations	 of	
smaller	 flares.	This	paper	describes	how	 the	
methods	 of	 Berghmans	 and	 Clette	 were	
adapted	to	develop	a	program	that	identifies	
and	catalogs	significant	brightenings	in	high-
resolution	 solar	 EUV	 data	 recorded	 by	 AIA,	
which	is	a	tool	that	will	aid	a	diverse	field	of	
future	 study,	 including	 investigations	 of	
additional	 characteristics	 of	 flaring	 regions	
and	 refinement	 of	 the	 flare	 frequency	
distribution.	

2.	Methods	

2.1	General	Characteristics	of	AIA	Data	

AIA,	 aboard	 the	 Solar	 Dynamics	
Observatory	(SDO)	records	full-disk	images	of	
the	 sun	 in	 seven	 EUV	wavelengths	 every	 12	
seconds	 (Lemen	 et	 al.,	 2012).	 This	 rapid	
sampling	 enables	 the	 observation	 of	 solar	
activity	 down	 to	 timescales	 on	 the	 order	 of	
seconds.	 The	 telescope	 has	 a	 1.5-arcsecond	
spatial	 resolution	 but	 produces	 images	with	
0.6-arcsecond	 pixels,	which	 enables	 analysis	
of	 events	 on	 very	 small	 length	 scales.	 Each	
pixel	 has	 a	 value,	 in	 arbitrary	 units,	
proportional	to	the	intensity	of	solar	radiation	

at	a	 certain	EUV	wavelength	 integrated	over	
the	 solid	 angle	 subtended	 by	 the	 pixel	
(Boerner	et	al.,	2012).	

2.2	The	Automated	Detection	Algorithm	

Berghmans	 and	 Clette	 (1998)	
developed	a	transient	detection	algorithm	for	
data	recorded	by	EIT.	The	framework	of	their	
algorithm	can	be	applied	to	the	identification	
of	 significant	 brightenings	 in	 AIA	 data,	 with	
modifications	 necessitated	 by	 the	 higher	
cadence	 and	 spatial	 resolution	 of	 AIA.	 EIT	
images	 consist	 of	 2.6-arcsecond	 pixels	
providing	a	5-arcsecond	spatial	resolution	—	
more	 than	 three	 times	 coarser	 in	 both	
dimensions	 than	 the	 measurements	
performed	 by	 AIA	 (Delaboudinière	 et	 al.,	
1995).	 One	 of	 the	 features	 added	 to	 the	
original	 algorithm	 to	 compensate	 for	 the	
small-scale	fluctuations	resolvable	by	AIA	was	
the	use	of	macropixels.	

2.2.1	Macropixels	

“Macropixel”	 refers	 to	 one	 unit	 of	 a	
spatially	 binned	 image,	 specifically	 the	
average	 over	 a	 three-pixel	 by	 three-pixel	
region	 of	 the	 original	 AIA	 image.	 The	 use	 of	
macropixels	 reduces	 the	 statistical	
fluctuations	 caused	 by	 the	 high	 spatial	
resolution	 of	 the	 data.	 Figure	 2	 displays	 the	
scheme	 by	 which	 macropixels	 are	 created	
from	AIA	images.	The	result	is	a	report	of	EUV	
emissions	 with	 a	 1.8	 arcsecond	 spatial	
resolution,	which	is	still	an	improvement	over	
the	resolution	of	EIT	images.	

By	 creating	macropixels	 from	 each	 of	
many	subsequent	images	of	the	same	region,	
an	 interval	 of	 AIA	 data	 is	 constructed.	 Each	
macropixel,	𝑀!" ,	has	a	brightness	time	series,	
or	lightcurve,	that	is	represented	as	
𝑏#⃗ !" = &𝑏#

!" , 𝑏$
!" , … , 𝑏%&$

!" ) .	 The	 timestep,	
determined	by	the	instrument	cadence,	is	12	
seconds,	and	 the	number	of	datapoints,	N,	 is	
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directly	 controlled	 by	 the	 length	 of	 the	
interval	being	analyzed.	

2.2.2	Preprocessing	

The	algorithm	ultimately	utilizes	data	
obtained	 by	 preprocessing	 macropixel	
lightcurve	 values	 as	 outlined	 in	 Berghmans	
and	 Clette	 (1998).	 The	 first	 step	 in	 the	
preprocessing	is	to	compute	a	boxcar	average	
for	each	macropixel	and	subtract	 it	 from	the	
original	 lightcurve.	 This	 step	 removes	
background	trends	that	act	with	a	time	profile	
much	longer	than	that	of	most	flares.	Letting	
w	be	the	boxcar	width	in	either	direction,	the	
resulting	residual	lightcurve	is	𝑟!"	with	

												𝑟'
!" = 𝑏'

!" −
1

2𝑤 + 1 1 𝑏(
!"

')*

(+'&*

												(1)	

The	 first	 and	 last	 w	 terms	 of	𝑏#⃗ !" 	are	
necessarily	discarded	in	this	step;	to	preserve	
consistency	in	the	notation,		
𝑟!" = [𝑟*

!" , 𝑟*)$
!" , … , 𝑟%&*&$

!" ] .	 The	 last	
preprocessing	 step	 converts	 each	 residual	
lightcurve	 value	 to	 a	 z-score	 via	 the	 process	
outlined	 in	 Eqns.	 2-4,	 which	 streamlines	
comparison	to	the	statistical	model	discussed	
below	 in	 the	 Theory	 section.	 The	 resulting	
time	series	𝑧!" ,	whose	entries	are	defined	 in	
Eqn.	4	below,	is	referred	to	as	the	“signal”.	

																	𝑟!" =
1

𝑁 − 2𝑤 1 𝑟(
!"

%&*&$

(+*

																	(2) 

					𝜎!" = 9
1

𝑁 − 2𝑤 1 :𝑟(
!" − 𝑟!"	;

,
%&*&$

(+*

					(3)	

																									𝑧'
!" =

𝑟'
!" − 𝑟!"

𝜎!" 																									(4)	

2.2.3	Event	Construction	

The	 next	 step	 is	 to	 identify	 bright	
regions	 in	 each	 image	 using	 the	 calculated	

signal.	To	achieve	this,	Berghmans	and	Clette	
(1998)	 defined	 two	 thresholds:	 one	 for	
detection	 and	 one	 for	 connection.	 The	
detection	threshold	sets	 the	minimum	signal	
value	for	a	macropixel	to	be	flagged	as	bright	
and	is	denoted	as	𝑞- .	When	the	signal	value	of	
a	 macropixel,	𝑀!" ,	 at	 time	 𝑖 	is	 found	 to	 be	
above	 𝑞- ,	 the	 surrounding	 region	 is	
investigated	 further	 to	 determine	 the	 full	
spatial	extent	of	the	brightening.	This	is	done	
by	 comparing	 the	 adjacent	 macropixels	
against	 the	 connection	 threshold	 𝑞. .	 If	 the	
signal	 value	 of	 any	 neighboring	 macropixel	
exceeds	 𝑞. ,	 its	 immediate	 neighbors	 are	
checked	for	connection	as	well.	This	continues	
recursively	until	 the	full	spatial	extent	of	the	
brightening	 has	 been	 covered.	 Due	 to	 the	
smaller-scale	 fluctuations	 present	 in	 AIA	
images,	the	following	restriction	was	added	to	
prevent	false	positives:	if	no	macropixels	can	
be	 connected	 to	 the	 original	 detection,	 it	 is	
discarded	 to	 limit	 the	 prevalence	 of	 false	
positives.	 Groups	 of	 two	 or	 more	 bright	
macropixels	are	combined	into	“clusters.”	

Once	 clusters	 have	 been	 created	 for	
each	 image	 in	 the	 interval,	 the	 program	
utilizes	 the	 instantaneous	 clusters	 to	
reconstruct	 “events”	with	 a	meaningful	 time	
profile.	 Events	 are	 the	 final	 product	 of	 the	
detection	 algorithm.	 As	 another	 measure	 to	
prevent	 false	 positives	 due	 to	 the	 higher	
cadence	of	AIA,	a	bright	region	(cluster)	must	
be	present	in	at	least	two	consecutive	images	
for	that	activity	to	be	considered	a	significant	
event.	To	enact	this	requirement,	the	clusters	
found	 in	 one	 image	 are	 checked	 against	 the	
clusters	 in	 the	 following	 image.	Any	 clusters	
across	 the	 two	 images	 that	 overlap	 spatially	
by	at	least	one	macropixel	are	joined	into	an	
event.	Consecutive	images	are	checked	for	the	
entire	 interval,	 resulting	 in	 the	 final	 list	 of	
events	present	in	that	interval.	This	collection	
of	 events	 fully	 describes	 the	 brightnesses,	
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times,	 and	 locations	 of	 the	 flares	 found	 in	 a	
given	interval	of	AIA	data.		

3.	Theory	

3.1	Background	Model	

The	 calculations	 that	 assign	 meaning	
to	 the	 threshold	 values	 rely	 on	 a	 Gaussian	
white	 noise	 background	model.	 The	 Level	 1	
AIA	 data	 used	 in	 this	 study	 are	 directly	
proportional	to	the	energy	output	by	the	sun	
and	 received	 by	 the	 instrument.	 The	 filters	
and	optics	of	the	telescope	were	optimized	to	
have	 a	 very	 narrow	 bandpass	 around	 the	
desired	wavelength	for	each	channel	(Boerner	
et	al.,	2012).	Therefore,	the	recorded	data	are,	
to	 a	 good	 approximation,	 directly	
proportional	 to	 the	 number	 of	 photons	
received	in	the	short	(<	3	seconds)	exposure	
times	of	each	image	(Lemen	et	al.,	2012).	This	
allows	for	Poisson	statistics	to	be	applied.	For	
a	 large	 number	 of	 photon	 counts,	 which	 is	
expected	 from	 an	 active	 region	 producing	
flares,	 the	 Poisson	 model	 is	 approximated	
very	well	by	a	normal	distribution.	As	a	result,	
it	is	expected	that	the	background	behavior	of	
each	macropixel’s	signal	can	be	described	by	a	
Gaussian	distribution.	

To	test	the	validity	of	this	assumption,	
histograms	 of	 the	 residual	 lightcurve	 and	
signal	 values	 for	 several	 arbitrarily	 chosen	
macropixels	were	generated	and	compared	to	
a	 Gaussian	 distribution.	 Macropixels	 were	
selected	 from	 regions	 with	 a	 range	 of	
brightness	 levels	 to	 ensure	 that	 no	 biases	
result	 from	 the	 application	 of	 this	 model.	
Figure	 3	 presents	 such	 histograms	 for	 two	
macropixels.	 The	 plots	 on	 the	 left	 show	 the	
count	distribution	of	𝑟!" ,	and	the	normalized	
histograms	 on	 the	 right	 plot	 the	 probability	
distribution	of	𝑧!"	for	each	macropixel.	If	the	
signal	 values	 that	 result	 from	 preprocessing	
can	be	interpreted	as	a	valid	representation	of	
z-scores	 for	a	variable	 that	 follows	a	normal	

distribution,	 their	 probability	 distribution	
should	 closely	 resemble	 the	 unit	 Gaussian	
plotted	 alongside	 them.	 Figure	 3	
demonstrates	that	this	is	the	case.	

3.2	Probability	of	False	Positives	

Having	confirmed	the	Gaussian	nature	
of	the	background	activity	of	the	AIA	data,	it	is	
now	 possible	 to	 estimate	 the	 probability	 of	
false	 detection	 and	 establish	 meaningful	
thresholds	for	significance.	Given	a	threshold	
𝑞,	the	probability	of	a	background	fluctuation	
producing	a	signal	that	exceeds	the	threshold	
is	given	by		

										𝑃(𝑧 ≥ 𝑞) = 	1 − B
1
√2𝜋

𝑒
&/!
, 𝑑𝑧

0

&1

										(5)	

When	 𝑞 = 𝑞- ,	 this	 quantity	 is	 the	
likelihood	of	a	single	macropixel	producing	a	
false	positive	detection	 in	a	 single	 image.	By	
requiring	 that	 at	 least	 one	 macropixel	 be	
connected	 to	 a	 detected	 macropixel,	 the	
probability	of	a	false	detection	being	reported	
as	a	cluster	(𝐶2)	is	reduced	to	

										𝑃(𝐶2) = 	𝑃(𝑧 ≥ 𝑞-) ∙ 𝑃(𝑧 ≥ 𝑞.)											(6)	

The	probabilities	can	be	multiplied	 in	
this	way	because	of	the	Gaussian	white	noise	
model	to	which	the	signal	is	being	compared.	
There	 is	no	autocorrelation	 in	such	a	model,	
meaning	that	the	activity	of	each	macropixel	is	
assumed	to	be	independent	of	the	activity	of	
all	other	macropixels.	This	applies	to	spatially	
separated	macropixels	 in	 the	 same	 image	 as	
well	 as	 the	 same	 macropixel	 temporally	
separated	across	images.		Thus	a	further	step	
taken	 to	 reduce	 false	 positives	 is	 to	 require	
that	 a	 cluster	 appears	 in	 at	 least	 two	
consecutive	 images.	 This	 reduces	 the	
probability	of	a	falsely	detected	event	(𝐸2)	to	

																									𝑃(𝐸2) = 𝑃(𝐶2),																										(7)	
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Results	are	given	in	the	next	section	for	
an	 interval	 that	 was	 tested	 with	𝑞- = 6 	and	
𝑞. = 4 .	 These	 values	 give	 a	 false	 detection	
probability	of	𝑃(𝐸2) = 9.76 × 10&,3,	which	is	
quite	 small.	 This	 is	necessary	 to	 counter	 the	
vastness	of	 the	datasets	produced	by	AIA.	 In	
the	small	region	and	short	time	used	as	a	test	
interval,	there	are	1.1 × 104	opportunities	for	
a	 false	 detection.	 This	 number	 quickly	
increases	 for	 larger	 regions	 and	 longer	
intervals.	
4.	Results	

The	 program	 produces	 a	 database	 of	
the	 times,	 locations,	 and	 brightnesses	 of	 all	
flares	discovered	in	the	signal.	This	database	
can	 be	 further	 applied	 to	 investigate,	 for	
example,	 the	 thermal	 properties	 of	 flares	 or	
the	 correlation	 between	 flare	 size	 and	
occurrence	 frequency.	 The	 program	 is	 also	
capable	 of	 generating	 movies	 of	 the	 active	
region	with	the	significant	events	highlighted.	
An	example	frame	is	given	in	Figure	4.	To	test	
the	 program,	 an	 interval	 and	 region	 studied	
previously	(Duncan	et	al.,	2021)	was	chosen:	
2018-05-29	 16:00-16:45	 UTC.	 Two	
wavelengths,	 171	 angstrom	 (Å)	 and	 335	 Å	
data	 from	 NOAA	 active	 region	 12712	 were	
investigated	 with	 various	 detection	 and	
connection	 thresholds	 (NOAA,	 2008).	 The	
largest	 X-ray	 flare	 studied	 by	 Duncan	 et	 al.	
(2021)	occurred	around	16:20.	At	16:20,	the	
flare	finding	program	with	𝑞- = 6	and	𝑞. = 4		
identifies	three	simultaneous	brightenings	in	
the	 171	Å	AIA	 data.	 At	 no	 other	 time	 in	 the	
interval	 are	 three	 brightenings	 identified	
simultaneously.	

The	 values	 of	 𝑞- 	and	 𝑞. 	used	 for	
analysis	are	dependent	upon	the	study	goals.	
If	one	is	investigating	only	the	brightest	flares,	
a	𝑞- 	of	8	or	9	could	be	appropriate,	whereas	a	
𝑞- 	of	 4	 or	 5	 would	 be	 more	 suited	 for	 a	
nanoflare	study.	The	user	has	control	over	the	

definition	of	a	flare	and	the	ability	to	tune	it	to	
suit	 any	 specific	 analysis.	 For	 general	
purposes,	 𝑞- = 6 	and	 𝑞. = 4 	were	 found	 to	
provide	 a	 reasonable	 level	 of	 detection	
comparable	to	identifying	flares	by	eye.	With	
these	thresholds,	71	events	were	identified	in	
the	45-minute	interval.	

5.	Conclusion	

This	 automated	 flare	 detection	
program	 is	 a	 significant	 improvement	 on	 an	
otherwise	 cumbersome	 step	 of	 heliophysics	
research.	Its	automated	nature	and	very	small	
probability	 of	 false	 positives	 enable	 many	
more	 events	 and	 phenomena	 to	 be	 reliably	
studied	 in	 detail.	 In	 the	 absence	 of	 such	 a	
program,	time	is	wasted	on	the	imprecise	task	
of	 identifying	 flares	 by	 eye.	 Being	 able	 to	
quantitatively	 determine	 the	 spatial	 and	
temporal	 extent	 of	 events	 of	 interest	 allows	
for	more	accurate	 links	 to	be	made	between	
various	observed	quantities	and	the	processes	
that	produce	them.	A	reliable	method	of	flare	
finding	 could	 also	 be	 employed	 to	 better	
understand	 the	 frequency	 with	 which	 flares	
occur,	specifically	how	the	size	and	time	scales	
of	 flares	 relate	 to	 the	 frequency	 of	 their	
occurrence.	A	conclusive	result	on	this	matter	
would	 shed	 light	 on	 the	 proposition	 of	
nanoflares	as	a	solution	to	the	coronal	heating	
problem	 (Parker,	 1988).	 Our	 algorithm	may	
provide	 the	 level	 of	 detection	 necessary	 to	
support	the	theory.	
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Figure	1. Compilation	of	solar	flare	energy	distributions	determined	
by	various	missions.	Figure	taken	from	Purkhart	and	Veronig	
(2022). 

	

 

Figure	2. A	conceptualization	of	the	arrangement	in	which	macropixels	(red)	are	
created	by	averaging	squares	of	nine	individual	pixels	(blue).	Macropixels	
do	not	overlap,	so	the	number	of	rows	and	columns	of	pixels	in	a	spatially	
binned	image	must	be	a	multiple	of	three.	One	or	two	rows/columns	may	be	
discarded,	but	the	effect	is	insignificant. 
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Figure	3. Histograms	of	the	residual	lightcurve	value,	𝑟!" ,	and	the	
processed	value,	𝑧!" ,	for	selected	macropixels	in	the	test	
interval.	(a)	and	(b):	A	macropixel	in	a	region	of	medium	
brightness.	(c)	and	(d):	A	macropixel	in	a	highly	bright	region.	
The	Gaussian	nature	of	the	histograms	supports	our	
interpretation	of	the	processed	values	as	z-scores.	
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Figure	4. An	example	frame	of	171	Å	data	from	the	test	interval	with	
three	identified	events	outlined	in	purple	(lower	left).	The	
detection	and	connection	thresholds	employed	were	6	and	4,	
respectively.	  
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