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1. Introduction

Neumann series was introduced by Carl Neumann in 1877 in the context of potential
theory [12]. Neumann series, or the more advanced Liouville-Neumann series has been
applied to solve Fredholm integral equations [15]. In fact, apart from the theoretical ap-
plications of Neumann series, it plays an important role in solving computational prob-
lems. The Neumann series iteration, x(k) = Ax(k−1) + b, follows naturally from the actual
Neumann series, i.e., (I −A)−1 =

∑∞
i=0A

k when solving (I −A)x = b.

In this paper, we find that if the eigenvalues of an n×n symmetric matrix A fall between
−1 and 1 and if the scaled extreme eigenvalues of A converge in distribution as n→∞,
then after scaling, a scaled upper bound on the number of iterations needed to solve
(I − A)x = b with the Neumann series iteration will converge to the reciprocal of the
limiting distribution of the largest eigenvalue.

This provides the first step in the full probabilistic analysis of the Neumann series it-
eration. In particular, our results show that a reasonably sharp upper bound depends
only on the (rescaled) extreme eigenvalues as the matrix size tends to infinity. The lim-
iting distributions of these eigenvalues are often universal — they are independent of
distributional details of matrix entries1. Therefore, one expects the convergence rate of
the Neumann series to inherit this universality. This phenomenon has been observed in
many algorithms [14, 6, 5] and rigorously established for eigenvalue algorithms [4, 3].

This paper unfolds as follows. In Section 2 we introduce the algorithm and the halting
criterion. In Section 3 we state the main theorem and give two examples where it applies.
The proof of the main theorem is given in Section 4.

1This can be true, within a class of distributions.

∗ Corresponding author
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2. The algorithm

2.1. The Neumann series iteration. We first define Neumann series.

Definition 2.1. For A ∈Rn×n, the Neumann series is defined formally as:
∞∑
i=0

Ai = I +A1 +A2 + · · · .

According to the above definition, we are interested in sufficient conditions for the Neu-
mann series to converge. The following lemma and theorem provides the key for this
study.

Lemma 2.2. If the spectral norm2 of A satisfies ‖A‖ < 1, then (I −A)−1 exists, and

(I −A)−1 = I +A+A2 + · · · =
∞∑
i=0

Ai .

Theorem 2.3. Given A ∈Rn×n with ‖A‖ < 1 and b ∈Rn, the numerical solution of (I−A)x = b
is found by applying the Neumann series iteration:

x0 = 0,
xk = Axk−1 + b

= (I +A+A2 + · · ·+Ak−1)b

=
k−1∑
i=0

Aib, k = 1,2,3 . . . .

Here xk converges to x = (I −A)−1b as k→∞.

The proof of the above lemma and theorem can be found in [2, p. 457]. The Neumann
series iteration is the numerical algorithm we will use throughout this paper.

2.2. Halting criterion. The asymptotic behavior of xk is well known by Theorem 2.3,
but we are more interested in the non-asymptotic case. Given a halting criterion, we
are interested in the number of iterations needed to achieve that criterion. Two natural
halting times are defined as follows:

Definition 2.4. Given ε > 0, define kε(A,b) and k∗ε(A,b) by

kε(A,b) = min{k : ‖x− xk‖ < ε},
k∗ε(A,b) = min{k : ‖(I −A)xk −b‖ < ε}.

For simplicity, our results will only concern upper bounds for the halting times:
2‖ · ‖ here denotes the matrix norm induced by the `2-norm. In fact, this lemma can be generalized to any
sub-multiplicative norm.
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Definition 2.5. Given ε > 0, we define Kε(A,b) and K∗ε(A,b) to be

Kε(A,b) = min

k :

∥∥∥∥∥∥∥
∞∑
i=k

Ai

∥∥∥∥∥∥∥‖b‖ < ε
 ,

K∗ε(A,b) = min

k :

∥∥∥∥∥∥∥(I −A)
∞∑
i=k

Ai

∥∥∥∥∥∥∥‖b‖ < ε
 .

Proposition 2.6. kε(A,b) ≤ Kε(A,b) and k∗ε(A,b) ≤ K∗ε(A,b).

Proof. For the first inequality, we show that

‖x− xk‖ ≤

∥∥∥∥∥∥∥
∞∑
i=k

Ai

∥∥∥∥∥∥∥‖b‖ .
The exact solution of (I −A)x = b is x = (I −A)−1b. Based on Lemma 2.2, x =

∑∞
i=0A

ib. By
Theorem 2.3, we also know that xk =

∑k−1
i=0 A

ib. Therefore, we have

‖x− xk‖ =

∥∥∥∥∥∥∥
∞∑
i=0

Aib−
k−1∑
i=0

Aib

∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥
∞∑
i=k

Aib

∥∥∥∥∥∥∥ ≤
∥∥∥∥∥∥∥
∞∑
i=k

Ai

∥∥∥∥∥∥∥‖b‖.
Similarly, for the second inequality, we show that

‖(I −A)xk −b‖ ≤

∥∥∥∥∥∥∥(I −A)
∞∑
i=k

Ai

∥∥∥∥∥∥∥‖b‖ .
If x is the exact solution, we have

‖(I −A)xk −b‖ = ‖(I −A)xk −b− [(I −A)x−b]‖
= ‖(I −A)(xk − x)‖

=

∥∥∥∥∥∥∥(I −A)
∞∑
i=k

Aib

∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥(I −A)
∞∑
i=k

Ai

∥∥∥∥∥∥∥‖b‖ .
Thus, kε(A,b) ≤ Kε(A,b) and k∗ε(A,b) ≤ K∗ε(A,b). �

Now, to show that the upper bounds Kε and K∗ε are sharp we give a sufficient condition
for equality to hold. Suppose λ is the largest eigenvalue of A, and 0 < λ < 1. If b is the
eigenvector of A which corresponds to λ, we have kε(A,b) = Kε(A,b). This can be verified
by showing that ‖x− xk‖ =

∥∥∥∑∞i=kAi∥∥∥‖b‖:
‖x− xk‖ =

∥∥∥∥∥∥∥
∞∑
i=k

Aib

∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥
∞∑
i=k

λib

∥∥∥∥∥∥∥ =
∞∑
i=k

λi‖b‖ =

∥∥∥∥∥∥∥
∞∑
i=k

Ai

∥∥∥∥∥∥∥‖b‖.
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Suppose the largest eigenvalue of (I −A) is µ and 0 < µ < 1. If b is the eigenvector of (I −A)
which corresponds to µ, we have k∗ε(A,b) = K∗ε(A,b). The verification is similar as before.

3. Results

In this section we first state the main theorem and then provide two examples where it
applies.

3.1. Main theorem.

Definition 3.1. A random variable Xn converges in distribution to X as n→∞ if

FXn(t) = P(Xn ≤ t)→ P(X ≤ t) = FX(t)

as n→∞ at every t where FX(t) is continuous. Here FXn(t) and FX(t) are the cumulative
distribution functions of Xn and X, respectively.

Theorem 3.2. Suppose (Mn)n≥1, Mn ∈ Rn×n (or Cn×n) is a sequence of symmetric (or Hermit-
ian) random matrices with eigenvalues:

−1 < λ1 ≤ λ2 ≤ · · · ≤ λn < 1, λj = λj(n).

Suppose for some α ≥ β > 0, we have

nα(1−λn)→ X in distribution as n→∞,
nβ(λ1 + 1)→ Y in distribution as n→∞,

where both FX and FY are continuous and supported on [0,∞). Let b be a unit vector and fix
0 < ε < 1/2. Then

Kε(Mn,b)
α log(n/ε1/α)nα

→ 1
X

in distribution as n→∞.

Remark. Because ε is fixed, one can replace log(n/ε1/α) with log(n) in the statement of
this theorem, but in our experiments this replacement slows the rate of convergence. For
our demonstrations below, we will need to make further heuristic improvements on this
theorem to realize a sufficiently fast rate of converge, see Appendix A.

Remark. Note that we can relax the condition on λ1. If we suppose that

(1) there exists a δ > 0 such that P (λ1 ≤ 1− δ)→ 1 as n→∞, and

(2)
{
1
/
nβ(λ1 + 1)

}
is a tight family of random variables,

then the conclusion of the theorem will follow. We state the theorem in the restricted case
above because we are not aware of a distribution on matrices where this generality would
be needed. Furthermore, the conjecture in the next remark would not hold in this more
general setting.
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Remark. Although Theorem 3.2 is about Kε(Mn,b), we can state a similar theorem for
K∗ε(Mn,b). Under the setting of Theorem 3.2, for α ≥ β > 0, it is reasonable to conjecture

−K
∗
ε(Mn,b)

log(ε)nα
→max

{ 1
X
,

1
Y

}
in distribution as n→∞.

3.2. Numerical verification.

3.2.1. Independent and identially distributed eigenvalues. Let B be an n× n matrix with in-
dependent and identically distributed standard normal entries. Construct an n×nmatrix
An by

An =QΛQT ,

where Q is found by applying the QR factorization to B and

Λ = diag(λ1,λ2, . . . ,λn),

where (λi)
n
i=1 is a collection of independent and identically distributed (iid) random vari-

ables and is uniform on [−1,1]. According to [11], Q is called a Haar orthogonal matrix.
With this choice of An, it follows that ‖An‖ < 1 almost surely. Therefore, the iteration in
Theorem 2.3 converges with probability 1. Define

λmax,n = max
1≤i≤n

λi ,

λmin,n = min
1≤i≤n

λi .

Definition 3.3. Define exp(λ) to be the exponential distribution with parameter λ. The
probability density function for a random variable with distribution exp(λ) is

f (x;λ) =
{
λe−λx x ≥ 0,
0 x < 0.

Proposition 3.4. Both n(1−λmax,n) and n(1 +λmin,n) converge in distribution to exp(1/2) as
n→∞.

Proof. We only show that n(1 − λmax,n)→ exp(1/2) in distribution as n→ ∞. The proof
that n(1 +λmin,n)→ exp(1/2) in distribution as n→∞ follows similarly. When λ ≥ 0, we
have

P(λmax,n ≤ λ) = P(λ1 ≤ λ,λ2 ≤ λ, . . . ,λn ≤ λ)

=
n∏
i=1

P(λi ≤ λ)

=
(λ+ 1

2

)n
.
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Figure 1. Most of the values of Kε(An,b) assemble on the left of the plot.
When comparing the abscissas of these four plots, we see that as n becomes
larger, the range of the values Kε(An,b) can achieve also becomes larger.

Define Λmax,n := n(1−λmax,n), we have

P

(
Λmax,n ≤ λ

)
= P

(
n(1−λmax,n) ≤ λ

)
= 1−P

(
λmax,n < 1− λ

n

)
= 1−

1 +
−λ2
n

n .
Since ex = limn→∞ (1 + x/n)n, limn→∞P(Λmax,n ≤ λ) = 1 − e−λ/2. When λ < 0, by a similar
argument, limn→∞P(Λmax,n ≤ λ) = 0. Therefore, n(1−λmax,n)→ exp(1/2) in distribution
as n→∞. �

By Theorem 3.2, with α = β = 1 and X,Y ∼ exp(1/2), we have

Kε(An,b)
n log(n/ε)

→ 1
X

in distribution as n → ∞. Fix ε = 10−3, Figure 1 shows the distribution of Kε(An,b)
for different values of n. Each plot has 103 samples. To verify the main theorem, it is
equivalent to see if

n log(n/ε)
Kε(An,b)

→ X

in distribution as n→∞. Figure 2 shows this convergence. Each plot has 103 samples. In

fact, if we decompose (n log(n/ε))
/
Kε(An,b), we find that it involves a term that impedes

the speed of convergence. Thus, the convergence in Figure 2 is quite slow. However, we
can improve the speed of convergence. See Appendix A.
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Figure 2. The distribution of (n log(n/ε))
/
Kε(An,b) becomes flatter as n

becomes larger, which converges to the probability density function for
X ∼ exp(1/2). This is a verification of Theorem 3.2.

Remark. Note that if Kε(An,b) is replaced by kε(An,b), Figure 2 seems to match better for
small values of n. However, for n = 103 or larger, the distribution of the actual number of
iterations has a heavier tail than the limiting distribution X ∼ exp(1/2). This also appears
to hold for the next example.

3.2.2. Jacobi unitary ensemble. The following definition can be found in [8, pg. 111].

Definition 3.5. The Jacobi ensembles are defined as the family of eigenvalue probability
density functions proportional to

N∏
j=1

(1−λj)aβ/2(1 +λj)
bβ/2

∏
1≤j<k≤N

∣∣∣λk −λj ∣∣∣β , λj ∈ [−1,1],

where λj ’s are interpreted as eigenvalues, a,b,N are positive integers and β = 1,2, or 4.
When β = 2 these are referred to as the Jacobi unitary ensembles.

Let A = v∗v,B = w∗w, where v and w are n1 × n and n2 × n random matrices with en-
tries that are independent and identically distributed standard complex normal random
variables. By Proposition 3.6.1 in [8, pg. 111] and Definition 3.5, we know that the eigen-
values x1,x2, · · · ,xn of the matrix V = (A+B)−1/2A(A+B)−1/2 have the joint density function
proportional to the probability density function presented in Definition 3.5 with

N = n, λj = 1− 2xj , a = n1 −n, b = n2 −n, β = 2.

To verify Theorem 3.2, we will therefore focus onWn = I −2V , where V = (A+B)−1/2A(A+
B)−1/2. We can express the eigenvalue correlations of Wn near 1 in terms of the Bessel
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kernel [10, pg. 1576]

Jα(u,v) =
Jα(
√
u)
√
vJ ′α(
√
v)− Jα(

√
v)
√
uJ ′α(
√
u)

2(u − v)
,

where u,v ≥ 0 and Jα is the usual Bessel function of the first kind and of order α [13]. Let
Jα,s be the integral operator with kernel Jα(u,v) acting on L2(0, s). Then by Corollary 1.2
in [10, pg. 1578], for s > 0, we have

Pn

(
1− s

2n2 ,1
)
→ det

(
I − Jα,s

)
as n → ∞, where Pn(a,b) is the probability that there are no eigenvalues in the interval
(a,b) ⊂ (−1,1) and det

(
I − Jα,s

)
is the Fredholm determinant (see, for example, [1]). By

definition, we have

Pn

(
1− s

2n2 ,1
)

= P

(
λn ≤ 1− s

2n2

)
= P

(
n2(1−λn) ≥ s

2

)
.

Therefore,

P

(
n2(1−λn) ≤ s

2

)
→ 1−det

(
I − Jα,s

)
as n→∞. Let t = s/2, we can rewrite it as

P

(
n2(1−λn) ≤ t

)
→ 1−det

(
I − Jα,2t

)
as n→∞. Similarly, we also have

P

(
n2(λ1 + 1) ≤ t

)
→ 1−det

(
I − Jα,2t

)
as n→∞. Therefore, the assumptions of Theorem 3.2 are satisfied with α = β = 2. Let
n1 = n2 = n + 2. Figure 3 shows the global eigenvalue distribution of Wn for different
values of n. Each plot has 103 samples. Consider a quadrature rule [9, pg. 175]∫ 1

−1
f (x)dx ≈

n∑
j=1

f (xj)wj ,

where wj ’s are discrete weights and xj ’s are the nodes. By a linear transformation, we find∫ 2t

0
f (x)dx ≈

n∑
j=1

f
(
t(1 + xj)

)(
twj

)
. (1)

We use Gauss-Legendre quadrature [9]. We calculate the Bessel kernel Jα(u,v) by apply-
ing

J ′α(x) = Jα−1(x)− α
x
Jα(x)

and

J ′′α (x) = J ′α−1(x)− α
x
J ′α(x) +

α

x2 Jα(x)

where the last formula is required when u = v. Then using the algorithm for calculat-
ing the Fredholm determinant from [1, pg. 874] along with (1), we evaluate the Fred-
holm determinant and compute the cumulative distribution function 1 − det

(
I − Jα,2t

)
.
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Figure 3. We can see that most of the eigenvalues assemble near −1 and 1
and within a small neighbourhood around 0, the distribution of the eigen-
values is almost uniform.

Figure 4. As n becomes larger, the distribution of n2(1 − λn) converges to
the probability density function of 1−det

(
I − Jα,2t

)
. This is a verification of

Corollary 1.2 in [10, pg. 1578].

Figure 4 shows the distribution of n2(1 − λn) for different values of n and the probabil-
ity density function of 1 − det

(
I − Jα,2t

)
, found using a central difference. Each plot has

103 samples. The case for n2(λ1 + 1) is similar. Now, we are ready to plot the distribu-
tion of Kε(Wn,b). Fix ε = 10−3, Figure 5 shows the distribution of Kε(Wn,b) for different
values of n. Each plot has 103 samples. Like the previous example, we want to see if
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Figure 5. Like Figure 1, the values of Kε(Wn,b) assemble on the left of the
plot and as n becomes larger, the range of the values Kε(Wn,b) can achieve
becomes larger.

Figure 6. As n increases, the distribution of
(
2n2 log(n/

√
ε)

)/
Kε(Wn,b) con-

verges to the probability density function of 1−det
(
I − Jα,2t

)
.

(
2n2 log(n/

√
ε)

)/
Kε(Wn,b) converges in distribution as n→∞. Figure 6 shows this con-

vergence. Each plot has 103 samples.
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4. Lemmas and the proof of Theorem 3.2

In this section, we will first prove some lemmas and then prove the main theorem based
on these lemma.

Lemma 4.1. Suppose Mn is a n×n symmetric matrix with eigenvalues

−1 < λ1 ≤ λ2 ≤ · · · ≤ λn < 1.

Then ∥∥∥∥∥∥∥(I −Mn)−1 −
k∑
i=0

M i
n

∥∥∥∥∥∥∥ = max
{
|λ1|k

|1−λ1|
,
|λn|k

|1−λn|

}
.

Proof. By Lemma 2.2,∥∥∥∥∥∥∥(I −Mn)−1 −
k∑
i=0

M i
n

∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥
∞∑
i=k

M i
n

∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥Mk
n

∞∑
i=0

M i
n

∥∥∥∥∥∥∥ .
We decompose Mn as Mn =UΛUT , where Λ is a diagonal matrix formed from the eigen-
values of Mn and U is a unitary matrix. Thus,∥∥∥∥∥∥∥Mk

n

∞∑
i=0

M i
n

∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥∥∥∥

λk1

1−λ1
. . . 0

...
. . .

...

0 . . . λkn
1−λn


∥∥∥∥∥∥∥∥∥∥∥ = max

{
|λ1|k

|1−λ1|
, · · · , |λn|

k

|1−λn|

}
.

Suppose −1 < λ1 ≤ · · · ≤ λm−1 ≤ 0 ≤ λm ≤ · · · ≤ λn < 1. Consider λi , where i = m, · · · ,n.
Since such λi ’s are all positive and less than 1, we have |λi |k/ |1 − λi | = λki / (1−λi). Note
that λki / (1−λi) is a strictly increasing function of λi ∈ (0,1) for any positive integer k, we
have

max
{
|λm|k

|1−λm|
, · · · , |λn|

k

|1−λn|

}
=
|λn|k

|1−λn|
.

Now, consider λi , where i = 1, · · · ,m − 1. We want to show that |λi |k/ |1 − λi | is a strictly
decreasing function of λi ∈ (−1,0). Note that it is equivalent to show that λki / (1 +λi) is a
strictly increasing function of λi ∈ (0,1). Let g(λi) = λki / (1 +λi) and compute

g ′(λi) =
kλk−1

i (1 +λi)−λki
(1 +λi)2

=
kλki −λ

k
i + kλk−1

i

(1 +λi)2 > 0.

Therefore, |λi |k/ |1−λi | is a strictly decreasing function of λi ∈ (−1,0), and we have

max
{
|λ1|k

|1−λ1|
, · · · , |λm−1|k

|1−λm−1|

}
=
|λ1|k

|1−λ1|
.
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Therefore, we conclude∥∥∥∥∥∥∥(I −Mn)−1 −
k∑
i=0

M i
n

∥∥∥∥∥∥∥ = max
{
|λ1|k

|1−λ1|
,
|λn|k

|1−λn|

}
.

�

Lemma 4.2. Let3 f ,g : R+ → R+ be strictly decreasing continuous functions such that their
graphs intersect at most once. Define

h(x) = max {f (x), g(x)} .
Then

h−1(y) = max
{
f −1(y), g−1(y)

}
,

min
x∈R+

max{f (x), g(x)} ≤ y ≤max
x∈R+

max{f (x), g(x)}.

Proof. Consider the case where their graphs intersect once. Without loss of generality,
assume f (x∗) = g(x∗), x∗ > 0, and when x ≤ x∗, g(x) ≥ f (x); when x ≥ x∗, f (x) ≥ g(x).
Therefore, by the definition of h(x), we have

h(x) =
{
g(x), x ≤ x∗

f (x), x ≥ x∗

As a result, we get

h−1(y) =
{
g−1(y), y ≥ f (x∗)
f −1(y), y ≤ f (x∗)

Since both f ,g are strictly decreasing functions, f −1, g−1 are also strictly decreasing func-
tions. If x ≤ x∗, then f (x) ≤ g(x). Therefore, g−1(f (x)) ≥ x = f −1(f (x)). In other words, if
y = f (x) and x ≤ x∗, we have y = f (x) ≥ f (x∗) and f −1(y) ≤ g−1(y). Similarly, if x ≥ x∗, then
f (x) ≥ g(x). Therefore, g−1(f (x)) ≤ x = f −1(f (x)). In other words, if y = f (x) and x ≥ x∗, we
have y = f (x) ≤ f (x∗) and g−1(y) ≤ f −1(y). Thus, we have

h−1(y) = max
{
f −1(y), g−1(y)

}
.

If their graphs do not intersect, without loss of generality, assume f (x) > g(x), x > 0. Then

h(x) = f (x) = max {f (x), g(x)} .

Therefore, f −1(g(x)) > x = g−1(g(x)). In other words, if y = g(x), we have f −1(y) > g−1(y).
Thus,

h−1(y) = f −1(y) = max
{
f −1(y), g−1(y)

}
.

�

Based on Lemma 4.1, to find an expression for Kε, set both |λ1|k/ |1−λ1| and |λn|k/ |1−λn|
equal to ε.

3
R+ = [0,∞).
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Definition 4.3. Define

k1 =
logε+ log |1−λ1|

log |λ1|
,

kn =
logε+ log |1−λn|

log |λn|
.

Based on Lemma 4.2,

Kε(Mn) = max
{

logε+ log |1−λ1|
log |λ1|

,
logε+ log |1−λn|

log |λn|

}
+ σ

= max {k1, kn}+ σ,

where4 σ =
⌈
max{k1, kn}

⌉
−max{k1, kn}.

Definition 4.4. A sequence (Xn)n≥0 of random variables converge to zero in probability
if for every ε > 0

lim
n→∞

P(|Xn| > ε) = 0.

Lemma 4.5. Suppose a sequence (Xn)n≥0 of random variables converge in distribution to a ran-
dom variable X. Suppose further that another sequence (Yn)n≥0 of random variables converge
in probability to 0. Then XnYn converges in probability to 0.

Proof. We want to show that limn→∞P(|XnYn| > ε) = 0 for every ε > 0. The cumulative
distribution function of X has an, at most, countable number of discontinuities. We can
choose (δk)k≥1, where δk ∈ (0,1/k) and k ≥ 1 as the sequence converging to 0 such that
for all k, ε/δk is a point of continuity for F|X |. This is possible since X/ε has an, at most,
countable number of discontinuities. We have

P(|XnYn| > ε) = P(|XnYn| > ε, |Yn| ≤ δk) +P(|XnYn| > ε, |Yn| > δk).
Given that |XnYn| > ε and |Yn| ≤ δk, we have |Xn| > ε/δk. Since P(|XnYn| > ε, |Yn| > δk) ≤
P(|Yn| > δk), we have

P(|XnYn| > ε) ≤ P

(
|Xn| >

ε
δk

)
+P(|Yn| > δk).

Since ε/δk is a point of continuity we know that limn→∞P(|Yn| > δk) = 0, we have for all k

limsup
n→∞

P(|XnYn| > ε) ≤ limsup
n→∞

P

(
|Xn| >

ε
δk

)
= P

(
|X | > ε

δk

)
.

By taking δk→ 0+ along (δk)k≥1, we have

lim
n→∞

P(|XnYn| > ε) = 0.

�

The following lemma is from [7, pg. 105].
4
⌈
·
⌉

here denotes the ceiling function.
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Lemma 4.6 (Converging together lemma). Suppose a sequence (Xn)n≥0 of random variables
converge in distribution to a random variable X as n → ∞. Suppose further that there is
another sequence (Yn)n≥0 of random variables such that Yn−Xn converges to zero in probability
as n→∞. Then Yn converges to X in distribution as n→∞.

Proof. Let FXn be the cumulative distribution function of Xn and FX the cumulative dis-
tribution function of X. Let x be a continuity point of FX and ε > 0. For the upper bound
on Yn,

P(Yn ≤ x) = P (Yn ≤ x, |Yn −Xn| ≤ ε) +P (Yn ≤ x, |Yn −Xn| > ε)

≤ P (Xn ≤ x+ ε) +P (|Yn −Xn| > ε) .

Since limn→∞P (|Yn −Xn| > ε) = 0 and if x+ ε is a continuity point of FX ,

P (Xn ≤ x+ ε) = FXn (x+ ε)→ FX (x+ ε)

in distribution as n→∞. Therefore,

limsup
n→∞

P (Yn ≤ x) ≤ FX(x+ ε)

for all ε such that x + ε is a continuity point of FX . Such an ε exists since FX has an, at
most, countable number of discontinuities. And indeed there must exist a sequence of
choices of ε > 0 such that ε→ 0+ along this sequence. Take ε→ 0+ along this sequence,

limsup
n→∞

P (Yn ≤ x) ≤ FX(x).

For the lower bound on Yn,

P (Xn ≤ x − ε) = P (Xn ≤ x − ε, |Yn −Xn| ≤ ε) +P (Xn ≤ x − ε, |Yn −Xn| > ε)

≤ P (Yn ≤ ε) +P (|Yn −Xn| > ε) .

If x − ε is a continuity point of FX ,

liminf
n→∞

P (Yn ≤ ε) ≥ FX(x − ε).

for all ε such that x − ε is a continuity point of FX . Such ε exists since that FX has an,
at most, countable number of discontinuities. And indeed there must exist a sequence
of choices of ε > 0 such that ε→ 0+ along this sequence. Again, take ε→ 0+ along this
sequence,

liminf
n→∞

P (Yn ≤ ε) ≥ FX(x).

These two bounds imply

lim
n→∞

P (Yn ≤ x) = FX(x).

�

Lemma 4.7. Suppose a sequence (Xn)n≥0 of random variables converge in distribution to a
random variable X as n→∞ and X,Xn > 0 almost surely. Set ρn = 1−Xn/nα and α > 0. Then

1
nα log |ρn|

converges in distribution to −1/X as n→∞.
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Proof. By Lemma 4.6, it is equivalent to show that 1/nα log |ρn| converges in probability to
−1/Xn. Let

Yn =
∣∣∣∣∣ 1
nα log |ρn|

+
1
Xn

∣∣∣∣∣ ,
then we want to show that limn→∞P(Yn > ε) = 0 for every ε > 0. Let

An =
{∣∣∣1− ρn∣∣∣ ≤ 1

2

}
=

{∣∣∣∣∣Xnnα
∣∣∣∣∣ ≤ 1

2

}
,

then by Lemma 4.5, limn→∞P(An) = 1. Therefore,

limsup
n→∞

P(Yn > ε) ≤ limsup
n→∞

P(Yn > ε,An) + limsup
n→∞

P(Yn > ε,A
c
n)

= limsup
n→∞

P(Yn > ε,An)

since limsupn→∞P(Yn > ε,Ac
n) ≤ limsupn→∞P(Ac

n) = 0. Thus, we want to show that
limsupn→∞P(Yn > ε,An) = 0. Let −1/2 ≤ x = Xn/n

α ≤ 1/2, then log |1 − x| = log(1 − x).
By Taylor’s Theorem,

log(1− x) = −x − 1
(1− ξ)2x

2,

where ξ ∈ [−1
2 ,

1
2 ]. Since f (ξ) = 1/(1− ξ)2 is a strictly increasing function of ξ, we have

|log(1− x) + x| ≤ 4x2.

Using x = Xn/nα and multiplying both sides by nα, we find∣∣∣nα logρn +Xn
∣∣∣ ≤ 4

(
X2
n

nα

)
.

When 1/2 < x ≤ 3/2, | logx| ≥ |x−1|/2. Then | logρn| ≥ |ρn −1|/2 on An since 1/2 ≤ ρn ≤ 3/2,
and we have ∣∣∣nα(logρn)Xn

∣∣∣ ≥ X2
n

2
.

Therefore on An,

Yn =
∣∣∣∣∣ 1
nα log |ρn|

+
1
Xn

∣∣∣∣∣ =
∣∣∣∣∣nα logρn +Xn
nα(logρn)Xn

∣∣∣∣∣ ≤ 4X2
n/n

α

X2
n/2

=
8
nα
,

and

limsup
n→∞

P(Yn > ε,An) ≤ limsup
n→∞

P

( 8
nα

> ε,An

)
= 0.

Thus, we conclude that

1
nα log |ρn|

→ − 1
X

in distribution as n→∞. �
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Proof of Theorem 3.2. Recall Definition 4.3:

kn =
logε+ log |1−λn|

log |λn|
.

Given that λn = 1− ξn/nα, where ξn > 0 and ξn→ X in distribution as n→∞, we have

kn =
−α logn+ logεξn

log
∣∣∣∣1− ξn

nα

∣∣∣∣ =
−α log(n/ε1/α)

log
∣∣∣∣1− ξn

nα

∣∣∣∣ +
logξn

log
∣∣∣∣1− ξn

nα

∣∣∣∣ .
Let

k̃n =
−α log(n/ε1/α)

log
∣∣∣∣1− ξn

nα

∣∣∣∣ .

By Lemma 4.7, we know that

k̃n
α log(n/ε1/α)nα

= − 1

nα log
∣∣∣∣1− ξn

nα

∣∣∣∣ → 1
X

in distribution as n→∞. Moreover, by Lemma 4.5,

logξn
α log(n/ε1/α)

→ 0

in probability as n→∞, and therefore,

k̃n − kn
α log(n/ε1/α)nα

=
logξn

α log(n/ε1/α)
·

− 1

nα log
∣∣∣∣1− ξn

nα

∣∣∣∣
→ 0

in probability as n→∞ by Lemma 4.5. Finally, by Lemma 4.6, we find

kn
α log(n/ε1/α)nα

→ 1
X

in distribution as n→∞. Similarly, in Definition 4.3, recall

k1 =
logε+ log |1−λ1|

log |λ1|
.

Given that λ1 = −1 + ξ1/n
β , where ξ1 > 0 and ξ1→ Y in distribution as n→∞, we write

k1 =
log

(
2− ξ1

nβ

)
ε

log
∣∣∣∣1− ξ1

nβ

∣∣∣∣ .
Let ζ1 = 2− ξ1/n

β , then ζ1→ 2 in probability. Thus, by Lemma 4.5, we have

logζ1ε

log(n/ε1/β)
→ 0

in probability as n→∞. By Lemma 4.7, we have
1

nβ log
∣∣∣∣1− ξnnβ ∣∣∣∣ →−

1
X
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in distribution as n→∞. Therefore,

k1

log(n/ε1/β)nβ
=

logζ1ε

log(n/ε1/β)nβ log
∣∣∣∣1− ξnnβ ∣∣∣∣

=
(

logζ1ε

log(n/ε1/β)

)
·

 1

nβ log
∣∣∣∣1− ξnnβ ∣∣∣∣

→ 0

in probability as n→∞ by Lemma 4.5. Given that α ≥ β > 0, we have

Kε(Mn)
α log(n/ε1/α)nα

= max
{

k1

α log(n/ε1/α)nα
,

kn
α log(n/ε1/α)nα

}
+

σ

α log(n/ε1/α)nα
.

Let 1/Xn := kn/α log(n/ε1/α)nα→ 1/X in distribution as n→∞ and Yn := k1/α log(n/ε1/α)nα→
0 in probability as n→∞. Fix 0 < ε < 1/2 and define

An,ε = {Yn > ε} .

We have

P

(
Yn >

1
Xn

)
= P

(
Yn >

1
Xn
,An,ε

)
+P

(
Yn >

1
Xn
,Ac

n,ε

)
.

Applying limsupn→∞ we find

limsup
n→∞

P

(
Yn >

1
Xn

)
≤ limsup

n→∞
P

(
Yn >

1
Xn
,An,ε

)
+ limsup

n→∞
P

(
Yn >

1
Xn
,Ac

n,ε

)
.

Then

limsup
n→∞

P

(
Yn >

1
Xn
,An,ε

)
≤ limsup

n→∞
P

(
An,ε

)
= 0,

and since 1/Xn→ 1/X in distribution as n→∞,

limsup
n→∞

P

(
Yn >

1
Xn

)
≤ limsup

n→∞
P

(
Yn >

1
Xn
,Ac

n,ε

)
= limsup

n→∞
P

(
1
Xn

< ε

)
≤ F1/X(ε).

Therefore, applying limε→0+ on both sides, we get

lim
ε→0+

limsup
n→∞

P

(
Yn >

1
Xn

)
≤ lim
ε→0+

F1/X(ε) = 0

since 1/X > 0 and limε→0+ F1/X(ε) = limε→0+ P (1/X ≤ ε) = 0. LetZn = Kε(Mn)
/(
α log(n/ε1/α)nα

)
and

Mn =
{
Yn >

1
Xn

}
,
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then we have

P

(∣∣∣∣∣ 1
Xn
−Zn

∣∣∣∣∣ ≤ ε) = P

(∣∣∣∣∣ 1
Xn
−Zn

∣∣∣∣∣ ≤ ε,Mn

)
+P

(∣∣∣∣∣ 1
Xn
−Zn

∣∣∣∣∣ ≤ ε,Mc
n

)
.

Applying limε→0+ limsupn→∞ on both sides, we get

lim
ε→0+

limsup
n→∞

P

(∣∣∣∣∣ 1
Xn
−Zn

∣∣∣∣∣ ≤ ε) ≤ lim
ε→0+

limsup
n→∞

P

(∣∣∣∣∣ 1
Xn
−Zn

∣∣∣∣∣ ≤ ε,Mn

)
+ lim
ε→0+

limsup
n→∞

P

(∣∣∣∣∣ 1
Xn
−Zn

∣∣∣∣∣ ≤ ε,Mc
n

)
.

Since

lim
ε→0+

limsup
n→∞

P

(∣∣∣∣∣ 1
Xn
−Zn

∣∣∣∣∣ ≤ ε,Mn

)
≤ lim
ε→0+

limsup
n→∞

P (Mn) = 0,

we get

lim
ε→0+

limsup
n→∞

P

(∣∣∣∣∣ 1
Xn
−Zn

∣∣∣∣∣ ≤ ε) ≤ lim
ε→0+

limsup
n→∞

P

(∣∣∣∣∣ 1
Xn
−Zn

∣∣∣∣∣ ≤ ε,Mc
n

)
≤ lim
ε→0+

limsup
n→∞

P (Mc
n)

= 1.

Thus, Zn and 1/Xn have the same limiting distribution. In other words,

Kε(Mn)
α log(n/ε1/α)nα

→ 1
X

in distribution as n→∞. �
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Appendix A. Improvement on speed of convergence

Following the definitions of the proof of Theorem 3.2, we know that

Kε(A,b)
/(
α log(n/ε1/α)nα

)
and kn

/(
α log(n/ε1/α)nα

)
have the same limiting distribution and recall

kn =
−α logn+ logεξn

log
∣∣∣∣1− ξn

nα

∣∣∣∣ =
−α log(n/ε1/α)

log
∣∣∣∣1− ξn

nα

∣∣∣∣ +
logξn

log
∣∣∣∣1− ξn

nα

∣∣∣∣ ,
where ε = 10−3 and ξn → exp(1/2) in distribution as n → ∞ for the example in Sec-
tion 3.2.1. By Lemma 4.7,

− 1

nα log
∣∣∣∣1− ξn

nα

∣∣∣∣ → 1
X

in distribution as n→∞. Therefore, divide kn by nα log(n/ε1/α) and factor out the term

−1
/
nα log

∣∣∣∣1− ξn
nα

∣∣∣∣ giving

kn
nα log(n/ε1/α)

= − 1

nα log
∣∣∣∣1− ξn

nα

∣∣∣∣
(
α −

logξn
log(n/ε1/α)

)
.

We can treat
(
α − logξn

/
log(n/ε1/α)

)
as a correction term and replace log(ξn) with its ex-

pectation. To get a faster convergence, we move
(
α −E [logξn]

/
log(n/ε1/α)

)
to the left

hand side and take the reciprocal to find

Z =
α log(n/ε1/α)−E [log(ξn)]

log(n/ε1/α)
·
nα log(n/ε1/α)

kn
.

For the example in Section 3.2.1, we have

Z1 =
log(n/ε)−E [log(ξn)]

log(n/ε)
·
n log(n/ε)

kn
.

Figure 7 shows the refinement. Each plot has 103 samples.
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Figure 7. The distribution of Z1 converges to the probability density func-
tion of X ∼ exp(1/2) as n becomes larger. The figure is much like Figure 2
but with a faster speed of convergence.
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