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 Abstract: To study the interaction of solar wind electrons and large-

amplitude whistler waves, a vectorized test particle simulation was 
developed with a variational component to calculate the Lyapunov 
exponents. A description of particle dynamics using the Hamiltonian 
formulation and secular perturbation theory confirmed that the 
electron’s pitch angle diffusion was along the constant Hamiltonian 
surface and that it was driven by the interaction with the resonance 
surfaces. Also, the role of large-amplitude whistlers in the scattering of 
solar wind electrons was established. Oblique whistlers were shown to 
be able to efficiently scatter field-aligned strahl electrons into the halo 
population in the solar wind. These waves could generate horn-like 
features in the velocity distribution function, consistent with the 
behavior reported in recent Particle-In-Cell studies.  

 

Introduction 

The solar wind originated from the 

solar corona is a magnetized and nearly 

collisionless plasma consisting primarily of 

electrons, protons, and alpha particles. 

Typically, it can be described as a 

magnetohydrodynamic fluid with a very high 

magnetic Reynold's number. Consequently, 

the magnetic field at the solar surface is 

frozen into the solar wind plasma and carried 

along with it. This results in a spiraled 

geometry of the interplanetary magnetic field 

lines called the Parker spirals (see Fig. 1). 

Parker (1958) found from this geometry that 

the magnetic field followed an inverse square 

law 𝐵𝑟 ∼ 𝑟−2 and the particle density 𝑛 ∼

𝑟−2𝑉−1 decreased with increasing speed 𝑉 

and radial distance 𝑟. 

In the velocity distribution of solar 

wind electrons, observations have shown 

that there are usually three populations, a 

cold core, a hot halo, and a magnetic field 

aligned strahl, which evolve with 

heliospheric distance (Montgomery et al., 

1968; Feldman et al., 1975; Pilipp et al., 

1987). Observations near the Sun (0.3 AU) 
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from the Parker Solar Probe (PSP) have 

reported that the halo almost disappears, 

while the strahl is narrower than further out 

from the Sun (Halekas et al., 2020a). Fig. 2 

shows an example of the velocity distribution 

function (VDF) of electrons at 0.3 AU, where 

both core and strahl populations are 

modelled with a bi-Maxwellian distribution. 

Far from the Sun, statistical studies at 1 AU 

from Maksimovic et al. (2005) and Wilson III 

et al. (2019) have modelled core electrons 

with a bi-Maxwellian distribution, while the 

halo and the strahl are better fitted with a bi-

Kappa distribution (see Fig. 3).  

As these electrons stream radially out, 

if their propagation were adiabatic, meaning 

the magnetic moment 𝜇 ∼ 𝑣⊥
2/𝐵𝑟  were 

conserved, then the perpendicular velocity 

would have to decrease. This means far from 

the Sun, the strahl should be increasingly 

narrow. However, in-situ data have shown an 

opposite trend in the radial evolution of solar 

wind electrons. S̆tverák et al. (2009) observed 

from 0.3 to 1 AU that the strahl density 

decreased as the halo density increased by 

the same amount relative to the core (see Fig. 

4). This suggests that the origin of the halo is 

due to the scattering of the strahl. 

Additionally, Anderson et al. (2012) and 

Graham et al. (2017) reported that the 

strahl's pitch angle width distribution varied 

greatly from 5 to 90° at 1 AU and increased 

radially beyond 1 AU. Thus, it would be 

harder to identify a field aligned strahl 

population further out from the Sun.  

Therefore, there must be a mechanism 

that scatters strahl electrons into the halo 

distribution. Wave-particle interaction is one 

such process that allows the energization and 

scattering of resonant electrons. Specifically, 

whistler-mode waves, a right-hand polarized 

electromagnetic wave, have long been 

proposed as a candidate to explain these 

solar wind observations. Through theoretical 

and simulation studies, they have been 

demonstrated to scatter electrons in the 

 

Figure 1. The spiral geometry of the solar wind and the interplanetary magnetic field lines 
(source: GSFC (2019)) 
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Earth's radiation belts (Karimabadi et al., 

1990; Albert, 1993; Tao & Bortnik, 2010; 

Hsieh & Omura, 2017, and references 

therein). However, these studies typically 

focused on small whistler amplitudes with 

𝛿𝐵/𝐵0 ∼ 𝒪(10−4). Breneman et al. (2010) 

and Cattell et al. (2020) used electric field 

waveform captures from the STEREO 

satellites at 1 AU and demonstrated that 

large amplitude, narrowband, obliquely 

propagating whistlers were frequently 

present in the solar wind. They were 

observed in the range of 5 – 40 mV/m, which 

corresponds to 𝛿𝐵/𝐵0 ∼ 𝒪(0.1). These large 

amplitude whistlers recently became an 

interest because of new data from the PSP at 

0.3 AU. Agapitov et al. (2020) and Cattell et 

al. (2021a) observed large amplitude waves 

of this order near the Sun. Additionally, their 

polarization indicated that the propagation 

varied from quasi-parallel to oblique angles. 

Micera et al. (2020) simulated whistlers from 

heat-flux instabilities near the Sun using 

electron distributions modeled after PSP data 

and showed the halo formation from strahl 

electrons. Roberg-Clark et al. (2019) 

 

Figure 2. Model of initial electron populations at 0.3 AU used in the simulations in Micera et 

al. (2020). The core and strahl bulk velocity ensure zero net current. 

 

Figure 3. Components of solar wind electrons observed by the Wind satellite at 1 AU as fitted 

by Wilson III et al. (2019). 



 

 4 Volume 5 • Issue 4 

reported the formation of “horns” in velocity 

space due to the scattering of resonant strahl 

electrons with oblique whistlers in solar 

flares (see Fig. 5). Thus, we are interested in 

studying the scattering and energization of 

solar wind electrons due to these large 

amplitude waves and comparing our results 

with observations and these recent 

simulations.  

Kersten (2014) developed a test 

particle simulation to study whistler-electron 

interactions in the radiation belts and later 

adapted it to simulate whistlers at stream 

interaction regions in the solar wind based 

on observations in Breneman et al. (2010). 

Modelled after the simulation in Roth et al. 

(1999), the code used a fourth order Runge-

Kutta (RK) integration algorithm to solve the 

Lorentz equation numerically. This is a 

 

Figure 4. Radial evolution of electrons in the fast and slow solar wind from 0.3 to 6 AU (S̆tverák et 

al., 2009). 

 

Figure 5. Formation of horns in velocity space of an original distribution (a) of core and strahl 

electrons (Roberg-Clark et al., 2019). The horizontal and vertical axes are the parallel and 

perpendicular velocity normalized by the electron Alfvén speed. Panel (b) shows the resulting 

interaction with a right-ward wave. The white crosses are the 𝑛 = −5, −4, … ,1 resonances. Panel 
(c) shows that with a left-ward wave (with 𝑛 = −1, 0, … ,5 resonances). 
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general approach to numerical problems as 

the RK family of integrators is known to 

produce highly precise solutions. The results 

are therefore reliable as long as one is 

interested in single-particle behaviors. 

However, this approach fails to maintain the 

consistency among a spectrum of initial 

conditions as the solutions might be more 

unstable for certain regions in phase space. 

For the high amplitude waves of interest, 

chaotic behavior is usually present. Thus, this 

program is insufficient to investigate the 

behavior of an electron distribution as it 

provides no physical measure to judge the 

reliability among the results.  

Particle-In-Cell (PIC) simulations, as 

used by Micera et al. (2020) and Roberg-

Clark et al. (2019), are a standard in plasma 

research in studying self-consistently 

evolving systems. Instead of a high order RK 

algorithm, they usually use a time-centered, 

second-order explicit integrator called the 

Boris pusher (Birdsall & Langdon, 1985). 

Although not a symplectic algorithm, it is the 

de facto method for advancing a charged 

particle in an electromagnetic field because 

the Boris pusher conserves local phase space 

volume (Qin et al., 2013). This means the 

energy error is globally bounded for an 

arbitrarily large number of time steps. Thus, 

this numerical method is capable of resolving 

multi-scale dynamical problems over a long 

simulation period. However, PIC simulations 

are computationally expensive, as they solve 

Maxwell equations along with advancing 

particles and usually handle millions to 

trillions of particles. For our purpose, large 

scale PIC simulations are not necessary, 

because test particle simulations allow us to 

examine the interaction for different wave 

properties and over all particle angles and 

energies.  

In this thesis, a vectorized test particle 

simulation capable of investigating the 

behavior of a distribution of hundreds of 

thousands of electrons is utilized. The code is 

modelled after the Vector Particle-In-Cell 

(VPIC) code using only the particle advancing 

component (Bowers et al., 2008). In Section 

2, a derivation of the whistler wave fields 

from a cold, collisionless plasma dispersion 

relation is given. Also, the Hamiltonian 

analysis of the resonance surface using 

Hamilton-Jacobi and perturbation theory is 

discussed. In Section 3, detail of the 

calculations in the simulation are laid out, 

together with the estimation of the Lyapunov 

exponents to measure the efficiency of the 

integration algorithm. Section 4 presents the 

diagnostics of the simulation including the 

Lyapunov exponents, the adiabatic 

invariants, and whistler parameters. Section 

5 reports simulation results of the electron 

distribution interactions with single uniform 

whistlers and a narrowband packet of 

whistlers at 0.3 AU and 1 AU and their 

analysis as according to quasi-linear resonant 

theory. Conclusions and suggestions for 

future works are in Sections 6 and 7. 
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Theory 

2.1 Equations of whistler wave fields 

In a cold uniform plasma with a 

background magnetic field 𝑩0 = 𝐵0𝒛̂, the 

electric permittivity tensor is 

𝛜 = ϵ0𝛜𝑅 = ϵ0 (
𝑆 −𝑖𝐷 0

𝑖𝐷 𝑆 0
0 0 𝑃

),         (2.1) 

where the constants 𝑆, 𝐷, 𝑃 are the Stix 

parameters (Stix, 1992) given as follows. 

𝑆 =  1 −  ∑
ω𝑝𝑠

2

ω2 − Ω𝑝𝑠
2

𝑠

 

𝐷 = ∑
|𝑞𝑠|

𝑞𝑠

Ω𝑐𝑠ω𝑝𝑠
2

ω(ω2 − Ω𝑐𝑠
2 )

𝑠

  

𝑃 = 1 − ∑
ω𝑝𝑠

2

ω2

𝑠

 

The summation is over all species 𝑠 with 

charge 𝑞𝑠, mass 𝑚𝑠, and density 𝑛𝑠.  The 

plasma frequency is 𝜔𝑝𝑠 = √𝑛𝑠𝑞𝑠
2/𝜖0𝑚𝑠 , and 

Ω𝑐𝑠 = |𝑞𝑠|𝐵0/𝑚𝑠 is the cyclotron frequency. 

Now, let there be an electromagnetic wave 

propagating in the 𝑥𝑧 plane with 𝒌 = 𝑘⊥𝒙̂ +

𝑘∥𝒛̂ = 𝑘(𝑠𝑖𝑛 θ𝒙̂ + 𝑐𝑜𝑠 θ𝒛̂). Assume also that 

the fields are Fourier transformed so that 

𝛁 ↦ 𝑖𝒌 and 𝜕/𝜕𝑡 ↦ −𝑖𝜔. From Maxwell 

equations, the electric field satisfies 𝑵 ×
(𝑵 × 𝑬) + 𝝐𝑅 ⋅ 𝑬 = 0 where 𝑵 = 𝑐𝒌/𝜔 is the 

refractive index.  This can be written in the 

form 𝑹 ⋅ 𝑬 = 0 where 𝑹 satisfies 

det𝑹 = det (

𝑆 − 𝑁∥
2 −𝑖𝐷 𝑁⊥𝑁∥

𝑖𝐷 𝑆 − 𝑁2 0
𝑁⊥𝑁∥ 0 𝑃 − 𝑁⊥

2

) = 0, 

(2.3) 

from which the refractive index can be 

solved. Plugging it back into 𝑹 ⋅ 𝑬 = 0 yields 

the electric field polarizations. The right-

hand polarized solution with frequencies 

between Ω𝑐𝑖 and Ω𝑐𝑒 is called the whistler 
mode whose fields can be written in the form 

𝑩𝑤 = 𝐵𝑥
𝑤sin𝜓𝒙̂ + 𝐵𝑦

𝑤cos𝜓𝒚̂ + 𝐵𝑧
𝑤sin𝜓𝒛̂ (2.4𝑎) 

𝑬𝑤 = 𝐸𝑥
𝑤cos𝜓𝒙̂ + 𝐸𝑦

𝑤sin𝜓𝒚̂ + 𝐸𝑧
𝑤cos𝜓𝒛̂, (2.4𝑏) 

where the wave phase is 𝜓 = 𝒌 ⋅ 𝒓 − 𝜔𝑡 and 

the magnetic field is given by Faraday's law 

𝑩𝑤 = (1/𝜔)𝒌 × 𝑬𝑤. The polarizations are 
summarized in Tao & Bortnik (2010). 

𝐸𝑥
𝑤/𝐸𝑥

𝑤 = 1 

𝑐𝐵𝑥
𝑤/𝐸𝑥

𝑤 =
𝑁𝐷𝑐𝑜𝑠θ

𝑁2 − 𝑆
 

𝐸𝑦
𝑤/𝐸𝑥

𝑤 =
𝐷

𝑁2 − 𝑆
 

𝑐𝐵𝑦
𝑤/𝐸𝑥

𝑤 =
𝑁𝑃𝑐𝑜𝑠θ

𝑃 − 𝑁2𝑠𝑖𝑛2θ
 

𝐸𝑧
𝑤/𝐸𝑥

𝑤 = −
𝑁2𝑠𝑖𝑛θ𝑐𝑜𝑠θ

𝑃 − 𝑁2𝑠𝑖𝑛2θ
 

𝑐𝐵𝑧
𝑤/𝐸𝑥

𝑤 =
𝑁𝐷𝑠𝑖𝑛θ

𝑆 − 𝑁2
 

(2.5) 

For the analysis of the Hamiltonian, it 

is also necessary to find a scalar and vector 

potential representing the above fields. 

Assuming the general form for the whistler 

potentials used in Karimabadi et al. (1990) 

and Roth et al. (1999), we can find the 

amplitudes such that they are consistent with 

Eq. (2.4).  Suppose the scalar potential is 

Φ𝑤 = Φ0 sin 𝜓 and the vector potential is 

𝑨𝒘 = 𝐴1

𝑘∥

𝑘
𝑠𝑖𝑛ψ𝒙̂ + 𝐴2𝑐𝑜𝑠ψ𝒚̂ − 𝐴1

𝑘⊥

𝑘
𝑠𝑖𝑛ψ𝒛.̂  

(2.6) 

Equating the corresponding electric field 𝑬 =

−𝛁Φ𝑤 − 𝜕𝑨𝑤/𝜕𝑡 to Eq. (2.4b), we can solve 

for Φ0, 𝐴1, 𝐴2 as follows. 

Φ0 = −
1

𝑘
[
𝑘⊥

𝑘
𝐸𝑥

𝑤 +
𝑘∥

𝑘
𝐸𝑧

𝑤] 

(2.2) 
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𝐴1 =
1

ω
[
𝑘∥

𝑘
𝐸𝑥

𝑤 −
𝑘⊥

𝑘
𝐸𝑧

𝑤] 

𝐴2 =
𝐸𝑦

𝑤

ω
 

(2.7) 

 

2.2 Particle dynamics 

 The curvature of the Parker spiral is 

small over a length scale of ∼100,000 km, 

which we will later confirmed through 

comparison with the particle motion. We can 

therefore assume the background field is 

uniform 𝑩0 = 𝐵0𝒛̂. Given a vector potential 

𝑨 = 𝑨𝑤 + 𝑥𝐵0𝒚̂ and a scalar potential Φ𝑤 

where 𝑨𝑤, Φ𝑤 are defined in Section 2.1, the 

relativistic Hamiltonian for a particle with 
mass 𝑚 and charge 𝑞, is 

ℋ = √𝑚2𝑐4 + (𝐏 − 𝑞𝑨𝑤 − 𝑞𝐵0𝑥𝒚̂)2𝑐2

+ 𝑞Φ𝑤, (2.8) 

where 𝑷 = 𝛾𝑚𝒗 + 𝑞𝑨 is the canonical 

momentum conjugate to the Cartesian 
coordinates and 𝛾 is the Lorentz factor. 

There are two issues. First, note that 

ℋ depends on 𝑥, so 𝑃𝑥̇ = − ∂ℋ/ ∂𝑥 ≠ 0 and 

𝑃𝑥 is not invariant. Secondly, 𝑨𝑤 oscillates 

with the phase 𝜓(𝑥, 𝑧, 𝑡). So, the energy is not 

conserved as the Hamiltonian is time 

dependent. The former is a standard problem 

since ℋ is currently formulated in Cartesian 

coordinates, whereas the system is 

cylindrically symmetric due to the 

background magnetic field. This can be 

resolved by transforming into a cylindrical 

frame (Goldstein et al., 2002). The latter is, 

however, more problematic as the wave 

introduces oscillations symmetric about its 

direction of propagation. In-depth analysis of 

the Hamiltonian can be done by using secular 

perturbation theory (Lichtenberg & 

Lieberman, 1992), which involves 

decomposing the Hamiltonian into Bessel-

Fourier series and performing the gyro-

averaging method to separate a single term, 

the 𝑛th harmonic, in the series. 

Within the scope of our analysis, we 

will calculate this Hamiltonian system’s 

adiabatic invariants and derive its resonance 

surfaces similar to the approach of 

Karimabadi et al. (1990) and Roberg-Clark et 

al. (2019). The mathematical details are given 

in Appendix B. For motion near the 

resonance 𝑛, the Hamiltonian can be recast 

into the form 

ℋ(𝜁; 𝑃ϕ̂, 𝑃ζ̂) = γ (𝑃ϕ̂ + 𝑛𝑃ζ̂, 𝑘∥𝑃ζ̂
) 𝑚𝑐2 −

ω𝑃ζ̂ + 𝐺𝑛 (𝑃ϕ̂ + 𝑛𝑃ζ̂, 𝑘∥𝑃ζ̂
) 𝑠𝑖𝑛ζ,      (2.9)    

where the action-angle variables (𝜁, P̂𝜁) and 

(𝜙, P̂𝜙) are given by 

ζ = 𝑛ϕ + 𝑘⊥𝑃𝑦/𝑞𝐵0 + 𝑘∥𝑧 − ω𝑡 

𝑃ζ̂ = 𝑃∥/𝑘∥ 

ϕ = 𝑡𝑎𝑛−1 [
𝑚Ω𝑐(𝑥 − 𝑃𝑦/𝑞𝐵0)

𝑃𝑥
] 

𝑃ϕ̂ = 𝑃ϕ − 𝑛𝑃∥/𝑘∥ = 𝑃⊥
2/2𝑚Ω𝑐 − 𝑛𝑃∥/𝑘∥. 

(2.10) 

The perpendicular momentum is defined as 

𝑃⊥ = √𝑃𝑥
2 + (𝑃𝑦 − 𝑞𝐵0𝑥)

2
. The gyroradius is 

then 𝜌 = 𝑃⊥/𝑚𝛺𝑐 = √2𝑃𝜙, and the Lorentz 

factor 𝛾 = √1 + (𝑃⊥
2/𝑚2𝑐2) + (𝑃∥

2/𝑚2𝑐2). 

The perturbation amplitude 𝐺𝑛 is defined as 
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𝐺𝑛(𝑃ϕ, 𝑃∥) = 𝑚𝑐2𝑠 [δ0 +
δ1

γ
(

𝑘⊥

𝑘

𝑃∥

𝑚𝑐
−

𝑘∥

𝑘

𝑛Ω𝑐

𝑐𝑘⊥
)] 𝐽𝑛(𝑘⊥√2𝑃ϕ) +

δ2

γ

ρΩ𝑐

𝑐
𝐽′𝑛 (𝑘⊥√2𝑃ϕ

) , (2.11) 

where 𝐽𝑛, 𝐽′
𝑛 are the 𝑛th order Bessel 

functions of the first kind and their 
derivatives, the wave potential amplitudes 
are 𝛿0 = |𝑞|Φ0/𝑚𝑐2 and 𝛿1,2 = |𝑞|𝐴1,2/𝑚𝑐, 
and 𝑠 = 𝑞/|𝑞| is the charge sign. The 
equation of motion of this system is 

𝑑ζ

𝑑𝑡
= −ω +

𝑛Ω𝑐

γ
+

𝑘∥𝑃∥

γ𝑚

+ (𝑛
∂𝐺𝑛

∂𝑃ϕ
+ 𝑘∥

∂𝐺𝑛

∂𝑃∥
) sinζ  

(2.12a)  

𝑑𝑃ζ̂

𝑑𝑡
= −𝐺𝑛cosζ.              (2.12b) 

 Here, we have assumed that the wave 
is small (𝛿0,1,2 ≪ 1 and 𝛿1,2 < 𝛾𝑣/𝑐, where 𝑣 

is the particle’s velocity). So, the motion 𝜁̇ is 

usually fast, meaning we can average over 𝜁 

and 𝑃𝜁̇ = 0, except for when 

ω =
𝑛Ω𝑐

γ
+

𝑘∥𝑃∥

γ𝑚
.                   (2.13) 

The adiabatic invariant P̂𝜁 is no longer 

conserved whenever the particle undergoes a 

resonance crossing (see Fig. 6). Eq. (2.13) 
then describes a resonant condition. 
Although this is not a convention, most 
literature defines the gyrophase as 𝑠𝜙, which 
results in the resonant mode being 𝑠𝑛. For an 
electron with 𝑠 = −1, this means their 
fundamental cyclotron motion is the 𝑛 = −1 
mode, while the fundamental cyclotron as 
defined by Eq. (2.13) is 𝑛 = 1. This definition 
will be used in subsequent discussions. 

2.3 Particle dynamics 

Using the dynamics we established in 
Section 2.2, we can use a tool provided by 
Karimabadi et al. (1990), the resonance-
diagram technique. The derivation steps are 
included in Appendix C. Let 𝐻0 = 𝛾 − 𝑣𝑝(𝑃∥/

𝑚𝑐) be the normalized unperturbed 
Hamiltonian in Eq. (2.9) where 𝑣𝑝 = 1/𝑁∥ =

𝜔/𝑘∥𝑐 is the normalized phase velocity and 
𝑁∥ the parallel refractive index. A constant 
value of 𝐻0 defines a constant energy (𝐻) 
surface in phase space (𝑃∥, 𝑃⊥). In the non-
relativistic limit, this is the equation of a 
circle centered around 𝑣𝑝 with (𝑣∥/𝑐 −

𝑣𝑝)
2

+
𝑣⊥

2

𝑐2 = const (Roberg-Clark et al., 2019). 

In the relativistic limit, the 𝐻 surface is 
elliptic 

 

Figure 6. The change in the adiabatic invariant I as the resonance ℒ crosses an 
integer value (figure from Albert (1993)). In our notations, ℒ = n, I = P̂ϕ, and Z = z. 
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(𝑣∥ − 𝑣𝑐)2/𝑐2

𝑅0/(𝐻0
2 + 𝑣𝑝

2)
+

𝑣⊥
2/𝑐2

𝑅0/𝐻0
2 = 1,         (2.14) 

where 𝑣𝑐/𝑐 = 𝑣𝑝/(𝐻0
2 + 𝑣𝑝

2) and 𝑅0 = 𝐻0
2 −

1 + 𝑣𝑝
2/(𝐻0

2 + 𝑣𝑝
2). We have approximated 

𝑃 ≈ 𝛾𝑚𝑣 (which is valid if the particle term 
dominates in the canonical momentum) and 
write the surface in terms of the observable 
𝑣. Similarly, one can also define a resonance 
(𝑅) surface from the resonant condition Eq. 
(2.13). Its intersections to the 𝑣⊥ = 0 axis are 

𝑣𝑟,∥ =
𝑣𝑝

1+α𝑛
2 ± √

α𝑛
2

1+α𝑛
2 (1 −

𝑣𝑝
2

1+α𝑛
2 ),       (2.15) 

where 𝛼𝑛 = 𝑛𝛺𝑐/𝑘∥𝑐. The Landau resonance 
(𝑛 = 0) is located at the center of all 𝐻 
surfaces and other pairs of resonance (𝑛 =
±1, ±2, ±3, …) are equidistant to that center 
(see Fig. 5 for examples from the Roberg-
Clark simulation). For whistler waves, 𝑁∥ is 
usually larger than 1, so the maximum 
energization is highly limited because the 
number of 𝐻–𝑅 intersections are small 
(Karimabadi et al., 1990). Thus, particles tend 
to move along the constant 𝐻 surface until 
they interact resonantly with the wave near 
the 𝐻–𝑅 intersection and become energized 
or de-energized. In subsequent sections, only 
particles in the non-relativistic energy range 

where 𝐻 is circular and 𝑅 is approximately a 
constant surface at 𝑣𝑧 = 𝑣𝑟,∥ will be 

investigated. In subsequent analysis, the 
particles’ trajectories in phase space will be 
confirmed to follow this behavior. 

  

 

Figure 7. Trajectories (colored solid lines) of particles being trapped 
along (dotted) resonance lines (|𝑛| ≤ 6) in Hsieh & Omura (2017). 
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Simulation 

3.1 Particle advance 

 The Hamiltonian equation of motion 
in Eq. (2.12), although useful for analysis, is 
only an approximation near a single 
resonance. Roth et al. (1999) alternated 
between that and the exact Lorentz force to 
reduce the computational cost for particles 
entering resonance, since adaptive RK of the 
4th order is expensive. However, in doing so, 
the code user must impose an arbitrary 
boundary in switching between the resonant 
and non-resonant regimes. Here, we shall use 
the relativistic Boris pusher from Ripperda et 
al. (2018) to solve for the full Lorentz force 
and rely on its volume-preserving 
characteristics to choose the appropriate step 
size. However, we must first describe our 
normalizations. From Section 2.1, it is natural 
to normalize 𝑩 ↦ 𝑩/𝐵0 and subsequently 
𝑬 ↦ 𝑬/𝑐𝐵0. Since we are using relativistic 
formulations, 𝒗 ↦ 𝒗/𝑐 and 𝑷 ↦ 𝑷/𝑚𝑐. The 
characteristic frequency in our system is 
defined by the electron cyclotron frequency 
𝛺𝑐𝑒 , so the wave frequency 𝜔 ↦ 𝜔/𝛺𝑐𝑒 and 
time 𝑡 ↦ 𝑡𝛺𝑐𝑒 . The spatial position thus 
becomes 𝒓 ↦ 𝒓Ω𝑐𝑒/𝑐. 

The description of the Boris algorithm 
is as follows. The Lorentz force in natural 
units has the form 𝑑𝒖/𝑑𝑡 = 𝑠(𝑬 + 𝒗 × 𝑩) 

where 𝒖 = 𝛾𝒗 and 𝛾 = √1 + 𝑢2. The time-
centered finite difference expression of this is 

𝐮𝑛+1 + 𝐮𝑛 =  sΔ𝑡[𝐄𝑛

+ (1/2γ𝑛)(𝐮𝑛+1 + 𝐮𝑛) × 𝐁𝑛], 

(3.1) 

where 𝒖𝑛 = 𝛾𝑛𝒗𝑛(𝑡𝑛 − Δ𝑡/2), 𝑬𝑛 = 𝑬𝑛(𝑡𝑛), 
𝑩𝑛 = 𝑩𝑛(𝑡𝑛) and 𝛥𝑡 is the step size where 
𝑡𝑛 = 𝑛𝛥𝑡 for 𝑛 ∈ ℕ. 𝛾𝑛 is the Lorentz factor 
determined from 𝒖𝑛. Now, the Kick-Drift-
Kick steps that make this algorithm a 
leapfrog scheme are defined via the two 
auxiliary vectors 𝒖±. The first kick is a half 
electric field acceleration from 𝒖𝑛 to 𝒖− =
𝒖𝑛 + (𝑠Δ𝑡/2)𝑬𝑛 followed by a rotation 𝒖− ↦

𝒖+ by the magnetic field 𝒖+ = 𝒖− + (Δ𝑡/
2𝛾𝑛)(𝒖+ + 𝒖−) × 𝑩𝑛. 𝒖+ here seems to be 
implicitly defined, but from the geometry of 
this rotation, it can be computed explicitly as 
𝒖+ = 𝒖− + (𝒖− + 𝒖− × 𝑻) × 𝑺 with 𝑻 =
(𝑠Δ𝑡/2𝛾𝑛)𝑩𝑛 and 𝑺 = 2𝑻/(1 + 𝑇2) (see more 
details in Birdsall & Langdon (1985)). Then 
the second kick accelerates the particle to the 
next state 𝒖𝑛+1 = 𝒖+ + (𝑠Δ𝑡/2)𝑬𝑛. 

To simulate single uniform whistler 
fields in natural units, Eq. (2.4) can be 
rewritten as 

𝐁𝑤

𝐵0
=

𝐸𝑥
𝑤

𝑐𝐵0
[(

𝑐𝐵𝑥
𝑤

𝐸𝑥
𝑤 ) 𝑠𝑖𝑛ψ𝒙̂ + (

𝑐𝐵𝑦
𝑤

𝐸𝑥
𝑤 ) 𝑐𝑜𝑠ψ𝒚̂

+ (
𝑐𝐵𝑧

𝑤

𝐸𝑥
𝑤 ) 𝑠𝑖𝑛ψ𝒛̂],             (3.2) 

and similarly, 

𝐄𝑤

𝑐𝐵0
=

𝐸𝑥
𝑤

𝑐𝐵0
[𝑐𝑜𝑠ψ𝒙̂ + (

𝐸𝑦
𝑤

𝐸𝑥
𝑤) 𝑠𝑖𝑛ψ𝒚̂

+ (
𝐸𝑧

𝑤

𝐸𝑥
𝑤) 𝑐𝑜𝑠ψ𝒛̂].             (3.3) 

Since the STEREO spacecraft only measured 
the whistler electric field amplitudes 
(Breneman et al., 2010), 𝐸𝑥

𝑤 is used as the 
scaling factor. The unitless polarizations can 
be computed with Eq. (2.5). Note that the 
wave phase in natural units is 𝜓 = 𝜔(𝑁⊥𝑥 +
𝑁∥𝑧 − 𝑡), and that it is zero for particles 
starting out at the origin at 𝑡 = 0. Originally, 
the wave has an amplitude 𝐸𝑤

0 =

𝐸𝑥
𝑤√1 + (𝐸𝑧

𝑤/𝐸𝑥
𝑤)2. So, 𝐸𝑥

𝑤 will be chosen 
such that 𝐸𝑤

0  has a desired physical value. To 
simulate a wave packet with the same 
original wave amplitude 𝐸𝑤

0  and 𝑁 
frequencies 𝜔𝑗 = 𝜔1 + (𝑗 − 1)𝛥𝜔 with 

spacing 𝛥𝜔, the calculations Eq. (3.2) and Eq. 
(3.3) can simply be repeated and the total 
fields are 𝑬𝑤 = ∑ 𝑬𝑤,𝑗

𝑁
𝑗=1  and 𝑩𝑤 =

∑ 𝑩𝑤,𝑗
𝑁
𝑗=1 . 



 

 11 Volume 5 • Issue 4 

With these calculations, a description 
of the particle advance at each time step is 
completed. The scaling factor is calculated at 
the beginning of the simulation. So each loop 
involves (a) calculating new wave phase, 
constructing the total field, and advancing the 
particle, (b) the diagnostics, and (c) writing 
to database. (b) and (c) can be activated at 
different time intervals. 

3.2 Estimation of the Lyapunov exponents 

As mentioned in the previous section, 
the Boris pusher guarantees a volume-
preserving characteristic. To verify that our 
simulation’s step size is sufficiently small that 
the algorithm efficiently preserves volume in 
phase space, we employ a concept from chaos 
theory called the Lyapunov exponents (Ott, 
2002). These exponents essentially describe 
how a basis spanning a 𝑘-dimensional space 
changes under subsequent transformations. 
For simplicity, suppose we have a 1-D 
trajectory. If the Lyapunov exponent is 𝜆 = 0, 
then the space (distance, in this case) around 
it evolves as exp(𝑛𝜆) = 1 and doesn’t 
contract or expand after 𝑛 time steps. If 𝜆 <
0, the space eventually reduces to a singular 
point. This is called an attractor where all 
trajectories starting out near this one being 
considered converges. If 𝜆 > 0, all 
trajectories originally close together 
eventually diverge and become increasingly 
far from each other. In higher dimensions, 
these distortions can be described through 

the basis elements that span the phase space 
(see Fig. 8). 

It requires infinitely many vectors 

near a point in phase space to compute the 

Lyapunov exponents precisely. Thus, one can 

only estimate the values using a variety of 

methods. Here, we shall use a variational 

approach with Gram-Schmidt 

orthogonalization (Benettin et al., 1980; 

Sandri, 1996). Given an initial condition to 

our ordinary differential equations (ODEs) in 

the previous section, we can attach to it a six-

dimensional “ball” given by a 6x6 matrix, or a 

set of six 6-D column vectors 𝑈0 = {𝒖𝑗}
𝑗=1

6
. 

This choice of a 6-ball is arbitrary, but the 6-

D identity map 𝟙6 is an obvious option. It 

becomes 𝑈1 = 𝑴0 ⋅ 𝑈0 after a local expansion 

𝑴0 = 𝟙6 + Δ𝑡𝛁𝑭0 where 𝛥𝑡 is the step size 

and 𝛁𝑭0 is the Jacobian of our ODEs at 𝑛 = 0. 

More details about 𝑴 and 𝛁𝑭 can be found in 

Appendix D. By the Gram-Schmidt procedure, 

we can find a 6-D orthogonal basis 𝑊1 =

{𝒘𝑗}
𝑗=1

6
 from 𝑈1. The volume of the 

parallelpiped spanned by this new basis 

is𝑉1(𝑊1) = ∏ ‖𝒘𝑗‖6
𝑗 . Now, the definition of 

the largest Lyapunov exponent (LCE) after 

time 𝑡 is 𝜆 = lim𝑡→∞(1/𝑡) ln 𝑉 where 𝑉 is the 

current volume of the 6-ball. So after 𝑁 time 

steps, the LCE can be approximated as 

 

Figure 8. Distortion of a two-dimensional ball after 𝑛 time steps. ℎ1, ℎ2 are the 
Lyapunov exponents in each axial direction spanning the ball. 
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λ =
1

𝑁Δ𝑡
∑ ∑ 𝑙𝑛 ||𝐰𝑗

𝑛|| ,         (3.4)

6

𝑗=1

𝑁

𝑛=1

 

where 𝑡 → 𝑁𝛥𝑡 and 𝒘𝑗
𝑛 are the basis 

elements 𝑗 at time step 𝑛. Note the volume is 
accumulative through time. It is also possible 
to define separately the Lyapunov exponent 
in each dimension of the original 6-ball. 

λj =
1

𝑁Δ𝑡
∑ ln ||𝒘j

n||.          (3.5)

𝑁

𝑛=1

 

Then the LCE is just the sum of 𝜆𝑗  over 6 

dimensions. Our calculations thus involve 
consecutively computing at each step 𝑛 the 
volume of the ball from 𝑊𝑛 and then 
renormalizing it to measure the expansion of 
the next advance. The final result is an 
accumulation of the volume expansion 
through 𝑁 time steps, from which the LCE 
can be calculated. 
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Diagnostics 

4.1 Wave parameters 

In subsequent sections, the 
interactions of whistlers with electrons in 
two sets of background parameters will be 
studied. The first one is typical of 1 AU with a 
background field strength 𝐵0 = 10 nT. The 
plasma is quasineutral with 𝑛 = 𝑛𝑖 = 𝑛𝑒 =
5 cm−3. The second is consistent with the 
simulation at 0.3 AU in Micera et al. (2020) 
with 𝐵0 = 50 nT and 𝑛 = 𝑛𝑖 = 𝑛𝑒 = 300 cm−3. 
The whistler parameters are based on those 
of Cattell et al. (2020). For both sets of 
background parameters, the single waves 
have an amplitude 𝐸𝑤

0 = 20 mV/m, frequency 
𝜔/𝛺𝑐𝑒 = 0.15, and propagation angles 𝜃 =
5∘, 65∘, and 175∘. Whistler packets will 
contain a set of eleven 20 mV/m single 
whistlers with frequency from 0.135 to 0.165 
𝛺𝑐𝑒  and propagation angles 𝜃 = 0∘, 65∘, and 
180∘. 

A few examples showing the oblique 
wavefronts are shown in panels A, B, and C of 
Fig. 9. The phase velocities are different 

between 0.3 and 1 AU because the 
background parameters are different. Panels 
D and E show in more detail the oblique 
packet in panel B as observed at the origin in 
time. In Cattell et al. (2020), the mean 
observed amplitude was 10 mV/m, while 
those as high as 40 mV/m were also 
observed. Thus, in this study, we use 
20 mV/m which has 𝛿𝐵𝑤/𝐵0 ∼ 0.6 to clearly 
see the possible role of the waves. These 
large amplitude oscillations can result in 
highly chaotic behavior in the particle 
motion. Also, note that we are greatly 
overestimating the parallel wave amplitudes 
at 1 AU for the sake of comparison. In reality, 
parallel whistlers at 1 AU are only observed 
with 𝛿𝐵𝑤/𝐵0 ∼ 𝒪(0.01). 

 

Figure 9. The spatiotemporal evolution at 𝑥 = 𝑦 = 0 of the electric field of an 
oblique (𝜃 = 65∘) single whistler (A) and oblique whistler packets (B & C). Panels 
A and B have background parameters for 1 AU and panel C is for 0.3 AU. Panels D 
and E show the electric and magnetic field components at 𝑧 = 0 of the packet in 
panel B. 
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Since the thermal velocity of electrons 

in the solar wind is ∼2,000 – 5,000 km/s, 

they are fairly non-relativistic (see Fig. 3). 

Based on observations of the energy range 

for solar wind electrons, particles up to 

∼1 keV are initiated in the simulations. Fig. 
10 verifies the small field assumption 𝛿1,2 <

𝛾𝑣/𝑐 in Section 2.2 for the resonant 

condition, with 𝑢max corresponding to 1 keV. 

Consequently, 𝛿1,2 ∼ 𝒪(0.01) are small 

compared to unity. So, our assumptions 

regarding the Hamiltonian derivations are 

justified, even in the perturbation of these 

large amplitude whistlers. For this energy 

range, the maximum 𝑧 in our simulations is 

∼ 30,000 km, which justifies the assumption 
of uniform background magnetic field. 

4.2 Particle parameters 

As mentioned in Section 1, the two 
standard velocity distribution functions 
(VDF) used to model solar wind electrons are 
the bi-Maxwellian and the bi-Kappa. The 
former is 

𝑓𝑀(𝑣⊥, 𝑣∥)

=
𝑛0

π3/2𝑣𝑡ℎ,⊥
2 𝑣𝑡ℎ,∥

𝑒𝑥𝑝 [(
𝑣∥ − 𝑣𝑜,∥

𝑣𝑡ℎ,∥
)

2

+ (
𝑣⊥ − 𝑣𝑜,⊥

𝑣𝑡ℎ,⊥
)

2

],                   (4.1) 

where 𝑣∥ = 𝑣𝑧 , 𝑣⊥ = √𝑣𝑥
2 + 𝑣𝑦

2, 𝑣𝑡ℎ,𝑗  is the 

thermal speed, 𝑣𝑜,𝑗 is the drift speed in each 

direction, and 𝑛0 is the population density. 
The bi-Kappa VDF is given by 

𝑓𝐾(𝑣⊥, 𝑣∥) = 𝐴κ (1 + (κ −
3

2
)

−1

[(
𝑣∥−𝑣𝑜,∥

𝑣𝑡ℎ,∥
)

2

+

(
𝑣⊥−𝑣𝑜,⊥

𝑣𝑡ℎ,⊥
)

2

])

−(κ+1)

,               (4.2)  

where 𝐴𝜅 = 𝑛0𝜋−3/2 (𝜅 − 3/

2)−3/2 𝑣𝑡ℎ,⊥
2 𝑣𝑡ℎ,∥Γ(𝜅 + 1)[Γ(𝜅 − 1/2)]−1. For 1 

AU parameters, the core is best modelled by a 

bi-Maxwellian, while the halo and strahl are 

best modelled by a bi-Kappa as shown in Fig. 

3 where the maximum kinetic energy is 

1 keV. The following values are from the 

mean observations in Wilson III et al. (2019). 

The initial isotropic core has density 𝑛𝑐 =

13.7 cm−3, zero drift, and 𝑣𝑡ℎ = 𝑣𝑡ℎ,∥ = 𝑣𝑡ℎ,⊥ =

1,800 km/s. 

 

 

Figure 10.  The ratio between the potential field term 𝑞𝐴 and the particle’s 
relativistic speed term 𝑚𝑢 = 𝛾𝑚𝑣  in the canonical momentum. 𝑢𝑚𝑎𝑥  
corresponds to the maximum kinetic energy of the simulated electrons. Note 
that whistlers do not propagate beyond the resonance cone angle, which is 
close to 81∘ but not identical between the black and red curves (Remya et al., 
2016). 
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The halo is also isotropic with 𝑛ℎ = 0.52 cm−3 

and 𝑣𝑡ℎ = 3,900 km/s. The strahl has 𝑛𝑠 =

0.21 cm−3, 𝑣𝑜,∥ = 2,000 km/s, and 𝑣𝑡ℎ,∥ =

3𝑣𝑡ℎ,⊥ = 3 600 km/s (note that it is 

anisotropic with 𝑣𝑡ℎ,∥ ≠ 𝑣𝑡ℎ,⊥). These VDFs 

are sampled with ∼ 400,000 electrons 

initiated uniformly in speed with pitch angles 

(the polar angle) from 0 to 180∘ in 

increments of 1∘ and gyrophases (the 

azimuthal angle) from 0 to 360∘ in 

increments of 30∘. For 0.3 AU, the core and 

strahl are modelled with the bi-Maxwellian in 

parameters similar to Micera et al (2020), 

based on observations by Halekas et al. 

(2020a; see Fig. 2). The core has 𝑛𝑐 =

332.5 cm−3 and 𝑣𝑡ℎ = 3,900 km/s with a drift 
𝑣𝑜,∥ = −480 km/s, while the strahl has 𝑛𝑠 =

17.5 cm−3, 𝑣𝑡ℎ,∥ = 7,900 km/s, 𝑣𝑡ℎ,⊥ =

5,600 km/s, and 𝑣𝑜,∥ = 9,300 km/s. 

Approximately a million particles up to 2 keV 

are initiated with the same spacing in the 
solid angle. 

4.3 Single particle responses and LCE 
estimation 

Fig. 11 shows the dramatic differences 
in the response of two particles. One is fast 
(1 keV) and the other is fairly slow (10 eV). 
For the slow particle, we can see quasi-
periodic motion where it enters the Landau 
resonance (𝑛 = 0) briefly, resulting in an 
energization in 𝑊 while the pitch angle 𝛼 
remains constant. Note that the adiabatic 
invariant P̂ϕ = 𝑃𝜙 − 𝑛P̂𝜁 is modulated by 

𝐺𝑛 ∝ 𝜌𝐽′
𝑛

(𝑘⊥𝜌) for small 𝑃∥ and 𝜌 near the 

resonance. So, for the slow particle, the 
fluctuations in P̂𝜙 are small (∼ 0.01) near 𝑛 =

 

Figure 11. Time series of two electrons with initial conditions (𝑊0, 𝛼0) = (10 eV,0∘ ) (left 
column) and (𝑊0, 𝛼0) = (1 keV,180∘) (right column) interacting with a single 65∘ whistler at 
1 AU. The first row shows the resonant mismatch 𝑛 calculated from Eq. (2.13). The second 
row is the adiabatic invariant 𝑃̂𝜙 conjugate to the transformed gyrophase 𝜙. The third row is 

the kinetic energy 𝑊 = (𝛾 − 1)𝑚𝑐2. The fourth row is the pitch angle 𝛼 = 𝑐𝑜𝑠−1(𝑣𝑧/𝑣). The 
last row shows the Lyapunov exponent spectrum 𝜆𝑗  in colors, each corresponds to one of the 

six dimensions in the 6-ball, and the LCE in black. 
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0. For the 1 keV particle, the energization and 
scattering is much more significant. As it flips 
from 𝑛 = 1 (the fundamental cyclotron 
resonance) to 𝑛 = −1, the kinetic energy 𝑊, 
is increased by 30% of its initial energy and it 
is scattered by 86∘. It is also worth noticing 
that the particle sporadically enters and exits 
a resonance in a short time scale, leading to 
spikes of the order of 0.1 in the adiabatic 
invariant. 

From Section 2.2, the particle’s energy 
and adiabatic invariant are not conserved 
when it crosses a resonance. So, these 
conservation laws are momentarily broken. 
However, in this non-relativistic energy 
range (𝑊 ∼ 1 keV), the resonance crossing 
occurs frequently and sporadically, resulting 
in less distinctive changes than an example 
already shown in Fig. 6, which is typical of 
wave-particle interactions in the radiation 
belts. This is due to the small wave fields 
assumption in Section 2.2. Specifically, it is 
required that |𝑞𝐴/𝑚𝑢max| ≪ 1 for the 
radiation belts conditions to apply. However, 
it is shown in Fig. 10 that the initiated 
particles have maximum velocity 𝑢max such 
that |𝑞𝐴/𝑚𝑢max| is ∼ 𝒪(0.1). So, the 
simulation of large amplitude whistler waves 
results in nonlinear effects much different 
from radiation belts context. For the sake of 
demonstration, a comparably similar 
behavior can be obtained by simulating 
relativistic electrons. Fig. 12 shows the 
distinctive jumps in the resonant harmonic 𝑛 
and the adiabatic invariant P̂𝜙 for a 1 MeV 

electron under the interaction of the same 
wave parameters as those in Fig. 11. Note 
that the trapping occurs both near a 
resonance and outside a resonance. A method 
to identify trapping occurrences has not yet 
been developed. 

The Lyapunov exponent spectrum, i.e., 
the different components 𝜆𝑗 , is plotted in 

different colors in the last row of Fig. 11. 
None of the components have any physical 
significance because the 6-D ball is free to 
rotate along the particle trajectory in our 

calculations as described in Section 3.2. But 
they signify that there is always at least one 
chaotic component, which corresponds to the 
sporadic violation of the conservation of the 
adiabatic invariant inherent in our system. 
Now, it is their sum, the LCE, that is 
important. As expected, the Lyapunov 
exponents converge after a transient period 
at the beginning. So, the estimation of the LCE 
after a sufficiently long time period is 
constant. This enables the estimation of the 
best step size to use without running very 
long simulations. Fig. 13 shows the LCE of all 
of the initiated particles after it has reached 
convergence. The maximum LCE is 𝜆/Ω𝑐𝑒 ∼
10−3 in both cases. Thus, for a step size of 
𝛥𝑡Ω𝑐𝑒 = 10−4, the volume of the 6-D ball 
scales as exp(𝜆𝑁Δ𝑡) ∼ 1 as long as the 
number of steps 𝑁 ≲ 107. In the physical 
parameters of interest, 107 steps correspond 
to ∼ 60 wave periods, which is a sufficiently 
long simulation time to study the responses. 
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Figure 12. Resonance crossing of a 1 MeV particle interacting with a single 65∘ whistler at 1 
AU. The left (black) axis plots the resonance mismatch 𝑛, and the right (red) axis shows the 
adiabatic invariant 𝑃̂𝜙. 

 

 

Figure 13. The LCE of the simulations with a single 5∘ whistler (A) and a single 65∘ whistler 
(B) at 1 AU after a sufficient simulation period for its convergence. 
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Analysis 

In this section, we discuss the 
structure of the VDF after a long simulation 
period (60 wave periods for 1 AU and 45 
periods for 0.3 AU). In the case of 1 AU 
parameters, the following figures will include 
the core, halo, strahl, and total distribution 
function, while in 0.3 AU parameters, the 
distribution includes only the core and strahl 
electrons. In this non-relativistic range of 
energy, the 𝑅 surfaces are almost straight 
lines, so only the intersections (white 
crosses) with the 𝑣⊥ = 0 axis are plotted to 
signify their locations (as derived in Eq. 
(2.15)). The concentric ellipses (black 
curves) are the constant 𝐻 surfaces (from Eq. 
(2.14)), the center of which is the Landau 
resonance (𝑛 = 0). The intersections of the 𝐻 

surfaces with the 𝑣⊥ = 0 axis show the 𝑛 =
±1, ±2, … radially from the 𝑛 = 0 mode. 
Recall that in this work’s convention, the 𝑛 <
0 modes are always along the parallel 
velocity range and the 𝑛 > 0 modes are along 
the anti-parallel range (as opposed to most 
papers in the literature). 

5.1 Single whistlers at 1 AU 

For single whistlers, Fig. 14 shows the 
results from three simulations which 
demonstrate the interactions with (from top 
to bottom) an almost parallel (5∘), an almost 
antiparallel (175∘), and an oblique (65∘) 
wave after 60 wave periods. The final VDF of 
the two parallel cases approximately mirror 
each other, however, the structures are not 
entirely identical since the background field 
points along the wave in one case and against 

 

Figure 14. VDF of electron populations after 60 wave periods of interaction with a single 
whistler at 1 AU. From top to bottom, the rows are the simulations with the 5∘, 175∘, and 65∘ 
wave. 
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the wave in another, while the strahl 
electrons are propagating along the field. The 
first two rows indicate that parallel waves 
are able to scatter electrons to a certain 
extent. However, there is a prominent bow-
like feature near the 𝑛 = −1 mode at an angle 
of ∼ 50∘ around the 𝑣⊥ = 0 axis, which is 
most apparent for the anti-parallel case. The 
last row indicates that the interaction with an 
oblique whistler efficiently isotropizes the 
strahl, which results in a structure almost 
identical to the halo by the end of the 
simulation period. However, there is a lack of 

high energy and parallel propagating 
particles, which has been observed in the 
energy-pitch angle distribution in PSP data 
(Cattell et al., 2021b). This makes the final 
results not completely isotropic. Thus, it is 
not suitable to apply the fitting procedure for 
the model defined in Eq. (4.2) that Wilson III 
et al. (2019) used for satellite observations of 
the VDF. 

To better understand the VDF 
structures, the trajectories of a few particles 
interacting with the 5∘ and 65∘ waves during 
the entire simulation period are shown in Fig. 

 

Figure 15. Traces of electron trajectories in the entire simulation period (1 AU parameters) and 
their corresponding histograms. The panels show those for electrons that are originally parallel 
(A1-A2) and antiparallel (B1-B2) to the single 5∘ whistler. Similarly, (C1-C2) and (D1-D2) are 
those parallel and antiparallel to the single 65 ∘  whistler. Their initial speeds are 
0, 0.01, 0.02, … , 0.08𝑐 , which correspond to 0,26,102, … 1643  eV. The dotted curves are the 
constant 𝐻 ellipses corresponding to the particle’s initial energy, while the dashed straight lines 
are the 𝑅 surfaces corresponding to (from left to right) 𝑛 = 3, 2, … , −3. The solid lines are the 
𝑣𝑧 = 0 axis. 
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15. In panels A1, B1, C1, and D1, the particles 
move along their corresponding 𝐻 surfaces 
as expected. The corresponding histograms 
(A2, B2, C2, and D2) show the points along 
the particle’s trajectory where they hover 
around the most. In the interaction with the 
5∘ wave (panels A and B), the histograms are 
uniform, indicating that the particles bounce 
back and forth in a quasi-periodic motion. 
There is a point of “reflection” for each 
energy, which results in the bow-like feature 
in the VDF. These points are close to the 
intersections of the 𝐻 surfaces and the 𝑛 < 0 
resonances. This can be due to a combined 
effect of (a) magnetic mirroring due to the 
large wave fields comparable to the ambient 
field and (b) resonant interaction. Effect (a) is 
a speculation that needs further analysis 
beyond the scope of this thesis. Here we shall 
only offer an explanation for (b) from the 
theory of resonance derived in Section 2. 

For 𝑛 < 0, the electron overtakes the 
wave when it observes a left-hand polarized 
electromagnetic field in its own frame. Thus, 
being a right-hand particle, it no longer 
interacts resonantly. This results in the 

deceleration of 𝑣𝑧 to the negative range 
where resonant interaction is enabled once 
again because the particle observes a right-
hand polarized wave. It would be interesting 
to study whether this occurs for a self-
consistently simulated wave-particle 
interaction using PIC code. This is because 
the 𝑛 < 0 modes are usually where the 
particle transfers its energy to the wave as it 
rotates out of phase with the fields, leading to 
wave generation instead of damping 
(Tsurutani & Lakhina, 1997). Thus, the wave 
is modified due to this type of quasi-parallel 
whistler heat-flux instability (Roberg-Clark et 
al., 2019; Micera et al., 2020) and both the 𝐻 
and 𝑅 surfaces are altered accordingly. This 
might allow the VDF to become more 
isotropic for particles under interactions with 
parallel whistlers. 

 

Figure 16. VDF of electron populations after 60 wave periods of interaction with a 0∘ (top 
row) and 65∘ (bottom row) whistler packet at 1 AU. 

 



 

 21 Volume 5 • Issue 4 

Because the polarization for an oblique 
wave is elliptical, it is a combination of both 
right-hand and left-hand waves. This allows 
for anomalous interactions to occur, which 
happens when an electron (right-hand) 
interacts with the 𝑛 > 0 harmonics of a left-
hand wave by overtaking it and observing a 
right-hand polarized electromagnetic field 
(Tsurutani & Lakhina, 1997). Consequently, 
the scattering of electrons is more isotropic 
in panels C and D, where both parallel and 
anti-parallel particles behave similarly. 

5.2 Whistler packets at 1 AU 

Fig. 16 shows the final VDF after 60 
wave periods of interaction with a 0∘ packet 
and a 65∘ packet in 1 AU parameters. A 
region of particle loss similar to that in the 
single wave parallel whistlers in the previous 
section can be seen in the 0∘ packet. 
However, in addition to the bow-like region, 

there is also a vertical structure near the 𝑛 =
−1 harmonic. Because multiple frequencies 
are contained in the packet, the 𝑅 surfaces 
are now clustered. Fig. 17 shows the surfaces 
corresponding to the packet’s mean 
frequency wave. In panel B2, there are 
electrons trapped around the 𝑛 = −1 cluster 
of 𝑅 surfaces. Those particles are energetic 
enough to enter the envelope of the cluster, 
but they cannot escape, resulting in this 
vertical structure in the VDF. This further 
supports the explanation from the theory of 
resonance. In the frame of the mean-
frequency wave, there are other waves of 
different frequencies, which move in both 
directions with respect to it. Their combined 
effects cause the trapping around 𝑛 = −1. 
However, large amplitude waves at 0∘ are not 
seen in the solar wind at 1 AU. The large 
amplitude waves at 1 AU are oblique, like the  

 

Figure 17. Traces of electron trajectories in the entire simulation period (1 AU 
parameters) and their corresponding histograms. The panels are similar to those in Fig. 
15, but the electrons are under interactions with a 0∘ packet (A and B) and a 65∘ packet (C 
and D). 
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65∘ packet. For this case, the electron case of 
a single whistler for the strahl. 

The scattering of particles interacting 
with the oblique packet is highly localized 
and often in between the resonances (see 
panels C2 and D2). This is most likely due to 
the overlapping resonance widths associated 
with each mode (Karimabadi et al., 1990). In 
this work, the single-wave resonance 
surfaces are spaced fairly closely between 
each harmonic 𝑛. The overlap of resonance 
widths can cause more nonlinear and 
complicated interactions to occur. The 
calculation of the widths is beyond the scope 
of this thesis. 

 

5.3 Whistler packets at 0.3 AU 

For interactions with whistler packets 
in 0.3 AU parameters, we observe the 
formation of “horn”-like features in the VDF 
at the locations of the 𝑅 intersections in the 
case of oblique propagation (see Fig. 18). 
This is similar to what was reported in 
Roberg-Clark et al. (2019). However, they 
studied very relativistic electrons, which 
resulted in more defined horn features as the 
particle velocity term dominates in the 
canonical momentum. In the discussed 
parameters, this dominance is weaker, which 
results in broader horns. Parallel packets do 
not scatter the strahl as efficiently as oblique 
packets near the Sun, as similar to the 
discussion in Vocks et al. (2005). Halekas et 
al. (2020b) reported that the heat flux 
observed at 0.3 AU was consistent with the 
threshold for oblique whistler fan instability. 

 

Figure 18. VDF of electron populations after 45 wave periods of interaction with whistler 
packets at 0.3 AU. From top to bottom, the rows are the simulations with the 0∘, 180∘, and 65∘ 
wave. 
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So, these results are consistent with near-Sun 
observations. 

Conclusion 

A vectorized test particle simulation is 
used to study the scattering and energization 
of solar wind electrons from their 
interactions with single whistlers and 
whistler packets at different propagation 
angles and in 0.3 AU and 1 AU background 
parameters. It is shown that for non-
relativistic particles, the interaction is mainly 
a diffusion in pitch angle. The particles are 
scattered along the constant 𝐻 surface while 
interacting with the nearest resonant mode. 
The presented results show that the final 
velocity distribution function at 0.3 AU is 
consistent with observations from PSP 
(Cattell et al., 2021b; Halekas et al., 2020b) 
and with simulations in Roberg-Clark et al. 
(2019) and Micera et al. (2020) for the case 
of obliquely propagating whistler packets. 
Resonant strahl electrons are scattered to a 
higher pitch angle until they can be 
characterized as an isotropic halo. This 
verifies the theory that the origin of the halo 
is the strahl, since these waves can scatter 
the VDF in a short length scale. Thus, it 
explains the existence of a halo population of 
electrons far from the Sun at 1 AU and the 
corresponding heliospheric radial decrease 
in strahl density. It is also observed that 
parallel waves are less efficient in 
isotropizing the electron distribution, 
consistent with the heat-flux study in Halekas 
et al. (2020b). 

Future works 

Much of the analysis can be further 
extended from the basis laid out in this thesis 
using the Hamiltonian approach. The 
resonance widths of the harmonics can be 
calculated to determine the overlapping and 
their subsequent effects on the VDF 
structure. Since the derived adiabatic 
invariants are analogous to the magnetic 

moment for a system without the wave 
perturbations, they can be used to determine 
the constraints on the velocity, which 
describes the magnetic mirroring effect. More 
interesting physics might be revealed by 
simulations of the interaction of relativistic 
electrons with the large amplitude waves 
described in this thesis. This is because the 
small field assumptions of 𝛿1,2 are better 
satisfied if the particle momentum term 
dominates in the canonical momentum. In 
terms of the simulation program, the 
developed code is written purely in Python 
and is vectorized with Python arrays, but 
better optimization can be achieved with true 
SIMD vectorization in C. This simulation 
program might be further developed into a 
full PIC code with the implementation of field 
solving components, in which case, a 
translation to C is absolutely necessary. 
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