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 Abstract: A handful of highly automated businesses are continuing to 

profit handsomely in the midst of the COVID-19 pandemic. This paper 
takes interest in the underlying relationship between an occupation’s 
susceptibility to automation and variables of economic interest, 
controlling for a number of factors to identify high-risk characteristics. 
Using datasets from the Bureau of Labor Statistics and the Department of 
Labor’s Employment and Training Administration’s Occupational 
Information Network, we find the degree of computerized tasks and 
wage level to be statistically significant variables. Other predictors, such 
as the programming skill of workers, are borderline statistically 
significant, with p-values slightly exceeding 0.10. Overall, we determine 
that occupational susceptibility to automation is negatively correlated 
with educational attainment (in the absence of related predictors), wage, 
and employment growth rates from 2010-2019. However, we find it is 
positively correlated with real wage growth rates over the same period 
and again during the pandemic recession. The methods and final results 
vary from that of the existing literature, most likely due to differences in 
variable and model selection. This study accomplishes the following: (1) 
forms a probabilistic model of workforce automation that is accessible to 
both economists and public policy makers; (2) provides economic 
interpretations to our model’s predictions with additional parametric 
models. 

Introduction 

The computerization of work tasks, 

more commonly known as labor automation, 

can be attributed to the widespread and 

growing adoption of advanced technologies 

(e.g., robotics, specialized software, Cloud-

Based tech, Artificial Intelligence, and 

machine learning) in production and service 

[1]. Figure 1 is a time-series plot of private 

fixed investment in information processing 

equipment and software from 1990-2021 [2]. 

The shaded areas indicate periods of 

economic recession in the United States. Note 

the rising trend of investments was 

interrupted in the past two recessions 
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(shaded grey). During the COVID-19 

pandemic,  

however, there was an uptick in computer 

capital backing. The sustained investment 

spike suggests an even greater private sector 

reliance on advanced technologies in the 

future. This raises potential concerns, as it is 

uncertain whether an increase in labor 

displacement or labor demanded will follow.  

Additionally, a handful of tech-based 

corporations (e.g., Amazon, Apple, Microsoft, 

and others) profited greatly during the 2020 

pandemic and associated recession 

skyrocketing unemployment rates, collapsing 

businesses, and plummeting real GDP 

worldwide [3]. Why is this? Can we simplify 

this phenomenon down to the laws of supply 

and demand to conclude that these dominant 

firms were coincidentally positioned to 

benefit from a pandemic? Would such an 

analysis probe deeper than intuitive 

inspection? We suspect there is something 

more sophisticated lying beneath the surface 

that warrants an alternative line of inquiry. 

In this paper, we form a probabilistic model 

of workforce automation that is accessible for 

public policy makers and can help explain 

static and dynamic trends in the economy. 

 

Literature Review 

This paper is not the first to predict an 

occupation’s probability of computerization. 

In fact, this study closely resembles the work 

of Oxford’s Carl Benedikt Frey and Michael A. 

Osborne, with a few key differences that we 

detail below [4]. 

First, we select different independent 

variables to predict the propensity for 

workforce automation, the response in 

question. Frey and Osborne rely on number 

 

Figure 1: Private Investment in Computer Capital (1990-2021) [2] 

Notes: Measurements taken quarterly. Values are seasonally adjusted. 
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of relatively nebulous predictors, such as 

“social perceptiveness,” “manual dexterity,” 

and “originality.” While the data source for 

these variables, O*NET Occupational Data, is 

highly credible, assigning a specific value to 

these predictors warrants a high degree of 

self-reflection from survey participants. 

Without accounting for the relevant 

differences among those surveyed, these 

values can be arbitrary and may perform 

better as ordinal, rather than cardinal, 

numbers. Conversely, we use a set of well-

defined economic variables, such as wage, 

programming skill of employees, and 

minimum education required for entry, 

conditional on our vector of controls. Our 

objective is to utilize this set of intuitive 

predictors to form a model that is more 

accessible to lawmakers. 

Second, we rely on the logit model (or 

logistic model), which Frey and Osborne 

considered for the purposes of their method 

but did not ultimately select. Instead, they 

decided to use the stochastic Gaussian 

process. To keep our model conservative, we 

opt for the simpler logistic regression. Using 

this model, we will also compare the 

predictive performance of Frey and 

Osborne’s variables with our own. 

A large volume of ongoing research is 

focused on the structural unemployment 

effects of automating labor [5], [6], [7], [8], 

[9], [10], [11], [12], [13], [14]. We hope to 

supplement this literature by identifying the 

common characteristics of occupations at 

high risk of automation. 

 

Data 

To obtain the necessary dataset for 

our new collection of predictors and 

corresponding controls, we combined tables 

from the Bureau of Labor Statistics (BLS) and 

Department of Labor’s Employment and 

Training Administration’s Occupational 

Information Network (O*NET) , with each 

row corresponding to a profession, and each 

column to either a predictor or a control 

variable. We excluded jobs that were missing 

in at least one of the original tables, for a total 

of 608 observations  (i.e., occupations). 

Further, we use the same 70 hand-

labeled occupations as seen in Frey and 

Osborne’s paper. As they explain, a panel of 

machine learning experts “hand-labeled” 

each occupation in this sample with the 

value: 0, if it could not be automated; 1, if it 

could [4]. While these values were 

subjectively assigned, we will consider them 

true for the purpose of fitting our binomial 

logit regression. We discuss this caveat in 

more detail in the methodology. 

Finally, we use both static (single-year 

measurements) and dynamic (growth rates) 

variables for our supplementary parametric 

models to interpret the results of our main 

model economically. For our static variables, 

we use 2019 BLS estimates for education 

attainment and mean annual wage. For our 

dynamic variables, we gathered annual 

employment and wage measurements for 

years 2008-2020 from the BLS. We calculate 

the percent change in these quantities for 

each pair of consecutive years (e.g., 2008-

2009, 2009-2010, ..., 2019-2020) to obtain 

wage and employment growth rates. We take 

the average growth rate for each of the time 

periods we study in Section 4.2.2 of the 
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Methodology (Dynamic Economic 

Regression). To convert our wage growth 

rates from nominal to real terms, we employ 

inflation estimates using BLS Consumer Price 

Index (CPI) data [21]. 

 

Methodology 

In this section, we present our 

generalized regression equations for our 

main model and our supplementary 

parametric models, along with our 

considerations in their design. 

Main Model 

We use a logit regression with binary 

random variable 𝑌𝑎𝑢𝑡𝑖
, where 

𝑌𝑎𝑢𝑡𝑖

= {
0,  𝑖𝑓 𝑗𝑜𝑏 𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑎𝑏𝑙𝑒
1,  𝑖𝑓 𝑗𝑜𝑏 𝑖 𝑖𝑠 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑎𝑏𝑙𝑒

 

and 𝑖 ϵ {1,2, … , 608}.5 

 Equation (1a) is our main model, which 
is constructed to predict occupation i’s 
propensity for event Yauti = 1 using the 
following variables: programming skill level 
of workers (xpli), degree of automated tasks 
in the profession (xdoai), minimum education 
required (xei), mean hourly wage (xh−meani) 
and level of on-the-job training1 (xTji ), 
conditional on our vector of controls, Xi. In 
this vector, we control for the median hourly 
wage to have the coefficient of mean hourly 
wage β4, capture the response of skewing the 
wage distribution of occupation i to a 
marginally higher mean. The remaining 
controls are programming importance in the 
profession and relevant work experience. 

 
1 Level of on-the-job training is a categorical variable with six classes, such that the binary predictor xTji = 1 if 

occupation i requires training of category j and is 0 otherwise. The interpretation of parameter β4+j is the difference 

in automation propensity between jobs of training category j and jobs belonging to the sixth training category, 

which is treated as a baseline. Jobs in this sixth training category (baseline) have xTji = 0,a∀aj ∈ {1,...,5}. 

 ℓ𝑖 = 𝑙𝑛 (
𝑝𝑎𝑢𝑡𝑖

1−𝑝𝑎𝑢𝑡𝑖

) = 𝛽0 + 𝛽1𝑥𝑝𝑙𝑖
+

        𝛽2𝑥𝑑𝑜𝑎𝑖
+ 𝛽3𝑥𝑒𝑖

+ 𝛽4𝑥ℎ−𝑚𝑒𝑎𝑛𝑖
+

        𝛽5𝑥𝑇2𝑖
+ 𝛽7𝑥𝑇3𝑖

+ 𝛽8𝑥𝑇4𝑖
+ 𝛽9𝑥𝑇5𝑖

+

        𝜷𝑿𝒊                                                  (1𝑎) 

where ℓ  is occupation i’s log-likelihood 

propensity to be automated (i.e., for 

event Yauti = 1), pauti is its probability of 

being automated, and β is a vector of 

linear parameters for our set of controls. 

As we are interested in the probability of 

automation, we can rewrite (1a) to 

obtain the following: 

𝑃𝑎𝑢𝑡𝑖
=

1

1 + 𝑒−ℓ𝑖
= [1 + 𝑒(𝜆)] − 𝟏 

where 

λ =  −𝛽0 + 𝛽1𝑥𝑝𝑙𝑖
+ 𝛽2𝑥𝑑𝑜𝑎𝑖

+ 𝛽3𝑥𝑒𝑖

+ 𝛽4𝑥ℎ−𝑚𝑒𝑎𝑛𝑖
+ 𝛽5𝑥𝑇2𝑖

+ 𝛽7𝑥𝑇3𝑖
+ 𝛽8𝑥𝑇4𝑖

+ 𝛽9𝑥𝑇5𝑖

+ 𝛽𝑋𝑖  

Adapted Frey & Osborne Model 

Equation (1b) below also 

measures profession i’s propensity to be 

automated. However, unlike our main 

model (Equation (1a)), this adapted 

model uses the same predictors as Frey 

and Osborne: “finger dexterity level,” 

xfdli; “manual dexterity level,” xmdli; 

“persuasion level,” xpsli; “negotiation 

level,” xnli; “social perceptiveness level,” 

xspli; “level of care for others,” xcoli; 

“cramped work space context,” xcwci; 

“originality level,” xoli; and “fine arts 
level,” xfali [4]. 
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ℓ𝑖𝐹𝑂
= 𝑙𝑛 (

𝑝𝑎𝑢𝑡𝑖𝐹𝑂

1 − 𝑝𝑎𝑢𝑡𝑖𝐹𝑂

) 

          = β0𝐹𝑂
+ β1𝑥𝑓𝑑𝑙𝑖

+ β2𝑥𝑚𝑑𝑙𝑖
+

              β3𝑥𝑝𝑠𝑙𝑖
+ β4𝑥𝑛𝑙𝑖

+ β5𝑥𝑠𝑝𝑙𝑖
+

              β6𝑥𝑐𝑜𝑙𝑖
+ β7𝑥𝑐𝑤𝑐𝑖

+ β8𝑥𝑜𝑙𝑖
+

              β9𝑥𝑓𝑎𝑙𝑖
                                              (1b)  

 

Comparing Sets of Predictors 

We compare the predictive 

performance of variables in our main 

model with Frey and Osborne’s by 

calculating the area under the curve 

(AUC) for each model’s ROC2 curve. Our 

procedure to this end is consistently 

applied to both models. First, we 

randomly partition Frey and Osborne’s 

70 hand-labeled occupations, along with 

their assigned binary values (which we 

consider valid for this analysis), into 

groups of 40 and 30 to construct a 

subset of training data and a subset for 

testing, respectively. We decided to 

earmark more occupations for training 

than testing to better estimate the model 

coefficients. These subsets include every 

predictor and control from the two 

logits. Using the training data, we fit 

equations (1a) & (1b) and use the 

resultant parametric estimates to predict 

the probability of automation3, paut, for 

each occupation in the model’s test set. 

From here, we compute the AUC for each 

logit model’s ROC curve, which is useful 

for determining which set of variables 

more accurately estimates the hand-

 
 
6 The ROC (Receiver Operating Characteristic) curve, for a binary logit regression, is a graphical representation of the 

confusion matrix at different classification thresholds, or cutoffs, which decide which occupations are “automatable,” 

based on their observed value of paut. We typically prefer models to have a large AUC for their ROC curve, as a greater 

value is associated with higher true positive rates for different predetermined levels of specificity. 
7 i.e., the expectation of the binary random variable, Yaut 
8 Relevant work experience is a nominal variable with three different categories. 

labeled assignments (i.e., the “true” value 

of Yauti) of professions in the test subset. 

Supplementary Parametric Models 

The probabilities we obtain from 

the main model (Equation (1a)) are used 

as predictors in equations (2-9) below, 

controlling for certain confounding 

factors. For each economic outcome of 

interest, we selected the best-fitting 

regression among the following models: 

simple multiple linear parametric model, 

multiple linear parametric model with 

quadratic terms, multiple linear 

parametric model with cubic and 

quadratic terms, exponential parametric 

model. As we have a greater interest in 

the qualitative, rather than quantitative, 

underlying relationship between 

susceptibility to automation and 

economic forces, we do not rigorously 

design regressions (2-9) to confirm 

causal interactions. 

 

Static Economic Regressions 

Mean Annual Wage 

Using job i’s probability of 

automation, we can predict the mean 

annual wage of workers in the 

profession. Since we expect educational 

attainment, relevant work experience4, 

and intensity of on-the-job training to 

have strong associations with mean 

salary, we control for these variables in 

vector Ai. 
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𝑌𝑤𝑖
= α0 + α1𝑝𝑎𝑢𝑡𝑖

+ α2(𝑝𝑎𝑢𝑡𝑖
)

2

+ α3(𝑝𝑎𝑢𝑡𝑖
)

3
+ 𝛂𝑨𝒊 + ε𝑖  

(2) 

 

where α is a vector of linear parameters 

for our control variables, and εi is an 

idiosyncratic error term. 

 

Educational Attainment 

Using job i’s probability of 

automation, we can predict the average 

education level of workers in the 

profession. Since we expect educational 

attainment5 to be significantly correlated 

with mean annual wage, we control for 

salary with variable xw. 

𝑌𝐸𝐷𝑈𝑖
= γ0 + γ1𝑝𝑎𝑢𝑡𝑖

+ γ2𝑥𝑤 + ε𝑖           (3) 

Dynamic Economic Regressions 

To account for fluctuations in 

business cycles in our dynamic models, 

we partition growth rates from 2008-

2020 for employment and wage into 

three separate time periods: 2008-2009 

(Great Recession), 2010-2019, and 

2019-2020 (COVID-19 Pandemic). The 

simple multiple linear parametric model 

performed the best for each of the 

dynamic regressions. 

 

Employment Growth 

Using job i’s probability of 

automation, we can predict its average 

annual employment growth rate for each 

time period, controlling for typical 

 
9 Differing from “typical education required for entry”, the ”educational attainment” variable is defined by the 
average number of years of post-secondary education obtained by workers in the profession plus 2, since 0 
indicates no formal education, and 1 corresponds to a mean education attainment level of a high school diploma 
or equivalent, whereas ”typical education required for entry” measures the minimum degree of education 
necessary for a given occupation. 

10 Based on BLS data 

education required for entry (xei), such 

that 

𝑬𝑮̅̅ ̅̅ 𝑖2008−2009 = δ0 + δ1𝑝𝑎𝑢𝑡𝑖
+ δ2𝑥𝑒𝑖

+ ε𝑖   

𝑬𝑮̅̅ ̅̅ 𝑖2010−2019 = ζ0 + ζ1𝑝𝑎𝑢𝑡𝑖
+ ζ2𝑥𝑒𝑖

+ ε𝑖   

𝑬𝑮̅̅ ̅̅ 𝑖2019−2020 = η0 + η1𝑝𝑎𝑢𝑡𝑖
+ η2𝑥𝑒𝑖

+ ε𝑖  

(4-6) 

 
Real Wage Growth 

Using job i’s probability of 

automation, we can predict its average 

real wage growth rates for each time 

period. Since we expect higher levels of 

education to be associated with positive 

wage growth, via pay raises and 

promotions, we control for educational 

attainment6 with variable xEDUi. 

𝑹𝑾𝑮̅̅ ̅̅ ̅̅ ̅𝑖2008−2009 = κ0 + κ1𝑝𝑎𝑢𝑡𝑖
+ κ2𝑥𝐸𝐷𝑈𝑖

+ ε𝑖 

𝑹𝑾𝑮̅̅ ̅̅ ̅̅ ̅𝑖2010−2019 = ψ0 + ψ1𝑝𝑎𝑢𝑡𝑖
+ ψ2𝑥𝐸𝐷𝑈𝑖

+ ε𝑖 

𝑹𝑾𝑮̅̅ ̅̅ ̅̅ ̅𝑖2019−2020 = ω0 + ω1𝑝𝑎𝑢𝑡𝑖
+ ω2𝑥𝐸𝐷𝑈𝑖

+ ε𝑖 

(7-9) 

 

Results 

 Main Model 

The parametric estimates for our 

main model were predicted by fitting 

equation (1a) with our training set data. 

The following regression equation is 

realized: 

ℓ𝑖 = 𝑙𝑛 (
𝑝𝑎𝑢𝑡𝑖

1 − 𝑝𝑎𝑢𝑡𝑖

)  
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ℓ𝑖 = −6.0031 − 0.496𝑥𝑝𝑙𝑖
+ 0.234𝑥𝑑𝑜𝑎𝑖

+ 0.683𝑥𝑒𝑖
− 1.31𝑥ℎ−𝑚𝑒𝑎𝑛𝑖

+ 3.12𝑥𝑇1𝑖
+ 0.634𝑥𝑇2𝑖

+ 11.6𝑥𝑇3𝑖
+ 0.525𝑥𝑇4𝑖

− 15.7𝑥𝑇5𝑖
+ 𝜷𝑿𝒊  

 

∴ 𝑝𝑎𝑢𝑡𝑖
=

1

1 + 𝑒− 𝜆
 

where 

λ = −6.0031 − 0.496𝑥𝑝𝑙𝑖
+ 0.234𝑥𝑑𝑜𝑎𝑖

+ 0.683𝑥𝑒𝑖
− 1.31𝑥ℎ−𝑚𝑒𝑎𝑛𝑖

+ 3.12𝑥𝑇1𝑖
+ 0.634𝑥𝑇2𝑖

+ 11.6𝑥𝑇3𝑖
+ 0.525𝑥𝑇4𝑖

− 15.7𝑥𝑇5𝑖
+ 𝜷𝑿𝒊   

 

Notice that the estimated parameter 
for xei (minimum education required) is 
positive, which means that jobs 
requiring higher levels of education are 
more vulnerable to workforce 
automation, everything else held 

constant. The novelty in this result is 
that it differs from the existing literature. 
It is understood that education level is 
negatively correlated with likelihood of 
automation [4]. However, if our model is 

 
7 p-value: 0.00868 
8 p-value: 0.09571 
9 p-value: 0.13211 
10 p-value: 0.14161 

correct, by controlling for training, wage, 
and our controls in Xi, the negative 
association disappears, on account of 
these predictors. In other words, it is not 
education alone that reduces automation 
risk, but the associated variables of 
training intensity and pay. 

Degree of automated tasks in job i 
(xdoai) and mean hourly wage (xh−mean) 
are statistically significant predictor 
variables, according to their p-values.7,8 

Average programming skill level (xpl) 
and minimum education required for 
entry (xei) are borderline significant.9,10 

We rank the occupations in our dataset 
by ascending probability of automation, 
paut, in Appendix A1. 

  

Comparing Sets of Predictors 

By exposing models (1a) and (1b) 

to the same subset of training data and 

assessing their predictive abilities with 

the same test data, we achieve a 

thorough comparison. The left panel of 

Figure 2 displays the ROC curve and 

AUC value obtained from our main 
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model (eqn. (1a)). The ROC and AUC in 

the right panel belong to the adapted 
Frey and Osborne model (eqn. (1b)). 

It is important to acknowledge why 

there are stark differences in the shapes 

of the two ROC curves. In fitting the two 

models with the training data, the logit 

algorithm converged successfully for our 

main model, but did not for equation 

(1b). As a result, the adapted model does 

not produce a gentle stratification of 

predicted probabilities. Rather, each 

value of pautFO is arbitrarily close to 

either 0 or 1. 

Notice that our model captures a 

larger interval of true positive 

percentages for various false negative 

percentages with its distinct staircase 

shape. That is, our ROC curve’s gradual 

rise in true positive percentage from left 

to right indicates greater choice in the 

number of potential “optimal” 

classification thresholds, relative to the 
plot on the right. 

However, our model is at a 

disadvantage in terms of overall 

statistical power. This can be attributed 

to the relatively low true positive 

percentages our model offers for false 

positive percentages on the interval of 

20 to 40. The greater AUC value in the 

rightmost ROC plot indicates that Frey 

and Osborne’s predictors produce more 

accurate estimates overall, despite the 

algorithm divergence. Thus, the 

statistician would prefer logit model 

 
11 Figures relying on probabilities gathered from the adapted Frey-Osborne model can be found in the 

Appendix, for a random sample of occupations. However, due to the near-binary nature of these realized 

probabilities (see 5.1.1), they lack utility in predicting economic outcomes for the regression forms we 

consider in Section 4.2. We also plot economic outcomes for the 70 “hand-labeled” jobs using their assigned 

binary values, which suffers the same complication [4]. 
12 All 608 jobs were used in estimating the coefficients, however. 

(1b), unless they are willing to tolerate a 

false positive rate below 0.2 or above 
0.4. 

Supplementary Parametric Models 

We obtain our least-squares 

parametric estimates by applying our 

dataset to our supplementary models 

(Equations (2-9)). To further 

demonstrate the qualitative interplay 

between pauti and the economic outcome 

in question, we graph their correlation11. 

We limit the display of data points to a 

random subsample (n = 60) of 

observations to avoid unnecessary 

congestion12. 
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Static Economic Regressions 

We find that the mean annual wage and 

education level of workers behave 

negatively13 with an occupation’s 

probability of automation. 

 

 

Mean Annual Wage 

Applying our dataset to equation 
(2), we obtain: 

𝒀𝒘𝒊 = 𝟐𝟒𝟒𝟐𝟎 − 𝟏𝟒𝟓𝟎𝟑𝟖𝒑𝒂𝒖𝒕𝒊
+

             𝟑𝟏𝟐𝟓𝟖𝟏(𝒑𝒂𝒖𝒕𝒊
)

𝟐
− 𝟏𝟕𝟏𝟗𝟖𝟔(𝒑𝒂𝒖𝒕𝒊

)
𝟑

+

              �̂�𝑨𝒊 + 𝛆𝒊  

 

 

 
13 Note: This does not conflict with the positive education coefficient observed in the main model, as 

equation (3) does not control for training, education, and experience, which may explain this negative 
behavior in their association with education level. 

Educational Attainment 

Applying our dataset to equation 

(3), we obtain: 

𝒀𝑬𝑫𝑼𝒊
= 𝟎. 𝟗𝟐𝟒 − 𝟎. 𝟎𝟒𝟗𝟕𝒑𝒂𝒖𝒕𝒊

+ 𝟎. 𝟎𝟎𝟎𝟎𝟒𝟓𝟏𝒙𝒘 + 𝛆𝒊 

 

Dynamic Economic Regressions 

We observe that jobs predicted to 

be at high risk of automation 

experienced lower mean employment 

growth during the Great Recession, and 

again from 2010-2019. However, this 

dynamic trend was not realized during 

 
Figure 3: Correlation Susceptibility to Automation and Mean Occupational Wage 

Figure 4: Correlation Between Susceptibility to Automation and Educational Attainment 
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the COVID-19 pandemic. Before any 

conclusions are drawn, it should be said 

that average employment growth only 

had significant associations with pauti for 

the period 2010-2019. Regrettably, we 

observe no significant association 

between pauti and any set of mean real 

wage growths rates. However, the 

estimated coefficient for pauti grows 

between each time period for this 
outcome. 

 
Employment Growth 

Applying our dataset to equations 
(4-6), we obtain: 

 

𝑬𝑮̅̅ ̅̅ 𝑖2008−2009 = −0.0450 − 0.0168𝑝𝑎𝑢𝑡𝑖

+ 0.00615𝑥𝑒𝑖
+ ε𝑖  

𝑬𝑮̅̅ ̅̅ 𝑖2010−2019 = 0.0123 − 0.0373𝑝𝑎𝑢𝑡𝑖

+ 0.00294𝑥𝑒𝑖
+ ε𝑖  

 
14 p-value: 0.000319 

𝑬𝑮̅̅ ̅̅ 𝑖2019−2020 = −0.133 + +0.0333𝑝𝑎𝑢𝑡𝑖

+ 0.0154𝑥𝑒𝑖
+ ε𝑖  

Employment growth is only 

significantly correlated14 with pauti over 

the time period 2010-2019. Assuming 

our model is accurate to some extent, 

one possible interpretation for this 

result is that professions vulnerable to 

computerization may observe slower job 

growth during times of economic well-

being, such as 2010-2019. Conversely, 

employment growth may behave 

randomly, with respect to the 

profession’s inclination to becoming 

automated, during times of economic 

hardship (hence no significant p-values 

for pauti during Great Recession & COVID 

pandemic). Of course, to firmly validate 

this claim, we require data from 

additional time periods and would need 

to control for a number of potential 

confounding factors. It may be 

 

Figure 5: Correlation Between Susceptibility to Automation and Employment Growth (Great Recession) 

Figure 6: Correlation Between Susceptibility to Automation and Employment Growth (2010-2019) 
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worthwhile to study the historical 

interaction between GDP and the 

observed significance level of pauti in 

predicting employment growth. 

 

 

 

Real Wage Growth 

Applying our dataset to equations 

(7-9), we obtain: 

 

           

Figure 7: Correlation Between Susceptibility to Automation and Employment Growth (COVID-19 

Pandemic) 

Figure 8: Correlation Between Susceptibility to Automation and Wage Growth (Recession) 

Figure 9: Correlation Between Susceptibility to Automation and Wage Growth (2010-2019) 

Figure 10: Correlation Between Susceptibility to Automation and Wage Growth (COVID-19 Pandemic) 
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𝑹𝑾𝑮̅̅ ̅̅ ̅̅ ̅𝑖2008−2009

= 0.0313 − 0.00923𝑝𝑎𝑢𝑡𝑖

+ 0.000147𝑥𝐸𝐷𝑈𝑖
+ ε𝑖 

𝑹𝑾𝑮̅̅ ̅̅ ̅̅ ̅𝑖2010−2019

= 0.0277 + 0.000115𝑝𝑎𝑢𝑡𝑖

− 0.00118𝑥𝐸𝐷𝑈𝑖
+ ε𝑖  

𝑹𝑾𝑮̅̅ ̅̅ ̅̅ ̅𝑖2019−2020

= 0.0388 + 0.00226𝑝𝑎𝑢𝑡𝑖

− 0.00166𝑥𝐸𝐷𝑈𝑖
+ ε𝑖  

 

There is not a significant 

association between pauti and real wage 

growth for any of the three time periods. 

However, the estimated coefficients for 

pauti increase with time15. If our 

probabilities are adequate estimates, 

there are two interpretations worth 

considering. First, it may be the case that 

being employed in an occupation 

susceptible to workforce automation is 

advantageous for pay bumps. 

Alternatively, it is possible that as some 

workers are phased out for computer 

capital, the remaining employees receive 

raises. However, we could not find 

credible literature to substantiate either 

interpretation. As such, future 

examination is encouraged as 

automation data and modeling improves. 

Obstacles 
The advantage of our model is that 

the predictors are intuitive in terms of 

interpretation and measurement. 

However, we are aware of a number of 

limitations in this paper, beyond the 

irony in working with machine learning 

utilities to study the effect of machine 

learning utilities on labor. 

 
15 Note: the slope of Figure 10 is shallower than Figure 9’s because they are univariate correlation plots, 

whereas the supplementary parametric models in equations (7-9) also control for education level with variable 

xEDUi 

First, while our AUC value is not 

significantly lower than that of the Frey-

Osborne ROC curve (see Section 5.1.1), 

it may not be a just comparison. Since 

the logit algorithm did not converge for 

equation (1b), it is possible we are not 

comparing the Frey and Osborne’s 

predictors at their highest ground of 

performance. If we were to form a larger 

training set, perhaps by simulating the 

“hand-labelling” procedure for more 

occupations with a team of University of 

Minnesota computer science and 

machine learning experts, the divergence 

problem may cease. From a software 

utilization perspective, adjustments 

could be made to the learning rate to 

improve the likelihood of convergence. 

However, even if we achieve this 

with future research, we should 

acknowledge that Frey and Osborne 

rejected the logit form model in favor of 

the stochastic Gaussian process [4]. 

Thus, it is possible that this set of 

predictors does not perform well in a 

logit regression in the first place. 

Additionally, while degree of 

automated tasks in job i (xdoai), was 

found to be a robust predictor, its 

interpretation is very similar to the 

response in our logit model. While the 

variable serves as an accurate 

automation measure, it may be better 

used in fitting a regression model of a 

different form, perhaps multiple linear 

regression. This method is worth our 

consideration. 

Finally, in the construction of our 

main model, we did not ensure the 
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predictors were sufficiently uncorrelated 

with each other, as there are competing 

ways to define correlation for nonlinear 

relationships. However, if we settle for 

strictly linear correlations, the 

multicollinearity issue can be easily 

resolved if we can closely estimate the 

(potentially) dependent predictors using 

other predictors in the model. Further, it 

is possible a number of controls went 

unaccounted for, and/or the ones 

included are poor proxies for the 

controls. We hope to address this with 

further adjustments to our control 

variables. 

Conclusions 
Our study provides a few key 

contributions to the developing 

knowledge of workforce automation. 

Principally, we form a probabilistic 

model of automation risk using variables 

accessible to economists and 

policymakers. While lawmakers may 

consider a variety of measures upon 

reviewing, we strongly advocate for 

higher quality and quantity of 

automation data, per the Government 

Accountability Office’s recommendation 

[1]. Still, we determined an occupation’s 

mean wage and programming skill level 

to be negatively associated with 

automation risk, while the degree of 

automated tasks and minimum 

education required for entry are 

positively associated, holding everything 

else constant. In a given occupation, we 

found the degree of automated tasks and 

mean hourly wage to be significant 

predictors in our main model, while the 

programming skill level of workers and 

minimum education required perform 

decently, with slightly larger observed 

significance levels of 0.13211 and 
0.14161, respectively.  

Additionally, we qualitatively 

consider what the probabilities acquired 

from our main model suggest in 

economic terms by applying additional 

regressions. We identify negative 

correlations between automation 

likelihood and our static economic 

variables, annual wage and educational 

attainment. In terms of dynamic 

economic variables, we find automation 

risk has a significant negative 

association with the mean employment 

growth rates from 2010-2019, yet a 

growing positive association with real 

wage growth over time, although the 

latter trend could be due to randomness, 

as our probabilities lack predictive 

strength for this outcome in each period. 

Although these supplementary models 

introduce more questions than answers, 

with high probability, we hope they 
motivate further investigation. 
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Appendix 

 A1 Occupational Ranking Based Regression Coefficients 
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Estimated Control Variable Coefficients 

We used control vectors for models with more than one control variable (i.e., in equations (1a) and 

(2)). These vectors not only save space in mathematical expressions but can be redefined to include 

additional and/or better controls in future research. 

Our main model, equation (1a), is conditional on controls in vector Xi, with corresponding vector of 

parameters, β. We estimate these parameters with the elements (i.e., estimated coefficient) of  �̂� in 

Table A1.16 

 
16  Similar to level of on-the-job training in the main model, relevant work experience is categorical 

variable. Since there are three classes, we use one for the baseline, such that the coefficients of each of the 

two remaining classes represents the difference in automation propensity between occupation of that 

category, and those belonging to the “baseline” category. 
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Our static economic regression for mean annual wage, equation (2), is conditional on controls in 

vector Ai, with corresponding vector of parameters α. We estimate these parameters with the 

coefficients of �̂� in Table A2.  

 

 

 

 

 A3 Defining Categorical Variables 
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Table A4: Relevant Work Exp.  M.     

 
 

 

 A4 Calculating Real Wage Growth Rates 

To account for inflation in calculating real wage growth, we take the percent change in mean annual 

wage between each year divided by the appropriate inflation factor (CPIt+1/ CPIt). We take the average 

of these real growth rates for each time period we study. 

      

 A5 ROC Classification Threshold Comparison 

We compare the true positive percentages and false positive percentages obtained from adjusting the 

“automatable” classification threshold in each model.  
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Table A5: Main Model ROC 

 

 

 

 

 

 

 

Table 6: Frey-Osborne ROC 
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Table A6: Frey-Osborne ROC 

 

 

 

Additional Economic Plots 

  Employment Growth by Time Period 

Figure A1: Frey-Osborne Model Predictions 
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Figure A2: Hand Labeled Assignments 

 

  Real Wage Growth by Time Period 

Figure A3: Frey-Osborne Model Predictions 

 

Figure A4: Hand Labeled Assignments 

 
 

 

 

 


