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1. Introduction

Earth’s oceans are essential in controlling global temperatures by absorbing heat and dis-
tributing it around the globe. The heat capacity of water is extremely high when com-
pared to other materials such as metals, meaning that it can absorb large amounts of
heat without resulting in much temperature change. With climate change, the oceans
have constantly been increasing in temperature, causing the melting of icecaps, changing
marine ecosystems, and the possible disruption of the ocean currents.

Ocean currents carry this extra heat throughout the entire planet, absorbing most of it
and decreasing the effect on the landmasses. This circulation, called thermohaline circu-
lation, leads warm shallow waters to flow towards the poles, cooling down and increasing
in density. These then flow into the deep ocean and flow back towards the equator, heat-
ing again and once more flowing back up to the surface, creating a “conveyor belt” move-
ment throughout the oceans, especially the Atlantic Ocean [1]. These changing ocean
currents can be modeled mathematically to predict their trends. However, this is a very
subtle and detailed process represented by a series of differential equations, combined
to form the General Circulation Models, or GCMs [2]. Generally, these models are too
complex to analyze mathematically. A more manageable alternative to work with these
complex systems is to use simplified models, such as Stommel’s two-box model [3].

2. Two Box Model

Stommel’s model consists of two vessels, one with high temperature and salinity and one
with low temperature and salinity, representing the equatorial and polar waters of the
North Atlantic Ocean, respectively [3]. In Figure 1, the two vessels are connected by an
overflow and capillary through which fluid flows with rate q, and diffusion occurring be-
tween the vessels and the surrounding tanks of constant temperature and salinity. Both
vessels are surrounded by tanks with constant salinity and temperature, separated by
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porous walls to allow for flow between the vessel and the tank adjacent to it. The change
in temperature and salinity from the two vessels can be represented by a system of differ-
ential equations, which has multiple solutions.

Figure 1. Two box model presented in Stommel’s paper [3].

Using the structure of the model shown in Figure 1, it is possible to define vessel 1 as
starting with higher temperature and salinity and vessel 2 as starting with lower tem-
perature and salinity, representing the equatorial and polar parts of the North Atlantic
Ocean respectively [3]. The surrounding tank for vessel 1 has constant salinity S and
constant temperature T , and to be able to replicate a free convective system, vessel 2 is
surrounded by a tank of constant salinity −S and constant temperature −T , which forces
a change in the water density [3]. This change in water density is what leads a convec-
tive system to be formed between the two vessels. The entire system is defined by four
different differential equations, one for each of the salinity and temperature variables.

dT1

dt
= c(T − T1)− |q|T1 + |q|T2 (1)

dT2

dt
= c(−T − T2) + |q|T1 − |q|T2 (2)

dS1

dt
= d(S − S1)− |q|S1 + |q|S2 (3)

dS2

dt
= d(−S − S2) + |q|S1 − |q|S2 (4)

The parameters c, d, and q are constants throughout these four equations, where q repre-
sents the flow between the two vessels, c is a constant for temperature, and d is a constant
for salinity, and none have specified values. The system of equations can be simplified
by combining the equations. By adding equations (1) and (2), a third equation is reached
that only depends on the sum of T1 and T2, which decays exponentially to 0. The same
behavior is observed for the salinity equations (3) and (4). This derivation was originally
performed by Stommel and is being replicated here [3].
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d(T1 + T2)
dt

= c(T − T1) + c(−T − T2)− |q|T1 + |q|T2 + |q|T1 − |q|T2 (5)

d(T1 + T2)
dt

= −c(T1 + T2) (6)

d(S1 + S2)
dt

= −d(S1 + S2) (7)

Since equations (6) and (7) decay exponentially to 0 as time approaches infinity, this
allows for the consideration of only the solutions where S1 = −S2 = S and T1 = −T2 = T .
With this, the system can be simplified further to the two differential equations below
[3].

dT
dt

= c(T − T )− 2|q|T

dS
dt

= d(S − S)− 2|q|S

To simplify these even further, they can be nondimensionalized to create a system that
only depends on two parameters, where y = T /T , x = S/S , δ = d

c , τ = ct, and λ = ( c
4ρ0αT ),

where ρ0 is the density of saltwater, based on the definition used by Stommel [3]. Also, the
parameter α represents the average thermal contraction coefficient, typically represented
with a value of α = 1.5× 10−4 deg−1.

dx
dτ

= δ(1− x)− x
λ
|y −Rx| (8)

dy

dτ
= 1− y −

y

λ
|y −Rx| (9)

The parameters λ and δ are constants, while R represents the ratio of the change in salin-
ity and the change in temperature between the two vessels [3]. This last parameter is
found from the density equation of the ocean and is defined as R = βS

αT , with α and β being
constants [3]. The parameter R can be thought as a quantification of the relation between
salinity and temperature and how they affect the flow between the vessels. The param-
eters S and T represent the temperature and salinity of the tanks that surround both
vessels. The parameter β represents the saline expansion and has a value of β = 8× 10−4

psu−1 [1]. R depends on both the variation of salinity and the temperature between the
equatorial and polar components of the North Atlantic Ocean, and in recent years has
changed significantly [4].

Another variable, called f, is defined originally by the equation f = 2q
c , and is then nondi-

mentionalized to λf = −y +Rx. It represents the direction and the intensity of the flow
between the two vessels. An overall trend can be seen for all values of f, with positive
values representing the heat flow from higher to lower temperatures area and negative
values representing the opposite flow. The positive f is related to a system where salinity
is the defining element for the capillary flow, and negative f represents that temperature
is the main element for the flow. This variation in f -values and the solutions also depends
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on R, which changes with the temperature and salinity of the ocean. The solutions of the
system of differential equations are shown below.

λf = −y +Rx

x =
1

1 + |f |δ

y =
1

1 + |f |

By solving the differential equations, three equilibrium solutions were found for the orig-
inal values of δ = 1

6 , λ = 1
5 , and R = 2, each represented by a different f -value [3]. Since

the publishing of Stommel’s paper in 1961, these parameters have been used in a large
amount of research done on this model [3, 5, 6, 7]. These were for values of −1.1, −0.30,
and 0.23, with two stable solutions at f = −1.1 and f = 0.23, represented in Figure 2(a) by
A and C, respectively, and an unstable solution at f = −0.30, represented in Figure 2(a)
by B. The f = 0.23 means that the surface flow of temperature and salinity moves from
tank 1 to tank 2, representing that the flow of heat from the higher temperature equato-
rial oceans to the colder polar oceans, which is the current state of the ocean current. The
stable equilibrium at f = −1.1 represents a current model of the ocean, where the low

(a) R = 2 (b) R = 1

(c) R = 3

Figure 2. Vector field of the system at different R-values, showing the dif-
ferent equilibrium solutions their respective R-values.
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heat, low salinity water from the poles flows towards the equator on the surface, repre-
sented by an overflow from tank 2 to tank 1. This would lead to extremely large climatic
changes, including the cooling of the planet and the changing of marine ecosystems since
the life forms would have to adapt to the colder surface water.

Each R-value has a corresponding slope field and solutions attached to it. These three
values were chosen as R = 2 corresponds to value used in the original paper by Stommel,
while R = 1 and R = 3 were chosen as examples to model what happens with the equilibria
when the value of R changes, one above and one below R = 2. For each new value for it,
a new slope field was made to examine the solutions as stable or unstable. Figure 2(a)
shows the slope field for the case of R=2, and it is possible to see two stable equilibrium
solutions with one stable node at A and one stable spiral at C. The unstable equilibrium
solution is labeled as B on the graph. Figure 2(c) shows the slope field with R=3, and it
is now possible to see that there is only one equilibrium solution, which is a stable spiral.
For the case of R=1, shown in Figure 2(b), there is again only one solution to the system
of differential equations, resulting in a stable node.

3. Resilience of the System

Resilience is the characteristic that systems can absorb an imposed change and keep work-
ing, even if in a different basin of attraction from a different equilibrium state, and two
different methods are further discussed [8, 9]. The resilience model used in this work
is the method introduced by Cessi, where the chosen way to impose a change is to start
from one of the stable equilibrium solutions and change the parameters of the system for
enough time to force the original solution to switch to the basin of attraction of the other
equilibrium solution [7]. Using this resilience model, the system of differential equations
described by (5) and (6) will be analysed by changing the value of R while maintaining
the other parameter values constant.

4. Method and Results

Starting with the system at R = 2, the coordinates of the stable spiral, which were found
to be at (0.43205,0.82028), were used as the initial condition. Then, the system was
switched to the new parameter, the new value of R, for a certain period of time. The
coordinates of where the new system was at after this time was then returned to the
original system of equations, where R = 2, and was let freely flow to see if the system
would return to the stable spiral. This process was repeated to determine the maximum
time length the system can remain with the new parameter values before it does not
return to the stable spiral once the system is switched back to R = 2, instead tending
towards the stable node. This procedure was repeated for several R values ranging from
R = 6 to R = 2.5, where R = 2.5 is the minimum value of R where a switch between
equilibrium solutions happens. The pattern observed between all of the new systems is
that the larger the difference from R = 2, the shorter time the system has before it switches
to the new equilibrium state.

Figure 3 shows the minimum time a perturbation needs to last to be able to switch be-
tween equilibrium solutions for each different value of ∆R. This result matches with the
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Figure 3. The minimum time length of a perturbation required to switch
equilibrium solutions based on the difference from R = 2.

information found by Cessi, which also showed the resilience of the system to be in the
form of a power function [7]. The larger disturbances, or variations, need much shorter
times to cause a shift between solutions.

5. Discussion and Conclusion

Recently, the temperature of the surface of the planet has increased substantially, caus-
ing the value of R to change. Climate change leads to an increase in global temperature,
which leads to ice melting. Both glaciers and sea ice have a lower salinity than seawater,
so as temperature rises and they melt, there is an increase in the amount of freshwater
present, which decreases the salinity of the ocean [1, 10]. With the increase in tempera-
ture and the decrease in salinity, the value of R decreases, leading to a weakening of the
North Atlantic current. Research done by the National Oceanic and Atmospheric Admin-
istration indicates that there has been a significant increase in ocean temperature in the
last few decades [4]. Additionally, there is evidence that the North Atlantic ocean current
is already starting to slow down [11, 12]. The data indicates that the value of R has be-
gun to decrease since temperatures are increasing due to global warming. The slowing of
the ocean currents leads to less heat being carried to the North Atlantic region, causing a
cooling of the region and a heating of the equatorial region [13].

In this paper, we have explored the response of Stommel’s model as the parameter R
changes. We observed that a sufficiently large change in R induces the model to switch
to a new steady state. We saw the system remains in the new state, even if R is returned
to its original value. We quantified the relation between the magnitude of the change in
R and amount of time that the change must be maintained to reach the tipping point.
Although this model does not lend itself to quantification of actual ocean circulation, it
illustrates the urgency of mitigating the factors leading to climate change to avoid the
possibility of tipping the Earth’s climate system to a different state from which it will be
difficult to return.
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