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Abstract. We first give simple examples of pairs of functions with constant Wronskians.
Next, we consider three differentiable (not necessarily analytic) real functions such that
their Wronskians, when taken in pairs, are constants, and show the following possibilities:
(i) constants are zero, (ii) functions are linearly dependent through those constants.

1. Introduction

For n real functions f1, ..., fn of x, that are n− 1 times differentiable on an interval I , their
Wronskian is defined by the determinant

W (f1, . . . , fn) =
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n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The Wronskian of two differentiable functions f and g is the determinant W (f ,g) =
f g ′ − gf ′. If the functions f1, ..., fn are linearly dependent, then the Wronskian vanishes.
Therefore, the functions are linearly independent on I if their Wronskian W does not van-
ish identically on I . We note the following result of Peano [5] which says that, if W = 0
for all x ∈ I , then the functions may or may not be linearly dependent. For example, the
functions x2 and x|x| have continuous derivatives and their Wronskian vanishes every-
where, but are not linearly dependent in any neighborhood of 0. It can be easily verified
that this holds more generally for functions xp and xp−1|x| for p ≥ 2. That the identical
vanishing of n analytic functions is a necessary and sufficient condition for their linear
dependence, was pointed by Peano [5] and proven by Bôcher [2].

As the identical vanishing of the Wronskian of two analytic functions implies their lin-
ear dependence, it is interesting to examine functions (not necessarily analytic) whose
Wronskians are constants (not necessarily zero). Examples of such functions in pairs are
(cosx,sinx), (ex, e−x), and (1,x). These pairs of functions are solutions of the following
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second order linear homogeneous differential equations y′′ + y = 0 (simple harmonic mo-
tion), y′′−y = 0 and y′′ = 0 respectively. This is supported by Abel’s identity (see Redheffer
and Port [7]): W ′ = −p(x)W , where W is the Wronskian of the solutions of the differential
equation y′′ + p(x)y′ + q(x)y = 0. So, if W is constant, then p(x) = 0. In this paper we
consider such functions (not necessarily analytic) with constant Wronskians and prove the
following result.

2. Main Result

Theorem 2.1. Let f ,g,h be twice differentiable functions on an interval I such that W (f ,g) =
k1, W (g,h) = k2 and W (h,f ) = k3 where k1, k2, k3 are constants. Then the following hold. (i)
k1 = k2 = k3 = 0, (ii) f ,g, and h are related by

k1h+ k2f + k3g = 0.

Remark: Case (i) of Theorem 2.1 seems pretty intriguing and does not give us any idea
as to the linear dependence or independence of the three functions, and therefore needs
further investigation. A trivial example for this possibility is f (x) = x2, g(x) = x|x| and
h(x) = −x|x| for x ∈ R. However, we could not find an example when f ,g and h would be
linearly independent.

The proof of Theorem 2.1 is based on the following lemma.

Lemma 2.2. Any three twice differentiable functions f ,g and h satisfy the identity (known as
Jacobi identity, see Arnold [1]):

W (W (f ,g),h) +W (W (g,h), f ) +W (W (h,f ), g) = 0. (1)

Though this result is known (see Lawvere [4] and Poinsot [6]), we were not aware of it dur-
ing the preparation of this article. So, we include its proof for the sake of completeness.
A direct computation shows that

W (W (f ,g),h) = f g ′h′ − gf ′h′ − hf g ′′ + hgf ′′.

Permuting f ,g,h twice in the above equation and then adding the three equations yields
equation (1), proving the lemma.

Proof Of Theorem 2.1 Using the hypothesis in Lemma 2.2 we get∣∣∣∣∣k1 h
0 h′

∣∣∣∣∣+ ∣∣∣∣∣k2 f
0 f ′

∣∣∣∣∣+ ∣∣∣∣∣k3 g
0 g ′

∣∣∣∣∣ = 0,

i.e.
k1h
′ + k2f

′ + k3g
′ = 0.

When integrated, it gives
k1h+ k2f + k3g = C, (2)

where C is an arbitrary constant. We have the following possibilities: I. k1 = k2 = k3 = 0
which implies C = 0 and corresponds to part (i) of the Theorem. II. C = 0 and one of
k1, k2, k3 is non-zero, and this corresponds to part (ii) of the Theorem. III. C , 0 which
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implies that one of k1, k2, k3 must be non-zero, so let k1 , 0. Let us pursue the possibility
III. First we note from equation (2) that

h = −k2

k1
f − k3

k1
g +

C
k1

. (3)

Substituting the value of h from (3) in the hypothesis W (h,f ) = k3 and using W (f ,g) = k1,
and then simplifying we obtain C

k1
f ′ = 0. As C , 0, we conclude that f is constant, say C1.

Here we note that C1 , 0 because if C1 = 0, there would be a conflict with k1 = 0. Next,
substituting f = C1 in W (f ,g) = k1 we find C1g

′ = k1 which integrates to

g =
k1

C1
x+C2, (4)

where C2 is an arbitrary constant. Now substituting f = C1 in W (h,f ) = k3 provides
−C1h

′ = k3. Integrating it we get

h = − k3

C1
x+C3. (5)

Finally, substituting results from (4) and (5) into W (g,h) = k2 and simplifying we see that
C3 = −k2

k1
C1 −

k3
k1
C2. Consequently, we obtain

f = C1, g =
k1

C1
x+C2,h = − k3

C1
x − k2

k1
C1 −

k3

k1
C2.

Using these values of f ,g and h in (2) shows C = 0, contradicting the possibility III. This
completes the proof. �

3. Concluding Remark

The Wronskian is a Lie bracket (as is the cross product of 3-dimensional vectors).
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