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Abstract. In this note, I study the result and proof of the classical Salem-Zygmund Theo-
rem. I apply the method to random orthogonal polynomials on the unit circle. The goal is
to find the distribution ofM, the sup norm of suitably defined random polynomial orthog-
onal on the unit circle. In my proof, I use Bernstein and Chebyshev inequalities to achieve
this goal. I find that for fixed large κ, the probability of M > κ drops significantly as the
degree n of the orthogonal polynomial grows.

1. Introduction

Eigenfunctions of discrete Schrödinger operator in mathematical physics can be rewritten
in terms of polynomials orthogonal on the unit circle. The recursion coefficients for the
latter are related to potential in the Schrödinger operator. Making the recursion coeffi-
cients random is not only a natural choice for condensed matter physics in the Anderson
model, but also related to the theory of semiconductors.

In this section, I will recall the famous Salem-Zygmund theorem and other results includ-
ing Bernstein and Chebyshev inequalities. I will also introduce orthogonal polynomials
on unit circle that will be used in my proof of the main result.

Salem-Zygmund Theorem. Consider the random trigonometric polynomial

Tn =
n∑

j=−n
aje

ijxbj , x ∈R, aj ∈C,

where bj ’s are subnormal, independent, and identically distributed random variables. Then

P

||Tn||L∞(R) ≥ 3(
n∑

j=−n
|aj |2log(Cnκ))1/2

 ≤ 2
κ
,

where C is a positive absolute constant.

∗ Corresponding author



MJUM Vol. 4 (2018-2019) Page 2

Remark. The above result comes from the book Some Random Series of Functions by Jean-
Pierre Kahane [2]. For the formal proof, see Theorem 1, page 55. The proof uses Bern-
stein’s inequality.

Bernstein’s Inequality [1]. Let p(z) =
∑n
j=0 ajz

j be a polynomial of degree at most n with
complex coefficients. Then ||p′ ||L∞(T ) ≤ n||p||L∞(T ), where T denotes the unit circle.

The Salem-Zygmund theorem is important because it gives an estimate for the distri-
bution of ||Tn||L∞(R). The probability P (||Tn||L∞(R) ≥ 3(

∑n
−n |aj |2log(Cnκ))1/2) drops signifi-

cantly if κ is large.

Chebyshev’s inequality. Let (Ω,A, P ) be a probability space and let X be a random variable.
Then for any ε > 0, P (|X | ≥ ε) ≤ E|X |r

εr provided that E|X |r <∞, 0 < r <∞.

In the next section, I will apply the method used in the Salem-Zygmund Theorem to
random orthogonal polynomials on the unit circle. I will use Bernstein’s inequality and
Chebyshev’s inequality to obtain the result.

1.1. Orthogonal polynomials on unit circle. Let D be the open unit disk, {z : |z| < 1},
in C and let µ be an arbitrary nontrivial (i.e., its support is an infinite set) probability
measure (i.e., µ is nonnegative and normalized by µ(T ) = 1) on T , the unit circle {z : |z| = 1}
parametrized by z = eiθ. Define the inner product on the Hilbert space H = L2(T ,dµ) by

〈f ,g〉µ =
∫ 2π

0
f (eiθ)g(eiθ)dµ(θ).

Because 1, z, z2, . . . are linearly independent in H, we use the Gram-Schmidt process to
define the monic orthogonal polynomials for µ byφn(z) = zn−Pn[zn], where Pn is projection
onto {1, ..., zn−1}⊥. The orthonormal polynomials are ϕn = φn

||φn||µ
. Thus, φn(z) = zn+ lower

order, and ϕn(z) = knz
n+ lower order, where kn = ||φn||−1

µ . Following the Szegő Difference

Equation, we define φ∗n, the reversed polynomial, by φ∗n(z) = znφn(1/z̄). Notice that |φn| =
|φ∗n| for z ∈ T .

Lastly, by the Szegő Recursion, for any nontrivial probability measure µ on T , we have a
sequence {aj}∞j=0 of numbers in D so thatφj+1(z) = zφj(z)− ajφ∗j(z), φ0(z) = 1,

φ∗j+1(z) = φ∗j(z)− ajzφj(z), φ∗0(z) = 1,
(1)

where |aj | < 1. Notice that the recursion is equivalent to(
φj+1
φ∗j+1

)
= Aj(z)

(
φj
φ∗j

)
,

where matrix Aj(z) =
(
z −aj
−ajz 1

)
[3]. This recursion provides a bijection between the set

{aj} ∈D∞ and the set of all nontrivial probability measures on T .
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2. Main Result

Theorem 2.1. Consider a large parameter n ∈ N,n > 1 and define the recursion coefficients
{aj} in (1) by

aj =
1√

n logn
bj , j = 0, . . . ,n,

where bj = eiβj and {βj}’s are independent random variables each uniformly distributed over
[0,2π]. Define M = ||φn(z)||L∞(T ). Then, there is a constant c such that we have a bound

P (M > κ) ≤ 2π
n(logκ−log2−c−1)

. (2)

Remark. When logκ > 1 + c+ log2, the right-hand side goes to 0 as n goes to infinity.

Remark. The choice of aj makes the uniform norm of the polynomial bounded with high
probability. Some variations of the choice of recursion coefficients is possible (for exam-
ple, some decay in n). However, the choice of aj = 1√

n logn
bj is the most natural one. It is

important to realize that without randomness, the decay one needs for the polynomial to
be bounded is much stronger: 1

n .

Proof. From recursion, we have

φ∗j+1(z) = φ∗j(z)− ajzφj(z) = φ∗j(z)− ajzφ
∗
j(z)z

j

= φ∗j(z)

1− zj+1aj
φ∗j(z)

φ∗j(z)

 = φ∗j(z)(1− z
j+1aje

−2iαj )

where z ∈ T and αj is a real-valued random variable that depends on β0, . . . ,βj−1 only.
Computing the conditional expectation and letting λ = logn, we have

|φ∗j+1|
λ = |φ∗j(1− z

j+1aje
−2iαj )|λ,

E(|φ∗j+1|
λ) = Eβ0,...,βj−1

(
|φ∗j |

λ ·E(|1− zj+1aje
−2iαj |λ|{β0, . . . ,βj−1})

)
. (3)

We plug in z = eiθ and aj = ρeiβj , where ρ = 1√
n logn

. Notice that

|1− zj+1aje
−2iαj |λ = |1− eiθ(j+1)aje

−2iαj |λ = |1− eiθ(j+1)ρeiβje−2iαj |λ

= |1− ρei(θ(j+1)−2αj+βj )|λ .

For our convenience, let ξj be a random variable, ξj = θ(j + 1)− 2αj + βj . Given αj , e
iξj is

uniformly distributed over T for all θ and j. Then, we have

|1− zj+1aje
−2iαj |λ = |1− ρeiξj |λ

and (3) implies E(|φ∗j+1|
λ) = γE(|φ∗j |

λ), γ = (2π)−1
∫ 2π

0
|1 − ρeiφ|λdφ. Iterating this identity

and using φ∗0 = 1, we get

E(|φ∗0|
λ) = 1, . . . ,E(|φ∗n+1|

λ) = γn+1 .
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Let us estimate γ . Notice that

|1− ρeiφ|λ = |(1− ρeiφ)
λ
2 |2 = |exp(

λ
2

log(1− ρeiφ))|2 = |exp(
λ
2

[(−ρeiφ) +O(ρ2)])|2

= |e−
λ
2ρe

iφ
· eO(ρ2λ)|2 = |(1− λ

2
ρeiφ +O(ρ2λ2)) · (1 +O(ρ2λ))|2

= |1− λ
2
ρeiφ|2 · (1 +O(ρ2λ2))

provided that λρ < 1. Therefore,

γ =
1

2π

∫ 2π

0
|1− λ

2
ρeiφ|2 · (1 +O(ρ2λ2))dφ

=
1 +O(ρ2λ2)

2π

∫ 2π

0
|1− λ

2
ρ(cosφ+ i sinφ)|2dφ

=
1 +O(ρ2λ2)

2π

∫ 2π

0

(
1−λρcosφ+

λ2

4
ρ2 cos2φ+

λ2

4
ρ2 sin2φ

)
dφ

= (1 +O(ρ2λ2))(1 +
1

2π
· 2π · λ

2

2
ρ2) = (1 +O(ρ2λ2))(1 +

λ2ρ2

2
) = 1 +O((λρ)2) .

Thus, if λρ < 1, then there is a constant c so that

E(|φ∗n|λ) ≤ exp(cλ2ρ2n) .

Next, we integrate over the unit circle. Recall that z = eiθ and ρ = (n logn)−1/2. Since |φ∗n|
is continuous on all variables, by Fubini’s Theorem:∫ π

−π
E|φ∗n(z)|λdθ = E

∫ π

−π
|φ∗n(z)|λdθ ≤ 2π · exp

(
cλ2

logn

)
.

The function |φ∗n| is continuous on T . Thus, M = |φ∗n(z̃)| for some z̃ = eiθ̃, θ̃ ∈ [−π,π]. Then
within some interval I containing θ̃, we must have |φ∗n(eiθ)| ≥ M

2 , ∀θ ∈ I . To get a good
bound for the length of I , first note that by Bernstein inequality, |φ∗′n (eiθ)| ≤ n ·M. Thus

|φ∗n(eiθ̃)−φ∗n(eiθ)| = |
∫ θ̃

θ
φ∗
′
n (eiθ)dθ| ≤

∫ θ̃

θ
|φ∗

′
n (eiθ)|dθ ≤ n ·M · |θ̃ −θ| .

We choose |θ̃ −θ| ≤ 1
2n , |I | = 1

n , then |φ∗n(eiθ)| ≥ M
2 , θ ∈ I and

1
n

(M
2

)λ
≤

∫
I
|φ∗n(z)|λdθ ≤

∫ π

−π
|φ∗n(z)|λdθ .
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Therefore,

E

(
1
n

(M
2

)λ)
≤ 2π · exp

(
cλ2

logn

)
,

E(Mλ) ≤ 2λ · 2πn · exp
(
cλ2

logn

)
.

By choosing λ = logn, we satisfy λρ =
√

logn
√
n

< 1. Then, we use Chebyshev’s Inequality to
have

P (M > κ) = P (Mλ > κλ) ≤ E(Mλ)
κλ

≤
2λ · 2πn · exp(c λ2

logn )

κλ

= exp(log(2λ · 2πn) + c logn− logn logκ)

= exp(log(2π) + (log2 + c+ 1− logκ) logn)

=
2π

n(logκ−log2−c−1)
,

which is (2). �

Remark. I used random variables with uniform distribution on the interval [0,2π]. I be-
lieve that analogous results can be obtained for other random variables.

Remark. The Main Result is analogous to the Salem-Zygmund Theorem because not only
do the statements in two theorems, i.e. P

(
||Tn||L∞(R) ≥ 3(

∑n
j=−n |aj |2log(Cnκ))1/2

)
≤ 2

κ and

P (||φn(z)||L∞(T ) > κ) ≤ 2π
n(logκ−log2−c−1) share similarity, but the proof of the Salem-Zygmund

Theorem can also be used to prove the theorem in Main Result.
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