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Abstract 
Mathematics is a useful basis for motivating self-working card tricks. In this paper, we 

expand the realm of self-working magic tricks through the examination of a novel type of 
universal cycle called a Summation Sequence. An analysis of the graph theoretical and 
combinatorial structure of Summation Sequences reveals, firstly, the existence of operations that 
preserve the properties of Summation Sequences, and, secondly, a special type of Summation 
Sequence called a Symmetric Sequence. We apply our most important results to the realm of card 
magic, where we exploit the properties of Summation Sequences to motivate various card effects. 

1 Introduction
For centuries, mathematics has been used 

to motivate “self-working” card tricks, meaning 
that instead of sleight of hand, the effect of the 
trick relies on some sort of mathematical 
principle.  

Combinatorial mathematics has been 
applied to self-working magic with great success 
(Diaconis, Graham, and Gardner, 2016). In 
particular, a family of combinatorial structures 
called Universal Cycles are employed in these 
magic tricks.  

A Universal Cycle can be described 
somewhat informally as follows: Given a 
collection of mathematical objects F, a Universal 
Cycle for F is a sequence of numbers S such that 
each member of the collection F is somehow 
“coded” up at least once by some subsequence of 
S (Chung, Diaconis, & Graham, 1992).

The most widely studied type of 
Universal Cycle, both within the realm of 
mathematical card magic and within 
mathematics more generally, are De Bruijn 
sequences. Given an alphabet a and a window w, 
a De Bruijn sequence is a cyclic sequence of 
numbers between 0 and a-1 such that each 
possible string of symbols of length w appears 
exactly once in the De Bruijn sequence as a 
subsequence. The following is a De Bruijn 
sequence for alphabet a = 2 and window w = 3:

S: 00010111 
Binary De Bruijn sequences (i.e., those with 
alphabet a = 2) have particular usage in self-
working magic tricks, where the 0s and 1s of the 
sequences can be understood as representing the 
color of the cards (black and red) in a standard 
deck (Diaconis, Graham, and Gardner, 2016). 

We seek to expand the application of
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order to obtain 0 as a sum) and w-many 
consecutive elements with value a - 1 (in order to 
obtain w(a – 1) as a sum). 

Given a Summation Sequence, we obtain 
the corresponding Derived Sequence by listing the 
sums obtained in the Summation sequence in the 
order in which they occur. As an example, we 
present the following Derived Sequence 
corresponding to the <3,2> Summation Sequence 
above: 

D1: 01342 
Due to their cyclical nature, the following two 
cycles are identical (and treated as such when 
counting the number of <a, w> Summation 
Sequences below): 

S1: 00122 
S2: 01220 

We also can see that the length l of any 
Summation Sequence S is w(a - 1) + 1. This fact is 
illustrated by S1 and S2 above, but can be proven 
more generally by noting that the Derived 
Sequence must contain all sums between 0 and 
w(a - 1) inclusive. Consequently, the length of the 
Derived Sequence—which is identical to the 
length of the original Summation Sequence—will 
always be one greater than the value of w(a - 1). 

Now that we have introduced Summation 
Sequences, the remainder of the paper will 
proceed as follows: In section 2 we will provide a 
graph theoretical and combinatorial investigation 
into the properties of Summation Sequences. We 
will begin by discussing sequence existence in 2.1. 
We will then analyze Summation Sequence 
graphs, and how their structure allows us to 
perform property-preserving operations on these 
sequences, in 2.2 and 2.3 respectively. Finally, in 
2.3, we will discuss a special type of Summation 
Sequence, called a Symmetric Sequence, which 
has unique properties of its own. In section 3, we

Universal Cycles to self-working magic tricks 
through the investigation of a new type of 
Universal Sequence which has not been 
investigated in either the mathematical 
literature or the literature on magic until now: 
Summation Sequences. In this paper, we will 
analyze Summation Sequences combinatorially 
and graph theoretically, applying some of our 
results to the realm of self-working card tricks. 

A Summation Sequence is a cyclic 
sequence of numbers S with alphabet a and 
window w where every possible sum between 0 
and w(a - 1) occurs once as a sum of w-many 
adjacent numbers in the sequence. Note that the 
values comprising the alphabet of a Summation 
Sequence are the numbers between 0 and (a - 1) 
inclusive – that is, the first a-many numbers 
begin with 0. 

Given a particular alphabet a and 
window w, we will talk of the <a, w> 
Summation Sequences. The following is a 
simple <3,2> Summation Sequence: 

S1: 00122
Since the window here is 2, we verify that this is 
a summation sequence by verifying that each 
number from 0 to 4 (i.e., w(a – 1) = 2(3 – 1) = 
4) occurs as the sum of two consecutive 
numbers in the sequence:

0 + 0 = 0 
0 + 1 = 1 
1 + 2 = 3 
2 + 2 = 4 
2 + 0 = 2 

Note that Summation Sequences are cyclic: we 
include the sum obtained from the last number 
in the sequence and the first number, 
“wrapping around” the sequence. Also, every 
Summation Sequence must contain w many 
consecutive elements with value of 0 (in
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Since the Derived Sequence contains each number 
from 0 to w(a - 1) exactly once (and applying a 
classic combinatorial formula), we know that the 
sum of the Derived Sequence is equal to the 
maximum value of the Summation Sequence, 
times the maximum value of the Summation 
sequence plus one, divided by two: 

Substituting: 

And simplifying: 

In the final equation, we see that if both a and w 
are even, the left side of the equation is odd (and 
this formula is even otherwise). However, as the 
right side of the equation is multiplied by 2, it’s 
always even.  

Thus, there are no Summation Sequences 
with even a and w. This squares up with the data

will apply what we discovered in section 2 to the 
realm of self-working card magic. We first note 
how we can translate the mathematical 
operations of a sequence to a deck of cards, and 
then provide two magic effects that can be 
formulated through the exploitation of 
Summation Sequence properties. Lastly, in 
section 4, we will note some directions for future 
research. 

2 Summation Sequences 
2.1 Sequence Existence 

Now that we know the length of any 
sequence S, we can find conditions that must 
hold for a sequence with alphabet a and window 
w to exist. For example, from Section 1, we 
know that a sequence must contain w-many 
consecutive elements with value of 0, and w-
many consecutive elements with value (a - 1). 
However, a sequence S must contain at least one 
other element, otherwise, due to the cyclical 
nature of S, it would obtain the sum 0 + n(a - 1) 
twice for any n such that 0 < n < w. So, we know 
the following is true, where l is length:

a ≥ 3 
Thus, no Summation Sequences exist 

with an alphabet less than 3. Hence, unlike De 
Bruijn sequences, there are no Summation 
Sequences that contain only 0’s and 1’s. 

We can continue to investigate the 
constraints that w and a impose upon 
Summation Sequences by exploring Summation 
Sequences and Derived Sequences concurrently.

 3MUMURRAAJ J • z• z..umnumn.e.edduu/MUR/MURAAJJ Volume Volume 44• Issue 5

l ≥ 2w + 1

w(a - 1) + 1 ≥ 2w + 1 
w(a - 1) ≥ 2w 

wa - w ≥ 2w 

wa ≥ 3w 

Given an alphabet a and window w, consider a 
Summation Sequence S: 

S = (S1, S2é Sw(a - 1) + 1) 
and its Derived Sequence D: 

D = (D1, D2é Dw(a - 1) + 1) 
We know that the sum of the elements of the 
Derived Sequence is equal to the sum of the 
elements of the corresponding Summation 
Sequence times the window w, as each element of 
the Summation Sequence will be counted w many 
times in the Derived Sequence: 



We begin with the total (labelled) graph 
corresponding to <5,2> Summation Sequences, 
and then investigate <5, 2> Summation 
Sequences via an examination of subgraphs of 
this graph. In the total graph, each node 
represents a number in the sequence alphabet, 
and each edge represents the sum of the two 
nodes they connect. 

A Summation Sequence corresponds to a 
cyclic path through the total graph such that 
each number from 0 to w(a - 1) occurs as the 
label of an edge in the path exactly once. Note 
that, in the <5, 2> case, this means any such path 
must pass through the reflexive edges from 0 to 0 
and from 4 to 4, and any such path must also 
pass through the edge from 0 to 1 and the edges 
from 3 to 4, since these are the only edges with 0, 
8, 1, and 7 as labels, respectively. 

In Figure 2, we have made all possible 
connections between the five numbers in the 
alphabet, including the reflexive loops from a 
node to itself. As noted in Figure 1, there are 66 
paths through this graph which correspond to a 
<5,2> Summation Sequence.  

Below, we have drawn five digraphs, each
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Fig. 1. The number of Summation Sequences 
which exist for different alphabet and window, as 
generated through various self-built computer 
programs and manual graph-theoretic analysis. 

given in Figure 1, which shows the number of 
distinct Summation Sequences for those alphabet 
and window pairs <a, w> for which we have been 
able to determine this number of distinct <a, w> 
Summation Sequences (for example, there are 78 
distinct Summation Sequences for alphabet 5 and 
window 3).

Figure 1 also illustrates a fact that we will 
note but not prove here: There exist Summation 
Sequences for all alphabets greater than 2 (in 
particular, there exist <a, w> Summation 
Sequences for any alphabet a and window w such 
that a > 2, and w odd). Thus, the result with 
which we began this section is the strongest such 
result, constraining Summation Sequence 
existence solely in terms of the size of the 
alphabet. 
2.2 Graphs 

In this section, we provide an outline of 
some basic graph-theoretical results regarding 
Summation Sequences. We will restrict our 
attention to the simplest case, where w = 2. These 
techniques can be extended to Summation 
Sequences with larger windows, however.  

Fig. 2. The Total Graph for <5,2> 
Sequences 



omitting six edges and zero nodes from the total 
graph. 
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Fig. 3. Digraph G1 for <5,2> Sequences

Fig. 4. Digraph G2 for <5,2> Sequences

Fig. 5. Digraph G3 for <5,2> Sequences

Fig. 6. Digraph G4 for <5,2> Sequences 

Each distinct <5,2> Summation Sequence 
corresponds to an Eulerian path (i.e., a path that 
passes through each edge exactly once) through 
one of the digraphs given in Figures 3 through 7.1 
As stated before, there exist 66 distinct <5,2> 
Summation Sequences. Here, we note how many 
of these sequences are obtained from each graph: 

G1: 2 
G2: 48 
G3: 8 
G4: 4 
G5: 4 ___________________________________________________________ 

1For a good introduction to the basics of graph theory and combinatorics, 
including the concept of Eulerian paths, see (Harris, Hirst, & 
Mossinghoff, 2010). 

Fig. 7. Digraph G5 for <5,2> Sequences 



2.3.2 Codifference 
Consider an <a, w> Summation Sequence S: 

S = (s1, s2… sk)
The codifference S-d of S: 

S-d = ((a - 1) - s1, (a - 1) - s2… (a - 1) - sk)
For example, given the <5, 2> Summation

Sequence from the previous subsection: 
S4 = 001132443

The corresponding codifference sequence is: 
S4

-d = 443312001 = 001443312 
In this example, (a - 1) = 4, so each element is 
subtracted from 4 to obtain the values in the 
codifference sequence. The reader is invited to 
verify that the codifference sequence of an <a, w> 
Summation Sequence is also an <a, w> 
Summation Sequence.
2.3.3 Loop Rotation 
Consider a Summation Sequence S: 

S = (s1...R, T, Q... sk) 
where R and Q are subsequences of length l where 
l ≥ w - 1, R = Q-1, and T is a subsequence of any
length. Then the loop rotation sequence
corresponding to S is:

S* = (s1... R, T-1, Q... sk) 
From a graph theoretical lens, consider G5 from 
Figure 6, and notice its loop containing nodes 3, 4, 
and 2. Viewed in terms of Eulerian paths on G5, 
the loop rotation sequence corresponding to S is 
the Summation Sequence corresponding to the 
path that traverses this loop in the opposite 
direction than that taken in the Eulerian path on 
G5 corresponding to S. To illustrate this, consider 
the following Summation Sequence obtained from 
the digraph G5: 

S3 = 001134423  
Note that 442 is between two equivalent elements 
(i.e., two subsequences of length 1 that are trivially 
inverses of one another). So, we can perform our 
loop rotation operation to obtain a second

For example, the four distinct Eulerian paths 
through G5, corresponding to four distinct 
Summation Sequences, are: 

The interconnectedness of the digraph G2 
results in it containing many Eulerian 
circuits (and hence coding up many 
Summation Sequences), while the opposite 
can be said for G1. Further analysis of 
Summation Sequence graphs will follow in 
the next two sections. 
2.3 Operations 

There are a number of operations we 
can perform on Summation Sequences, and 
thus also their graphs, that preserve certain 
properties. In particular, many of these 
operations take a Summation Sequence as 
input and give a distinct Summation 
Sequence as output. 
2.3.1 Inverse 
Consider a Summation Sequence S: 

S = (s1, s2… sk) 
The inverse S-1 of S is: 

S-1 = (sk, sk-1... s1)
Returning to our simple example from 
earlier, the inverse of: 

S1 = 00122  
is: 

S1
-1 = 22100 = 00221

In other words, to obtain the inverse S-1 of S, 
we read S backwards. It is evident that the 
inverse of an <a, w> Summation Sequence is 
also an <a, w> Summation Sequence, since 
each sum that occurs in the original 
sequence occurs in the inverted sequence, 
but in the opposite order. 
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S3: 001134423 
S4: 001132443 
S5: 003244311 
S6:   003442311 



codifference nor inversion. Thus, in this case, the 
codifference of the sequence will be the same as its 
inverse, and it is thus a Symmetric Sequence. To 
help demonstrate this, we’ve provided a brief 
display of operations. 

Finally, we will discuss the graph 
theoretical aspects of Symmetric Sequences. In 
section 2.2, only three of the digraphs are 
symmetrical, and any axis of symmetry one may 
find passes through the node with the value of 2. 
To achieve a Symmetric Sequence by traversing 
one of these three graphs, a perfectly symmetrical 
path must be taken. Consider the digraph G3 from 
Figure 5. Here is a path that would result in 
Symmetric Sequence: 

S8: 234420012 
This path is perfectly symmetric because paths 
taken through the 2 node, or the axis of symmetry, 
mirror each other. On the contrary, here is a path 
through G3 that would result in a Summation 
Sequence, but not a Symmetric Sequence: 

S9: 244320012 
Here, after passing through the 2 node in the fifth 
position, the path strays from its mirror, losing the 
symmetric property.  

Note that any path through the digraph G1 
from Figure 3 will result in a Symmetric Sequence 
because all paths through the axis of symmetry—
the 2 node—are perfectly symmetric. 

3 Magical Applications 
3.1 Card Operations 

We can apply the principles of Summation 
Sequences to card magic by allowing each card to 
represent a number in a sequence. For example, 
below is a small <3,2> Summation Sequence, and

sequence S4
*: 

S3
* = 001132443 

Consideration of the corresponding Eulerian 
paths through G5 should make it clear that the 
loop rotation of an <a, w> Summation 
Sequence is also an <a, w> Summation 
Sequence (the sequence merely passes through 
the “loop” 34423 in the opposite direction). 
2.4 Symmetric Sequences 

Symmetric Sequences are a special type 
of Summation Sequence with their own unique 
properties. A Symmetric Sequence is such that 
any two elements which are d distance away 
from the center point in the sequence sum to 
the same value, which is (a - 1). Something that 
is important to note is that if the Summation 
Sequence has an odd length (which is the case 
unless w is odd and a is even), that the central 
element’s value must be ½(a - 1), or be the 
middlemost value in the alphabet.  

To illustrate this, consider the following 
<5, 2> Symmetric Sequence (which 
corresponds to a Eulerian path in G2): 

Here we see that the two elements with the 
same d value sum to 4. Additionally, since this 
is a sequence with odd l, the center point is 
occupied by 2 = ½(a - 1).  

Symmetric Sequences are interesting 
for the following reason: A Summation 
Sequence is a Symmetric Sequence if and only 
if its inverse is its codifference. If all pairs of 
numbers d distance from the center sum to (a - 
1), when we subtract them from (a - 1), it is 
akin to swapping those two elements, like we 
do in inversion. Additionally, if there exists an 
element in the center point, as long as its value 
is ½(a - 1), it won’t change when performing
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001420344 S7:   
Distance d from center: 432101234 

003420144 
441024300 (= 004410243) 
441024300 (= 004410243) 

                             
                           

Symmetric Sequence: 
Codifference ((a - 1) - sn): 
Inverse: 



their foundation, they are defined by value. If a 
magician has a spectator pick a card, and tells 
them that the suit of the card they are holding is 
hearts, that is not very impressive because there 
are only four suits. However, if a magician derives 
the value of that card, this is more impressive 
because there are 13 values in a deck. So, by 
defining our Summation Sequences by the value of 
the elements in the sequence, we have created an 
extremely useful type of sequence for card magic. 
3.2 Effects 

We offer two new card effects that exploit 
the properties of Summation Sequences which 
we’ve explained above.  
3.2.1 Dual Discernment 

Effect: The magician shuffles the deck, and 
hands it to the spectator. The spectator is asked to 
cut the deck as many times as they’d like, while the 
magician turns away. When satisfied with their 
cutting, the spectator is instructed to look at and 
remember the top two cards of the deck. Finally, 
they are asked to cut the deck one more time, 
losing their two selections in the middle of the 
pack. When the magician turns around, she asks 
the sum of the two cards values. From this 
information, she is able to identify both selected 
cards. 

Explanation: This simple effect employs 
the simplest principle of Summation Sequences. 
Note that, in the effect described, the magician 
improved the trick by using the playing card 
operations from the previous section to allow the 
deck to be shuffled and cut. For the effect itself, we 
see that the magician is able to know the identity 
of two adjacent cards by knowing their sum. This 
is possible because Summation Sequences contain 
all sums between 0 and w(a- 1), where no sum 
occurs twice. So, once the unique sum is known, 
the two summands can be derived.  

its corresponding representation in a packet of 
cards. Note that, to translate a Summation 
Sequence to card values, a value of 1 is added to 
each element of the Summation Sequence. 
Additionally, A equals 1, J equals 10, Q equals 
11, and K equal 12. 

0       0    1     2      2

A♡ A♢ 2♤ 3♡ 3♢
Now that we’ve translated Summation Sequences 
to playing cards, we can apply certain 
Summation Sequence operations from Section 2 
to card packets to motivate and complement 
magic effects.  

Firstly, the cyclic nature of Summation 
Sequences allows us to move any number of 
sequence elements from top to bottom, or from 
bottom to top. In terms of playing cards, this is 
identical to cutting the deck. So, before 
performing certain tricks that depend on the 
cards being arranged in a way corresponding to 
a Summation Sequence, the spectator may cut 
the deck n times for any n.  

Secondly, we can exploit the operation of 
inversion. As we explained, Summation 
Sequences can be inverted by being “read 
backwards.” For a magic effect, a magician can 
begin a trick by performing an overhand shuffle2 
where she peels one single card at a time from 
the top of the pack to her other hand; this 
process can be repeated n times for any n for 
naturalness. At the end of this shuffle, the pack 
is simply inverted, and thus retains its unique 
properties.

Lastly, we will describe how Summation 
Sequences are well-suited for card magic. At
__________________________________________________________ 
2An overhand shuffle is performed by holding the cards between your 
thumb and fingers of your dominant hand. The other hand then slides 
packets of cards to itself using its thumb. The non-dominant hand 
continues to accumulate cards until all cards are taken from the 
dominant hand, thus mixing the cards. 
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purposes of the effect, let us say this number is 
three. The magician hands the packet of cards to 
one of the spectators, say Spectator 1, and turns 
her back. She instructs Spectator 1 to deal the 
agreed upon number of cards down onto the table, 
one at a time, then removing the next two cards as 
selections. Lastly, Spectator 1 deals the rest of the 
cards down onto the table. Now, Spectator 2 
repeats this exact process, and obtains two cards as 
selections as well. Finally, the magician asks just 
one of the spectators to reveal the sum of their two 
cards, and, from this, determines the identity of all 
four selections. 

Explanation: This effect exploits the 
properties of the special type of Summation 
Sequence discussed in section 2.4, which we have 
called a Symmetric Sequence. One such example is 
the packet: 

A♡ A♢ 2♤ 7♢ 5♧ A♤ 4♢ 7♧ 3♡ A♧ 6♧ 
7♤ 7♡

Here, the value of the sum of any two cards that 
are the same distance from the middlemost card is 
8.  

To mix the cards at the beginning of the 
trick, one can perform the sequence-preserving 
overhand shuffle described in section 3.1. Next, the 
spectators are asked to choose a number, n, 
between one and four inclusive. The lowest 
number in the set of numbers that can be chosen is 
always one, but the highest number, m, must be 
such that:

  m ≤ ½ l - 2
For the effect above, where m = 4 and l = 13: 

4 ≤ ½ (13) - 2 
4 ≤ 6.5 - 2 

4 ≤ 4.5 
In the above effect, the number three was chosen, 
so Spectator 1 deals three cards, removes 7♢
5♧, and then deals the rest of the cards,

Note that the magician works with two 
selected cards in this case because, for the sake of 
memorization, the Summation Sequence has a 
window of two; a window of three would allow 
for three selected cards, a window of four would 
allow for four selected cards, and so on. Of 
course, using a window of two does still require 
some memorization, but we have provided 
examples of Summation Sequences below that 
should be a short enough length that allows for 
this. Also, it’s important to note that the sum, 
given to you by the spectator, only allows you to 
know the values of the two cards which were the 
summands. However, below we offer sequences 
to also derive the suits or colors, thus improving 
the effect.

To derive both value and color in an 
effect, consider the following <7,2> sequence, 
where odd cards are red and even cards are 
black: 

A♡ A♢ 5♡ 6♧ 6♤ 7♢ 7♡ 3♢ 5♢ 4♧ 3♡ 
2♤ 2♧

To derive both value and suit, it’s best we use a 
simpler sequence, such as a length nine <5,2> 
sequence. The one shown below follows a 
pattern, in order: Clubs, Hearts, Spades, 
Diamonds. (Helpful mnemonic device: CHaSeD) 
However, one must just remember that this 
pattern is broken if one of the spectator’s cards is 
a three; the three is always the three of hearts. 
Remembering this pattern is sufficient to derive 
the two respective suits of the selected cards after 
calculating the two values. 

A♧ A♡ 2♤ 5♢ 5♧ 4♡ 4♤ 2♢ 3♡
3.2.2 Magic Mirror 

Effect: The magician begins by mixing a 
packet of cards, and instructs the two spectators 
to agree on a number between one and four 
inclusive, but not to tell her this number; for the 
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In particular, extending the graph theoretical 
methods sketched above to Summation 
Sequences with window w greater than 2 seems 
particularly promising. In addition, we hope to 
determine a formula that gives, for any alphabet a 
and window w, the exact number of <a, w> 
Summation Sequences. Finally, there is no doubt 
that solving these additional mathematical 
problems will lead to additional tools that can be 
used to construct even more compelling 
mathematical card tricks. 
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leaving us with the following packet:
7♡ 7♤ 6♧ A♧ 3♡ 7♧ 4♢ A♤ 2♤ A♢ A♡

Next, Spectator 2 repeats the process, 
dealing three cards, removing A♧ 3♡, and deals 
the rest of the cards for continuity. 

Now, after Spectator 1 or 2 tells us the 
sum of their two cards, we can exploit the 
properties of Symmetric Sequences and 
Summation Sequences to identify all four cards. 
To explain how this is the case, let us observe the 
selections’ origins in the packet: 
A♡ A♢ 2♤ 7♢ 5♧ A♤ 4♢ 7♧ 3♡ A♧ 6♧ 

7♤ 7♡
Note that each individual selection has a 

symmetrical mate that is the same distance d 
from the middlemost card. As we described in 
section 2.4, two numbers the same distance from 
the middlemost number always have the same 
sum; in this case, that sum is 8. Further, 4 cards, 
each having a symmetrical mate, will have a total 
sum of 16. 

Now, suppose Spectator 2 tells us that the 
sum of their cards is 4 (as A + 3 = 4). Using the 
properties of Symmetric Sequences we just 
described, we know that Spectator 1’s cards sum 
to 12, as 16 - 4 = 12.  

Finally, using the general properties of 
Summation Sequences as discussed in 3.2.1, one 
can identify all four cards. 

4 Conclusion 
We have provided an introduction to a 

new type of Universal Cycle, Summation 
Sequences, and provided some basic 
mathematical results regarding these structures 
via both a combinatorial and a graph theoretical 
approach. In addition, we have shown how these 
sequences can be used to great effect in card 
tricks. Much work, however, remains to be done.
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