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ABsTRACT. An additive-multiplicative magic square is a square grid of numbers whose rows,
columns, and long diagonals all have the same sum (called the magic sum) and the same
product (called the magic product). There are numerous open problems about magic
squares by Christian Boyer on multimagie.com. One such problem is to construct or prove
the impossibility of a 5x 5 or 6 x 6 additive-multiplicative magic square of distinct positive
integers. Here, we present a possible approach to this problem and some partial results.
We observe that such a square can be described by a form determined by the prime factor-
izations of its entries and that identifying these forms might be helpful in finding such a
square or ruling out specific magic products.

1. INTRODUCTION

An additive-multiplicative magic square is a square grid of numbers whose rows, columns,
and long diagonals all have the same sum (called the magic sum) and the same product
(called the magic product). (Note that long diagonal refers to the two diagonals of the
square going from the upper-left element to the lower-right element and from the upper-
right element to the lower-left element.) There are numerous open problems about magic
squares by Christian Boyer on multimagie.com, and currently prizes of €1,000 and €500
along with a bottle of champagne are available to whoever can construct or prove the im-
possibility of a 5x5 or 6 x 6 additive-multiplicative magic square, respectively, of distinct
positive integers [1]].

Similar results are known for other sizes of additive-multiplicative magic squares of dis-
tinct positive integers. The 1 x 1 case is trivial, and it is known that there are no such
squares of sizes 2, 3, or 4. In contrast, there are known examples of sizes 7, 8, and 9 [1]].
In fact, it might even be reasonable to conjecture that such a square exists for all sizes
greater than this — however, the cases where the size is 5 or 6 still remain unsolved. To
get a sense of the difficulty of these problems, see Figure[I|for a 5x5 square that is “nearly”
additive-multiplicative but narrowly fails. An example of a 7 x 7 additive-multiplicative
magic square is also provided in Section Figure

* Corresponding author
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105|182 | 40 | 198 | 45
78 |216| 66 |175| 35
220 | 42 | 65 | 63 | 180
140 | 55 | 189 | 30 | 156
27 | 75 1210|104 | 154

Ficure 1. Discovered by Lee Morgenstern, this 5 x 5 square of distinct pos-
itive integers is “nearly” additive-multiplicative. All of its rows, all of its
columns, and the upper-left to lower-right long diagonal have a sum of 570
and a product of 6810804000 = 2°-3°-5%.72.11-13. However, the upper-
right to lower-left long diagonal does not have the same sum or product [1I].

Here, we present a possible approach to this problem and some partial results. Our ap-
proach is to observe that such a square can be described by a form determined only by
the prime factorizations of its entries and that identifying these forms might be helpful
in finding or eliminating such a square. We outline this idea fully in Section [2| Next, in
Section |3, we prove several significant results based on this idea. Though we focus on the
5x 5 and 6 x 6 cases, many of the ideas and results of this paper are applicable to larger
sizes as well.

2. SQUARE Forwms

Recall that every positive integer P can be written uniquely (up to the order of the primes)

as py'py’ - -p;zk for some nonnegative integer k, distinct primes py,p,,---, px, and positive
integers ny,ny,---,n. The factors of P are the numbers of the form pihpg?' ---ka where

0 <g; < n; for all i. If we wish to consider the factors of P, then a helpful approach may be
to not consider the numerical value of P itself, but to instead consider the prime signature
of P — that is, the multiset {rn,n,,---,n;}. We can use the prime signature to write a form
for the number with its prime factors replaced by variables so we can consider its factors.
For example, 64,800 = 253452 has the form a®b*c?, so each of its factors thus has the form
af1b92¢93 where 0< g1 <5,0<¢q,<4,and 0 < g3 < 2.

How does this help us? Our goal is to find a 5 x 5 or 6 x 6 additive-multiplicative magic
square of distinct positive integers. If we temporarily drop the additive requirement, we
can construct forms of magic squares based on the prime signature of the magic product
as described above. To do so, we use the following definition.

Definition 2.1. A square form is a square grid of products of powers of variables (repre-
senting distinct prime factors) such that all elements are distinct and each row, column,
and long diagonal has the same product. Throughout this paper, we will take square
forms to have size 5 x5 or 6 x 6.

For example, a 6 x 6 square form with a magic product of a®b°c3d?ef is given in Figure

One approach to finding a 5 x5 or 6 x 6 additive-multiplicative magic square of dis-
tinct positive integers may be to construct such square forms and then search for distinct
primes that can be assigned to their variables to make them additive. This approach could
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a’ |adef| b* | bd | &3 1
b%e | ¢ a’b | a’bf | d* | abc?
bc | a®> | c?d? | a*be | abf | ab?
b>d | a’c* | a’cf | b* |a’be| ad
adf | a®b* | e | ac® | b | a*cd
c? | abd a | acd |a*b? | ab’ef

FiGUre 2. A 6 x 6 square form of distinct expressions with magic product
adb>c3d?ef. 1f these variables are taken to represent distinct primes, then
the corresponding 6 x 6 magic square is multiplicative (but not necessarily
additive) and contains distinct positive integers.

be helpful because when checking whether a given number can be the magic product of
such a square, rather than computing arrangements of the factors of that specific number,
we can instead find the square forms whose magic products have the appropriate prime
signature and then see if assigning the prime factors of the given number to the vari-
ables of the square forms makes any of the squares additive. Then if we find nothing and
we wish to check whether another number of the same prime signature can be a magic
product, we just need to reuse the square forms we have already found.

After constructing such square forms, the question naturally turns to whether for a given
square form there exist distinct primes that can be assigned to its variables to make it
additive.

Definition 2.2. Define a square form as acceptable if there exist distinct primes that can
be assigned to its variables to make its rows, columns, and long diagonals have the same
sum. Define a square form as unacceptable otherwise.

Obviously, it is unknown whether 5 x 5 or 6 x 6 acceptable square forms even exist, since
the problem of finding an additive-multiplicative magic square of distinct entries in the
first place is essentially equivalent to finding an acceptable square form. However, we
can show that certain square forms are unacceptable, allowing us to exclude them from
our consideration.

Proposition 2.3. The square form in Figure[2is unacceptable.

Proof. For the sake of contradiction, suppose there exist distinct primes a,b,c,d, e, f that,
assigned to this square form, make it additive. Consider the fourth row and the fourth
column, and note that we need not include the term where the row and column intersect,
as it appears on both sides of the equality and thus can be cancelled. This results in the
following equality:

b’d +a*c* +a’cf +a’be+ad = bd + a*bf +a*be +ac® + acd.
This can be rewritten as
bd +a(ac® + acf +a’be+d) = bd + a(abf + a’be + ¢ + cd).

It follows that b%d = bd (mod a). Since a is prime and b and d are not multiples of a, we
can divide by b and d on both sides of this equation to get b =1 (mod a). Similarly to
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above, we can consider the terms in the fourth and sixth columns with no a component to
see that b2 +bd =1 (mod a). Since b =1 (mod a), we can replace b with 1 in this equation
toget 12+1d =1 (mod a), which can be simplified to d =0 (mod a). This contradicts the
assumption that a and d are distinct primes. Since we have reached a contradiction, the
given square form is unacceptable. O

This is just one example; other unacceptability proofs for different square forms may
include different techniques. Of course, formulating an individualized proof for each
square form quickly becomes impractical. Though it may be worthwhile to think about
more efficient methods to do this, another thing we can do is formulate more general
results about the unacceptability of certain square forms.

3. UNACCEPTABILITY RESULTS

In this section, we prove some notable results about square forms and unacceptability.
In Section we introduce the concept of “pairwise zones” of a square. In Section
we use pairwise zones, along with other tools, to prove our main results about the square
forms themselves.

3.1. Pairwise Zones. Before going into further results on unacceptability, it is helpful to
introduce the concept of what we call pairwise zones. When discussing additivity, we have
the condition that the square’s strips — that is, its rows, columns, and long diagonals —
have the same sum. (This discussion similarly applies to multiplicativity and the magic
product.) Furthermore, if we take two collections of strips in a square such that each
collection has the same number of strips, it is clear that both collections will have the
same sum. Moreover, if we have an equality of two collections of strips and the same
element appears in both collections, we can remove it from both sides and still maintain
this equality. For example, consider the collection of the top two rows and the collection
of the left two columns of a 6 x 6 square. Taking the elements of these collections and
subtracting the elements that appear in both yields two rectangles, so these two rectangles
are guaranteed to have the same sum. As stated, this idea requires that both collections
have the same number of strips. We can also assume without loss of generality that no
single strip appears in both collections, since if any strips do appear in both collections,
we can just subtract their elements from both sides of the corresponding equality until

we get an equality that corresponds to collections with no single strips that appear on
both sides.

Finally, we need a condition to ensure that after subtracting each instance of an element
that appears on both sides of the equality, all the remaining elements appear exactly once
on their side. This ensures that our final equality is actually an equality between two
sums of distinct elements, which is necessary to ensure that it corresponds to two zones
of the square. To achieve this, it may be tempting to require that no element appear in
more than one strip within the same collection. However, this condition is actually too
strong. For example, consider two collections of two strips of a 6 x 6 square: let the first
collection consist of the top row and the left column, and let the second collection consist
of both long diagonals. Then by subtracting elements that appear on both sides of the
corresponding equality, we gain two zones of the square that must have the same sum.
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The condition that no element appear in more than one strip within the same collection
is not satisfied, though, since the element in the upper-left square appears in both strips
in the first collection. As such, we instead impose the weaker condition that for every
element x in the square, the number of times x appears in the first collection and the
number of times x appears in the second collection differ by at most one. This way, after
subtracting every instance of x that appears on both sides of the corresponding equality,
x will ultimately appear at most once in the equality.

This motivates the following definition:

Definition 3.1. Let X and Y be two disjoint nonempty zones of the square. Suppose
there exist two collections of strips such that no single strip appears in both collections,
both collections have the same number of strips, and for every element x in the square,
the number of times x appears in the first collection and the number of times x appears
in the second collection differ by at most one. Suppose X is the region of the square
containing the elements that appear once more in the first collection than in the second
collection, and suppose Y is the region of the square containing the elements that appear
once more in the second collection than in the first collection. Then X and Y are said to
be pairwise zones.

Observe that if the square is additive, then by our previous reasoning, the elements in
any two pairwise zones must have the same sum. Similarly, if the square is multiplicative,
then the elements in any two pairwise zones must have the same product. This idea will
be important for some of our results, since we will be able to prove that certain square
forms are unacceptable by finding properties of pairwise zones X and Y that guarantee
that X and Y cannot have the same sum no matter what prime factors are assigned to the
square forms.

The additive-multiplicative magic square in Figure |3|can be used to demonstrate exam-
ples of pairwise zones. For example, consider the zones defined by the top two rows and
the left two columns, excluding the elements that appear in both. These zones contain ele-
ments given by {50,90,48,1,84,16,54,189,110, 6} and {100, 2,96,60,3,63,99,180,21, 24}.
Our above reasoning indicates that these zones must have the same sum and product.
Indeed, they both have a sum of 648 and a product of 1955476131840000, which is
215.311.5%.72.11.

126 66 | 50 | 90 | 48 | 1 84
20 | 70 | 16 | 54 | 189|110 | 6
100 2 | 22 | 98 | 36 | 72 | 135
96 | 60 | 81 4 | 10 | 49 | 165
3 163 |30 |176120| 45 | 28
99 180 14 | 25 | 7 |108| 32
21 | 24 |252] 18 | 55 | 80 | 15

Ficure 3. The first known 7 x7 additive-multiplicative magic square of dis-
tinct positive integers. This square has a magic sum of 465 and a magic
product of 150885504000 = 2'9.37.53.72.11 and was discovered by
Sébastien Miquel in 2016. [1]]
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3.2. Further Results. We now move on to some unacceptability results for 5x5 and 6 x6
square forms. We start with a straightforward lemma whose use will become clear in
Lemmal[3.3]

This lemma uses the sum-of-divisors function o(n), which is defined for all positive in-
tegers n as the sum of positive factors of n, including 1 and itself. An important result
in elementary number theory states that if py,---, py are distinct primes and #ny,---, ny are
non-negative integers, then

ne+1
a(pMpt2 ... plk) = ot (pr o) (R .
tr2 k p1—-1 p2—1 pr—1

For example, 0(12) =1+2+3+4+6+12 =28, and since 12 = 22.3, the above formula
) 3 2

yields (é_—f)(%) =(7)(4) = 28.

This function will be used in the following lemma.

Lemma 3.2. Let py,---, py be distinct primes, and let ny,---,ny be positive integers. Then

n—-1 np-1 nk—l) [APR2)

a(py' Py et ) <pipy e p

Proof. If py,---, pi are distinct primes and ny,---, 1y are positive integers, then
nl—l 712—]. i’lk—l _ pll/ll_]‘ pgz_]' pzk_l
U(pl p2 pk )_ ,
pi—1/\p2-1 Pr—1

which is clearly less than p"py>---p*. O

One way of showing unacceptability of a square form is by selecting two pairwise zones
X and Y and showing that they can never have the same sum regardless of what prime
factors are assigned to the square form. One way of doing this is by proving that one
zone (say, Y) is “bigger” than the other (in this case, X) in the sense that no matter what
primes are chosen, the sum of elements in Y is always going to be larger than the sum
of elements in X. One approach to doing this is by constructing a function f that maps
the elements in X to the elements in Y and then proving that for any choice of primes,
each element in the image of f is greater than the sum of elements that map to it. This is
exemplified in the following result.

Lemma 3.3. Suppose a square form has two pairwise zones X and Y such that there exists a
function f : X — Y where a) every x € X is mapped to a multiple of itself, and b) if any y € Y
is mapped to by some x € X such that some prime factor is raised to the same power in both x
and y, then no other element maps to y. Then the square form is unacceptable.

Proof. We show that for any distinct primes assigned to such a form, the sum of all ele-
ments in Y is greater than the sum of all elements in X. To do so, we show that every y in
the image of f is greater than the sum of the elements that map to it. If y is mapped to by
just one element x, then y must be greater than x since y is a multiple of x. Alternatively,
if y is mapped to by more than one element, then every element x that maps to y must be
a factor of y where every prime factor is raised to a lesser degree in x than in y. It follows
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directly from Lemma[3.2that p is greater than the sum of all such values of x. Therefore,
X and Y cannot have the same sum, so the square form is unacceptable. O

As an example of zones satisfying the hypotheses of Lemma consider

X ={a’b%,a’b3c? at, ab’ct),

Y= {a4b5, b?, ac, a6b465}.
(It is easy to confirm that these zones have the same product and no repeating elements.)
Define f : X — Y as mapping a°b> to a*b® and everything else to a®b*c>. Then every
element in X is mapped to a multiple of itself. Furthermore, a*b> is mapped to by a3b°,
and there is a prime factor (namely, b) that is raised to the same power in both a*b®
and b, but the hypotheses are still satisfied since no other element maps to a*b>. In
contrast, a®b*c® is mapped to by multiple elements, but none have a raised to the power

of 6, b raised to the power of 4, or c raised to the power of 5, so the hypotheses are still
satisfied.

Another way of showing that two zones cannot have the same sum is by showing that
they cannot be congruent modulo a certain number. One fundamental result of this kind
occurs in pairwise zones X and Y where a prime factor p attains its minimum order
exactly once throughout these zones — that is, where there exists some element x in X or
Y such that p is raised to a lower power in x than in any other element of X or Y.

Lemma 3.4. Suppose a square form has two pairwise zones X and Y such that some prime
factor p attains its minimum order exactly once in these zones; that is, suppose there exists
some element x in X or Y such that p is raised to a lower power in x than in any other element
of X or Y. Then the square form is unacceptable.

Proof. Without loss of generality, suppose x € X. Define k as the order of p in x. Since
every other element in X has p raised to the power of at least k + 1, it follows that the sum
of elements in X is congruent to x (mod p**!). However, since every element in Y has p
raised to the power of at least k + 1, it follows that the sum of elements in Y is congruent
to 0 (mod p**!). Since x 2 0 (mod p**!), X and Y cannot have the same sum. As such,
the square form is unacceptable. O

At this point, we have two lemmas that rule out the acceptability of a square form when
certain patterns appear in the pairwise zones. Using these lemmas, we can move on to
proving some broader unacceptability theorems.

Theorem 3.5. If a square form has magic product P and an entry E such that P/E is a prime
power, then the square form is unacceptable.

Proof. Consider the pairwise zones that are the row and column that contain E minus the
entry of E itself. Since these pairwise zones must multiply to P/E and P/E is a prime
power, the zones must consist of distinct powers of a single prime (possibly including to
the power of zero). Clearly, the highest of these powers must be in one of these zones.
Since every element in the other zone divides this maximum power and has a smaller
exponent, it follows from Lemma [3.3]that the square form is unacceptable. O
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Lemma 3.6. If a square form has a prime factor that attains its minimum order fewer than
four times throughout the square, then the square form is unacceptable.

Proof. For the sake of contradiction, suppose p is a prime factor in an acceptable square
form that attains its minimum order k fewer than four times throughout the square.
Clearly, p attains order k at least once. Define C; as a column containing a term where p
is raised to the kth power. Lemma guarantees that for all other columns C,, p must
attain order k at least twice throughout C; and C,. Since there are at most three entries
with p raised to the kth power, there are not enough to have one in every column; as such,
to satisfy Lemma p must attain order k at least twice in C;. That is, if p attains order
k in a column, it must do so twice in that column. It similarly holds that if p attains order
k in a row, it must attain order k at least twice in that row. Since p attains order k at least
once in the square, it must therefore attain this order at least twice in one column — that
is, in at least two rows — and at least twice in each of these rows. Therefore, it actually
does attain this order at least four times, contradicting our initial assumptions. O

Theorem 3.7. If a square form has a magic product of the form a" (for any positive integer n),
a"b™ for 1 <m < 3, or a"bc, then the square form is unacceptable.

Proof. For the sake of contradiction, suppose there exists an acceptable square form with
such a product. Define k as the lowest order a attains at any entry in the square. If the
magic product is of the form a” or a”b™ for 1 < m < 3, then in an entry where a is raised
to the kth power, a* can be multiplied by nothing, b, or b%; Theorem implies that it
cannot be multiplied by b3. As such, a can attain order k in at most three entries.

Similarly, if the magic product is of the form a"bc, then in an entry where a is raised to
the kth power, a* can be multiplied by nothing, b, or ¢ (but not bc), so a can once again
attain order k in at most three entries. Either way, a attains its minimum order at most
three times, which contradicts Lemma|3.6 O

Another interesting class of results deals not with unacceptability itself per se, but re-
stricts the possible numerical values that the prime factors in a given square form can
assume to make the square additive. We prove one major lemma along these lines and
then show three significant results that follow as special cases of this lemma. Here, it
helps to talk about the components of an element of a square; let the non-p component of
an element refer to the product of all the prime powers of the element aside from p itself.
For example, a3b>c? and adb°c? are different elements, but their non-a components still
have the same value, as they are both b°c?. The following lemma uses this idea to put an
upper bound on the values that a prime factor can assume to make the square additive
when certain conditions are satisfied.

Lemma 3.8. For positive integers m and n, suppose a region of a square form can be partitioned
into m + n disjoint zones such that the square can only be additive if each zone has the same
sum, and suppose there exists a prime factor p such that the non-p components in this region
assume at most m different values. Then the square can only be made additive if p is set to a
value no greater than [m/n].
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Proof. For every value of non-p component that appears in this region, the region must
have a maximum element with that non-p component — that is, an element such that
no other element in the region has the same non-p component and has p raised to a
higher power. As such, since the non-p components in this region assume at most m
different values, there exist at most m elements that are maximal with respect to their
non-p component. The region is partitioned into m + n disjoint zones, and these maximal
elements clearly can appear in at most m of the zones, so define Y as the union of m zones
such that each maximal element is in Y, and define X as the union of the remaining n
zones.

Observe that the sum of the elements in X must be #n times the sum of each individual
zone, and the sum of the elements in Y must be m times the sum of each individual zone.
As such, if we define X’ as the set of elements in X but where each is multiplied by [m/n],
then the sum of elements in X’ must be at least the sum of elements in Y. Define the
function f : X" — Y such that each element in X’ is mapped to the maximal element in Y
with the same non-p component. Since the sum of elements in X’ is at least the sum of
elements in Y, there is at least one element in the image of f that is less than or equal to
the sum of elements that map to it. Denote this element as p*y, where k is the order of p
in the element and v is the non-p component. Since the elements of X’ that map to py
are all of the form [m/n]p*iy where the k; are distinct and less than k itself, and since py
is less than or equal to the sum of elements that map to it, we have that

Py < [m/mlp*iy + -+ [m/nphip,

where j is the number of elements that map to p*y. Dividing v from both sides, this gives
us
p* < [m/mlp* + -+ [m/n]p.

Now, we just need to prove that this inequality cannot be true if p is greater than [m/n].
Since k is greater than each k; and the k; are distinct, this follows simply from viewing
the above expressions as base-p representations of numbers. O

The remaining theorems on 5 x 5 and 6 x 6 square forms are all special cases of Lemma

3.8l

Theorem 3.9. Suppose a square form has magic product P and a diagonal element D such that
P/D is of the form a"b for some distinct primes a and b. Then the square can only be additive
ifa=2.

Proof. If such an element D exists in a square form, there must exist three disjoint zones
that multiply to a”b and have the same sum: the row containing D excluding D itself, the
column containing D excluding D itself, and the long diagonal containing D excluding D
itself. The elements in these zones must all be of the form a* or a*b, so there are at most
two possible non-a components. Since the hypotheses of Lemma are satisfied with 3
zones and 2 possible non-a components, we have that a < 2. Clearly, this means a must
be equal to 2. O

Since odd-sized squares have a center cell, we can use a similar idea to get another result
in the 5 x 5 case.
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Theorem 3.10. If a 5 x 5 square form has magic product P and a center element C such that
P/C is of the form a"b for some distinct primes a and b, then the square form is unacceptable.
Furthermore, if a 5 x 5 square form has magic product P and a center element C such that P/C
is of the form a"b? for some distinct primes a and b, then the square can only be additive if a is
equal to 2 or 3.

Proof. First, suppose P/C is of the form a"b. Then there must exist four disjoint zones
that multiply to 4"b and have the same sum: the row containing C excluding C itself,
the column containing C excluding C itself, and the two long diagonals containing C
excluding C itself. The elements in these zones must all be of the form a* or a*b, so
there are at most two possible non-a components. Since the hypotheses of Lemma [3.8|are
satisfied with 4 zones and 2 possible non-a components, we have that a < 1. However,
it is impossible for a prime number to be less than or equal to 1, so the square form is
unacceptable.

Next, suppose P/C is of the form a"b?. Then there must exist four disjoint zones that mul-
tiply to a"b? and have the same sum: the row containing C excluding C itself, the column
containing C excluding C itself, and the two long diagonals containing C excluding C
itself. The elements in these zones must all be of the form a*, akb, or a*b?, so there are at
most three possible non-a components. Since the hypotheses of Lemma are satisfied
with 4 zones and 3 possible non-a components, we have that a < 3. Clearly, this means a
must be equal to 2 or 3. 0

Theorem 3.11. If a 6 x 6 square form has a magic product P of the form ab*, then the square
can only be additive if a = 2. Furthermore, if a 6 X 6 square form has a magic product P of the
form ab> or ab?c, then the square can only be additive if a = 2, 3, or 5. Finally, ifa 5x 5
square form has a magic product P of the form a"b*, then the square can only be additive if a is
equal to 2 or 3.

Proof. First, consider a 6 x 6 square form where P = a"b*. Then for the square form to
be acceptable, the elements in the square must all be of the form ak, akb, akb?, or a*b3.
(Theorem [3.5/implies that they cannot be of the form a¥b*.) Consider the zones given by
the six rows of the square. Since the hypotheses of Lemma are satisfied with 6 zones
and 4 possible non-a components, we have that a < 2. Clearly, this means a must be equal
to 2.

Next, consider a 6x6 square form where P is a"b> or a”b?c. If P = a"b’, then for the square
form to be acceptable, the elements in the square must all be of the form ak, akb, akb?,
akv3, or akb* (but not akb5). If P = a"b?c, then for the square form to be acceptable, the
elements in the square must all be of the form ak, akb, a*b?, akc, or akbc (but not akbzc).
Again, consider the zones given by the six rows of the square. Since in both cases, the
hypotheses of Lemma 3.8]are satisfied with 6 zones and 5 possible non-a components, we
have that a < 5. Clearly, this means a must be equal to 2, 3, or 5.

Finally, consider a 5 x 5 square form where P = a"b*. Then for the square form to be
acceptable, the elements in the square must all be of the form ak, akb, akb?, or akb3 (but

not akb*). Consider the zones given by the five rows of the square. Since the hypotheses
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of Lemma are satisfied with 5 zones and 4 possible non-a components, we have that
a < 4. As such, a must be equal to 2 or 3. O

4. Future WORK

At this point, we have shown that an acceptable square form must have all of its pairwise
zones satisfy certain properties. We have also shown that an acceptable square form
cannot have a magic product P and an element E such that P/E is a prime power, cannot
have a magic product P and a center element C such that P/C is a prime power multiplied
by another prime, nor can it have a magic product of the form a”, a"b™ for 1 <m < 3, or
a"bc. Finally, we have found cases in which we can restrict the numerical values that the
prime factors in a square form can assume to make the square additive.

An approach to making further progress could be to try to expand these results — for
example, one ambitious goal might be to prove that an acceptable square form would
have to have at least three distinct prime factors, assuming this is even true. Possible
other tools for proving unacceptability results might include polynomial factorization or
the AM-GM inequality. Yet another approach may be to develop algorithms or further
techniques for proving the unacceptability of individual square forms, as was done in

Proposition
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