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1. Introduction

Let π(x) denote the number of primes ≤ x. A central result in number theory is the
prime number theorem, which gives an asymptotic formula for the prime-counting func-
tion π(x). Some of Euler’s unpublished notes, found by Bouniakowsky and Chebyshev
and included in Commentationes Arithmeticae, show that Euler considered the problem of
counting the primes [5]. He tabulated the primes up to x = 2,4,8, . . . ,1024 and observed
that the “law of the primes” appears to be that they become less frequent as x increases.
Euler further remarked, however, that the number of primes in centuries (blocks of length
100) does not decrease regularly, but changes in a very irregular manner. He gave isolated
examples around higher x (near 90,000) to demonstrate this.1

Euler’s observation about the irregular distribution of the primes manifests as difficulty
in approximating π(x) accurately using a simple continuous function. Nevertheless, in
1808, Legendre published such an approximation of π(x) in his book Essai Sur la Théorie
des Nombres. His attempt was based on a more extensive tabulation of the primes than
Euler had, going up to x = 400,000 at first (2nd edition) [8] and extended to x = 1,000,000
by 1830 (3rd edition) [9]. He conjectured that π(x) is well-approximated by the function

x
A logx −B

, (1)

where A = 1 and B = 1.08366. But he also acknowledged that the distribution of the
primes is subject to anomalies. Moreover, in his concluding remarks, Legendre expressed

1Euler might have had an intuitive understanding of the prime number theorem. Pertinent evidence for
this can be found in a letter he wrote to Goldbach in 1752 [6], though it is hard to discern Euler’s precise
intention there. Considering Euler’s famous work on the convergent sum ζ(2) =

∑
nn
−2, in comparison with

the harmonic sum over primes
∑
p 1/p, which Euler proved diverges, Euler at least knew that the primes

occur more frequently than the squares of integers, so π(x) ≥
√
x for x large enough. Moreover, Euler surely

knew the primes are sparse among all integers considering that he proved, using his mathematical language
at the time, and frequently cited the result that

∑
p 1/p diverges far more slowly than the usual harmonic

series.
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astonishment that basic analysis, combined with his approximation of π(x), enabled ac-
curate evaluation of sums and products over the primes. This remark may be seen as a
precursor to the subject of analytic number theory.

Several prominent mathematicians at the time cast doubt on the significance of the con-
stant 1.08366 in the Legendre formula– specifically, Gauss [7], Dirichlet [10], and Cheby-
shev [1]. They favored the approximation of π(x) given by logarithmic integral,

li(x) =
∫ x

2

1
log t

dt

∼ x
logx

+
1!x

(logx)2 + · · ·+ `!x
(logx)`+1

+ · · · ,
(2)

where the asymptotic in the second line is as x→∞. See [2].2

Of course, we now know that li(x) is the better approximation asymptotically. Even as
early as 1852, Chebyshev proved that

x
π(x)

− logx (3)

cannot have a limit different from −1 as x→∞ [1], which is consistent with the second
term in the asymptotic expansion (2). In comparison, the Legendre formula gives a limit
equal to −1.08366. Therefore, if π(x) is indeed well-approximated by the expression (1)
with A = 1, then the Legendre constant 1.08366 cannot be the best choice for B asymptot-
ically. For a short proof of the Chebyshev result concerning the limiting value of (3), see
[12].

Other than the leading term x/ logx, the Legendre formula disagrees with the more natural-
looking approximation li(x). It is remarkable that Legendre published his choice of B
extended to 5 decimal places, indicating a high degree of confidence in his conjecture.3

It is also surprising that the odd-looking number 1.08366 did not appear connected to
any known mathematical constants, despite the fundamental nature of π(x). Drach [3]
attempted to remedy this apparent imperfection, proposing in 1844 that the correct con-
stant should be log(5

√
π/3) = 1.08319 . . . This became moot just a few years later, though,

after Chebyshev published his work.

In Proposition 2.1, and the discussion following it, we show that the Legendre constant
1.08366 satisfies a certain simple and natural criterion. We conjecture that this criterion
is how Legendre arrived at that constant.

2. Arithmetic bias

After careful examination of Legendre’s original work, as well as of contemporary work
from that period, we could not find a direct explanation for why Legendre chose the

2The closely related integral Li(x) has the same definition as li(x) except one starts integrating at x = 0 and
uses the Cauchy principal value to define the integral around x = 1. The functions li(x) and Li(x) differ only
by the constant Li(2) = 1.04516 . . ..
3A confidence interval of ±0.00001 for the value of B presumably reflects an expectation that the approxi-
mation (1) with A = 1 is typically reliable to within ±1 around x = 1,000,000.
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approximation model (1) and the values A = 1 and B = 1.08366, beyond that these choices
were based on numerical tables in some way. We provide a likely explanation for the
origin of Legendre’s choices for (1). Along the way, we show that Legendre was likely
misled by a conspiracy of arithmetic bias that steered him towards the approximation
(1), and he otherwise made a reasonable choice of B considering the range of primes
tables available to him.

The arithmetic bias in question is the inequality

li(x) > π(x), (4)

which typically holds, and always does so in the range 8 ≤ x ≤ 1,000,000. See [15] and
[14] for discussions of various types of arithmetic bias.

The bias (4) is not as artificial as it may seem at first, and certainly goes counter to basic
probabilistic considerations. It is unclear whether Gauss considered the inequality (4) to
be highly probable, but Riemann [13] indicated belief that Li(x) ought to give a value of
π(x) that is slightly too large. This is not always the case, however, as Littlewood [11]
established in 1914 that li(x)−π(x) changes sign infinitely often.

Figure 1. Illustration of arithmetic bias and the Legendre approximation for x ≤ 106.

Theoretical justification for the arithmetic bias (4) stems from Riemann’s 1859 paper and
his exact analytic formulas for π(x) and related functions.4 After applying the Mobius
inversion, Riemann obtained

π(x) =
∞∑
n=1

µ(n)
n
f (x1/n), (5)

where µ is the Mobius function and f (x) is defined as in Riemann’s 1859 paper. So,

f (x) =
∑′

n≤x

Λ(n)
logn

,

4In Riemann’s paper, π(x) denotes the number of primes < x if x is not a prime, and if x is a prime then
π(x) is equal to its average value from the left and right. This definition differs slightly (it is smaller by 1/2)
from the definition in the introduction when x is exactly equal to a prime.
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where Λ is the von Mangoldt function and the primed sum means that if x is a prime
power then f (x) is defined by its average from the left and the right.5

Riemann gave an exact analytic formula for f (x). He expresses f (x) as a main term equal
to Li(x), followed by an infinite sum of secondary terms over the nontrivial zeros ρ of
Riemann’s zeta ζ(s), plus other small and easily understood terms. Furthermore, the
secondary terms corresponding to the ρ’s may be taken to be of the form Li(xρ)+Li(x1−ρ).
See [4, p. 48] for details.

The n = 2 summand on the right-side of (5) corresponds to the contribution of the squares
of primes, and is about −

√
x/ logx. Thus, the contribution of the squares of primes is neg-

ative and noticeable. Although this contribution could be overwhelmed by the contribu-
tions of the ρ’s from the n = 1 summand, this usually does not happen. This is because
the largest contributor among the ρ’s is the first zero ρ1 = 1/2+14.134725 . . . i, and its con-
tribution is limited in size by about 2

√
x/(|ρ1| logx). Hence, since ρ1 has a high ordinate

(imaginary part), the contribution of ρ1 will be significantly less than that of the squares
of primes.

While there are infinitely more contributions from the ρ’s to account for, these contribu-
tions, assuming the Riemann hypothesis that Re(ρ) = 1/2 for all ρ, are of decreasing size.
Furthermore, they are oscillatory, with oscillations that are expected to be independent.
Therefore, their sum can be expected to exhibit substantial cancellation. Overall, then,
the −1 from the squares of primes should usually win over the 2/ |ρ1|, and this materializes
as the arithmetic bias (4).6

It seems highly unlikely that Legendre would have been aware of the arithmetic bias (4)
when he made his conjecture. Once Legendre decided that the approximation for π(x)
should be of the form (1), it remained to choose the constants A and B. The choice A = 1
was probably predetermined, in a sense. Gauss had already guessed by 1793 that the
density of primes around x is about 1/ log(x). Although this was unknown to Legendre at
the time7, it appears to have reached the status of a folklore conjecture by the beginning
of the 19th century. For example, Dirichlet [10], while expressing skepticism about the
accuracy of the Legendre approximation, wrote in a footnote in 1838 that the true ap-
proximation of π(x) is

∑
2≤n≤x 1/ logn ∼ li(x), which in view of the asymptotic expansion

(2) dictates that A = 1.

With A chosen to be 1, one could choose B so as to minimize the average error in the
approximation x/(A logx −B), given in (1). For a given x, this error is

E(x,B) =
x

logx −B
−π(x)− 1,

where the extra −1 is because Legendre counted 1 as a prime. Alternatively, one could
average the difference x/π(x)−logx, given in (3), over x and choose B accordingly. We will

5For example, f (2) = 1/2, f (5/2) = 1, f (7/2) = 2, f (4) = 9/4, and f (9/2) = 5/2.
6Therefore, the arithmetic bias should disappear if instead of π(x) and li(x) one considers f (x) and its
approximation by Li(x) – that is, if one counts the primes with suitable weights.
7And indeed, Legendre’s work on π(x) was apparently unknown or forgotten by Gauss, as indicated in
Gauss’ 1849 letter to his former student Encke [7].
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examine the first method, as it makes the connection with arithmetic bias more transpar-
ent, and it returns a value of B closer to what Legendre obtained.

Let 〈E(x,B)〉x be the average of E(x,B) over the primes xwith 3 ≤ x ≤ 106.8 This is the same
range of primes that was available to Legendre. In Table 1, we give the value of 〈E(x,B)〉x
for various B, showing that the value of B that minimizes |〈E(x,B)〉x| is between 1.0825
and 1.0850. Moreover, Figure 2 tracks E(x,B) for B = 1,1.0825,1.0850 as x ranges over 3 ≤
x ≤ 106, as well as tracking the error produced by the approximation li(x) over the same
range of x. In view of Figure 2, the approximation li(x) certainly appears as an unlikely
candidate to approximate π(x). The approximation by li(x) produces an error that is
heavily biased, large, and positive. In comparison, the approximation (1) with A = 1 and
B ∈ [1.0825,1.0850] appears to be the far better approximation. These approximations
give errors that behave more intuitively, moderately fluctuating about 0.

B 〈E(x,B)〉x B 〈E(x,B)〉x
1.0700 -41.2565 1.0825 -0.95052

1.0725 -33.202 1.0850 7.12087

1.0750 -25.1442 1.0875 15.1958

1.0775 -17.083 1.0900 23.2744

1.0800 -9.01846 1.0925 31.3572
Table 1. The average error for various B.

Figure 2. Tracking the error for various B and for li(x) over x ≤ 106.

Since for all x the expression (1) is monotonically increasing in B < logx, the average error
〈E(x,B)〉x is increasing in B < log3 = 1.0986 . . . (since we start the averaging at x = 3). So,
in view of Table 1 which shows that 〈E(x,B)〉x assumes both positive and negative values,

8We start at x = 3 to ensure that the denominator logx−B in the Legendre approximation is positive. When
x = 2, this denominator is negative if B > log2 = 0.693 . . ., as we will have.
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we deduce that there is a unique B that makes |〈E(x,B)〉x| equal to zero. Therefore, we
obtain the following proposition.

Proposition 2.1. There is a unique real number B0 < log3 that makes 〈E(x,B0)〉x vanish. The
number B0 satisfies 1.0825 ≤ B0 ≤ 1.0850.

One can further refine the value of B using a bisection method. The bisection method al-
lows us to numerically search for this unique root B. To this end, we computed 〈E(x,B)〉x
for several values of B in an interval around 1.0825 and recursively chose a smaller inter-
val around the value of B that reduces |〈E(x,B)〉x|. This process results in choosing

B = 1.08279,

which is close to Legendre’s constant 1.08366. The difference is equal to merely 0.00087.

There may be a few reasons why Legendre chose a slightly different constant than we
found. For example, he indicates in Essai Sur la Théorie des Nombres that he might have
used his own unpublished table of primes. Interestingly, Legendre mentions that he cal-
culated a value for π(1,000,000) that differs from the value in the Wéga, Chernac, and
Burckhardt tables cited in his book. And both values differ from the true value: by −28
using Legendre’s calculation, and by 6 using the cited tables. Such discrepancies easily
explain the 0.00087 difference that we found.

We therefore speculate that Legendre used a nearly equivalent method to the minimiza-
tion method we described in this section to choose B. This is evidenced by how well we
are able to capture the Legendre constant using this minimization procedure. Thus, by
design, the Legendre approximation yields much better results than li(x) and better re-
sults than approximations with other values of B. The superior accuracy of the Legendre
approximation in the range of x he considered is probably the reason his approximation
remained prominent for several decades, despite the inexplicable constant 1.08366. From
an empirical viewpoint, the arithmetic bias (4) was making it hard to recognize li(x) as
the true approximation in the feasible range of x at that time.

3. Limitations of numerical data

Any reasonable investigator, faced with a heavily biased error, may abandon the logarith-
mic integral approximation li(x) unless they had special knowledge about the arithmetic
bias phenomenon (4). Legendre favored the approximation (1) with A = 1 and then cal-
ibrated B, thus resolving the bias issue in the range he considered. In contrast, the ap-
proximation li(x) did not offer any parameters to calibrate. It took Riemann’s 1859 paper
to realize that all the calibration in that approximation occurs via the positions of the
nontrivial zeta zeros ρ.

But even in the absence of arithmetic bias, so assuming Li(x) is a very accurate approxi-
mation for π(x), if one insists on approximating π(x) using (1) with A = 1, then one would
be led further astray from the asymptotically correct choice B = 1. Under this hypothet-
ical, the choice of B that minimizes the size of the average error over the primes x with
5 ≤ x ≤ 106 is even larger, around 1.10407. The other attractive choices of B, such as
B = 1 or B = 0, also result in heavy bias, though in the opposite direction, over the range
Legendre considered.
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So, in retrospect, the data available to Legendre was simply too limited to discern that
the true approximation was li(x) or that B = 1 was the asymptotically correct choice. Al-
though the Legendre approximation is more accurate than li(x) up to around x = 3,000,000,
it starts to lose advantage after that, becoming noticeably worse once x exceeds 6,000,000.
This is illustrated in Figure 3.

Figure 3. Arithmetic bias for x ≤ 107.

Therefore, access to more data, like Gauss indicates he had, would have easily cast doubt
on the approximation (1). Gauss also offered a numerical argument against the Legendre
approximation. Gauss [7] pointed out that the error in the Legendre approximation,
while smaller than that of li(x) for x ≤ 106, grows much faster. (This is seen in Figure
3 as the orange curve is steeper than the blue curve.) So it is conceivable that the error
will get too large eventually. Indeed, the error in the Legendre approximation ultimately
exceeds that of li(x) by a large margin.

4. Conclusions

The Legendre approximation and the Legendre constant tell a story about the advantages
and limitations of experimental mathematics, and its many twists, turns, and complexi-
ties even in most fundamental settings. Legendre put substantial weight on the numerics
and the guidance that resulted from the numerics, and he subsequently gave an asymptot-
ically erroneous value of B to several decimal places. While he was likely misled by arith-
metic bias and limited data, the Legendre formula is remarkably accurate over the range
he considered. This is probably the reason that the Legendre formula became so prevalent
in the literature, possibly overshadowing li(x) which suffered from arithmetic bias. The
Legendre formula was supported by seemingly convincing, though in retrospect limited,
numerical evidence, and stood prominent for several decades despite the fair criticisms
of Legendre’s contemporaries and despite the strange-looking constant 1.08366. More-
over, Legendre appears to have used the simple and natural criterion of minimizing the
average error to choose B, thus ensuring the accuracy of his approximation for x ≤ 106 by
design.
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