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Abstract. The Magnetohydrodynamic (MHD) system of equations governs kinematic flu-
ids that are subjected to a magnetic field. The equation is a combination of the Navier-
Stokes equations and Maxwell’s equations. Due to the difficulty in solving the MHD sys-
tem, it has become common to study approximating modifications of the equations, includ-
ing the MHD-α system, which regularizes the velocity field in exchange for the addition
of non-linear terms. Both the kinematic and magnetic parts of the MHD-α system have
diffusive terms which dissipate the initial energy of the system. Setting those terms equal
to zero returns the Ideal MHD-α system, and the goal of this project is to show that solu-
tions to the MHD-α system with diffusion will converge to the Ideal MHD-αsystem as the
diffusion parameters are sent to zero by adapting known results for the analogous problem
of determining when solutions to the Navier-Stokes equations will converge to a solution
of the Euler equation.

1. Introduction

The viscosity of a fluid is a measure of the internal friction between the fluid particles,
resulting in a loss of energy for the system as the particles of the fluid slide past each
other. This means a high viscosity fluid dissipates energy quickly and thus seems “thick,”
while a low viscosity fluid will loses energy slowly and so seems to flow “smoothly”.
Fluid motion is generally governed by partial differential equations. Viscous fluids are
governed by the Navier-Stokes equations, while non-viscous fluids are governed by the
Euler equation. In fact, the Navier-Stokes equations reduce to the Euler equation when
the viscosity parameter is set to zero.

The Vanishing Viscosity Problem seeks to prove that solutions of the Navier-Stokes equa-
tions will converge to the solution of Euler’s equation as the viscosity parameter is sent to
zero. Establishing the Vanishing Viscosity Problem would mean that idealized fluids with
no viscosity can be accurately approximated by fluids that have small viscosity. Though
this remains a very difficult open problem in general, there are positive results in some
special cases, particularly in the case of circularly symmetric flow (see, for example, [3]).

∗ Corresponding author
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For this project we considered a Vanishing Viscosity Problem for the Lagrangian Aver-
aged Magnetohydrodynamic (MHD-α) system, which governs diffusive fluid flow sub-
jected to magnetic fields. In general, the MHD equations are a coupled system of partial
differential equations comprised of the Navier-Stokes equations (which governs viscous
fluids) and Maxwell’s equations (which govern magnetic fields).

There is more than one modification to the MHD equations, and this is due to the fact
that our current scientific methods and tools cannot analytically compute or numerically
simulate the turbulent behavior of 3D fluids and magnetofluids. There is too large of a
range of scales of motions that need to be resolved when the Reynold’s number is high. At
times, we may only need to compute certain statistical features of the turbulence which
can be addressed by having different modifications of the MHD equations (see [2] for a
more complete discussion of this topic).

One modification to the MHD is the generalized MHD equations, which replaces the
Laplacian with “powers” of the Laplacian. Higher powers dissipate the energy in the
system faster, and in [5], the author works with this modification to prove the existence
of local classical solutions and several global regularity conditions. In [6], the authors use
the generalized MHD to show the existence of global smooth solutions.

Another modification is the Leray-α MHD equations. This version of the equation com-
bines the generalized MHD equations and a regularization of the solution originally used
by Leray. In [1], the authors show that the 2D velocity and magnetic fields solution pairs
maintained their regularity in two cases. The first case had dissipation that was logarith-
mically weaker than a full Laplacian and zero magnetic diffusion. The second case was
viscous free and had magnetic diffusion logarithmically weaker than a full Laplacian.

The modification of the MHD equations we will be studying is the MHD-α equations.
The MHD-α equations provide a closure model of turbulence in infinite channels and
pipes because the solutions have agreement with a wide range of Reynolds numbers.
This model also theoretically regularizes the underlying equation, thus making the non-
linearity milder and the solutions smoother. In addition, it avoids the unnecessary extra
dissipation of the energy of the system. See [2] for a derivation and more details on the
origins of the equation. Our goal in this project is to send the diffusion parameters in the
MHD-α to zero in a parallel fashion to the Vanishing Viscosity Problem for the Navier-
Stokes equations.

The rest of the article is organized as follows: Section 2 is a more complete introduction
which delves into the Vanishing Viscosity Problem, including a complete statement of
the main result. Section 3 defines unknown terms and builds propositions that we will
use to prove the main result in Section 4. Finally, Section 5 contains technical supporting
details.

2. Vanishing Viscosity Problems

The main goal of this section is to provide a more in-depth explanation of the Vanishing
Viscosity Problem, how it is applied to the MHD-α system, and state our main result.
We will also state the PDE’s being studied and give definitions of the various differential



MJUM Vol. 4 (2018-2019) Page 3

operators required to state those equations. But we will first provide a simple example
illustrating that taking limits of differential equations is not as easy as it seems.

To that end, we consider the differential equation

dy

dt
= ky(t). (1)

If we naively take the limit as k goes to zero, the result is

dy

dt
= lim
k→0

dy

dt
= lim
k→0

ky(t) = y(t) lim
k→0

k = 0, (2)

and the general solution to this differential equation is y(t) = C.

The actual solution to equation (1) is ỹ(t) = Cekt, which depends on k, making the calcu-
lation in (2) invalid because it assumed that y had no k dependence.

However, taking the limit of ỹ(t) as k goes to zero gives

lim
k→0

ỹ(t) = lim
k→0

Cekt = C,

which is the general solution to the incorrectly derived limit equation (2).

This simple calculation is an example of a general category of problem where we seek to
show that solutions to a differential equation which contains a parameter will converge to
the solution of the equation derived by naively taking the limit of the original equation.
In the case considered here, that parameter is a viscosity parameter and this is called a
Vanishing Viscosity Problem.

Before stating our partial differential equations, we will recall the definitions of some
differential operators. We start with two differential operators typically introduced in
Calculus III, the gradient and the Laplacian. Applied to a scalar valued function f : R2→
R, these are given by

∇f (x1,x2) =
(
∂
∂x1

f (x1,x2),
∂
∂x2

f (x1,x2)
)
,

∆f (x1,x2) =
∂

∂x2
1

f (x1,x2) +
∂

∂x2
2

f (x1,x2).

These operators can also be applied to a vector function u = (u1,u2), returning

∇u =

 ∂
∂x1
u1

∂
∂x2
u1

∂2

∂x1
u2

∂2

∂x2
u2

 , (3)

∆u = (∆u1,∆u2) .
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Now we turn to defining directional derivatives. Let u = 〈u1,u2〉 and v = 〈v1,v2〉 be vector
fields on R

2. Then

(u · ∇)v =
(
u1

∂
∂x1

+u2
∂
∂x2

)
〈v1,v2〉

=
〈(
u1

∂
∂x1

+u2
∂
∂x2

)
v1,

(
u1

∂
∂x1

+u2
∂
∂x2

)
v2

〉
=

〈(
u1
∂v1

∂x1

+u2
∂v1

∂x2

)
,

(
u1
∂v2

∂x1

+u2
∂v2

∂x2

)〉
.

These differential operators are found in the incompressible Navier-Stokes equations,
which we recall governs incompressible viscous fluids. The general form of the equa-
tion is

∂tu
ν − ν4uν + (uν · ∇)uν = ∇p,

uν(0,0) = f (x), div uν = div f = 0,

where uν : I ×M → R
n is the unknown fluid velocity field, I is a time interval, and M ⊂

R
n. The fluid pressure (which depends on uν) is given by p, ν > 0 is a constant due to

the viscosity of the fluid, and the notation uν emphasizes that the solution depends on
this choice of constant. The requirement that div u = 0 makes this the incompressible
modification of the Navier-Stokes equations.

The idealized case of a fluid with no internal friction is governed by the Euler equation,
which is

∂tu
0 + (u0 · ∇)u0 = ∇p,

u0(0) = f , div u0 = div f = 0.

Like the calculation for the simple example outlined at the beginning of the section, the
Euler equation can be obtained from the Navier-Stokes equations by taking the naive
limit of the Navier-Stokes equations as the viscosity term ν goes to zero. The goal of the
Vanishing Viscosity Problem is to prove that solutions uν to the Navier-Stokes equations
will converge to the solution of the Euler equation u0 as the viscosity ν goes to zero.

As was mentioned in the introduction, this project focuses on a generalization of the MHD
system called the Leray-α Magnetohydrodynamic (MHD-α) system. We start by stating
the MHD system which is

∂tu
ν + (uν · ∇)uν − ν4uν − (bη · ∇)bη = ∇p,

∂tb
η + (uν · ∇)bη − (bη · ∇)uν − η4bη = 0,

div u = 0, div b = 0,

u(x,0) = u0(x), b(x,0) = b0(x)

where u is fluid viscosity, b is the magnetic field, p is fluid pressure, ν ≥ 0 is kinematic
viscosity, and η ≥ 0 is magnetic diffusion. Note that setting b = 0 returns the Navier-
Stokes equations.
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The MHD-α equations are

∂tw
ν + (uν · ∇)wν −α2 (∇uν)T ∆uν − ν4wν +

1
2
∇|bη |2 = ∇p+ (bη · ∇)bη ,

∂tb
η + (uν · ∇)bη − (bη · ∇)uν − η∆bη = 0,

w = (1−α24)u,

div uν = div bη = 0,

uν(0,x) = u0(x), bη(0,x) = b0(x),

where uν : I × Rn → R
n is the fluid velocity, bη : I × Rn → R

n is the magnetic field, p
is the scalar valued fluid pressure, ν, η > 0 are constants due to kinematic viscosity and
magnetic diffusion, respectively, and α is the velocity dissipation exponent. We also recall
that |bη |2 = bη · bη and (∇uν)T is the transpose of the matrix from equation (3).

Setting α = 0 returns the standard MHD system, setting b = b0 = 0 returns the Navier-
Stokes equations, and setting ν = η = 0 returns the diffusion-free modification of the
system.

In Chapter 13, Section 6, of [4], the author considered the Vanishing Viscosity Problem
for the Navier-Stokes equations with circularly symmetric initial data in the unit ball
D = {x ∈ R2 : |x| < 1} and requiring the flow to be parallel to the boundary S1 = {x ∈ R2 :
|x| = 1} 1. Proposition 6.1 in [4] shows that, under these assumptions, the solution to the
Navier-Stokes equations is also the solution to the Heat equation2 with the same initial
and boundary conditions.

This makes the Vanishing Viscosity Problem for the Navier-Stokes equations equivalent to
the well-understood analogous problem for the Heat equation. A more precise discussion
of this is beyond the scope of this article; see Proposition 6.2 in [4] for a more details.

The main result of this paper is an adaptation of Proposition 6.1 to the MHD-α setting.
Specifically, we prove the following.

Theorem 2.1. If u0,b0 : D → R
2 are smooth, circularly symmetric, parallel to S1, and diver-

gence free, then the vanishing viscosity problem for the MHD-α system is equivalent to the
vanishing viscosity problem for the Heat equation.

The proof of this theorem is in Section 4.

3. Definitions and Supporting Results

This section contains definitions and supporting results that will be necessary to prove
Theorem 2.1. Several of these results rely on calculations that can be found in Section 5.

We begin with some vector notation. For x = 〈x1,x2〉 ∈ R2, we let x⊥ = 〈−x2,x1〉. That is,
x⊥ = Rπ/2x, recalling that Rπ/2 is counterclockwise rotation of π/2 radians. Note that x⊥

is perpendicular to x.

1Definitions of circularly symmteric flow and what it means to be parallel to the boundary will be discussed
in the next section.
2The Heat equation will be discussed in Section 3.2.
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We also say that a function f : R2 → R is radial if the value of f at each point x only
depends on the distance from that point to the origin. Abusing notation, if f is radial, we
will write f (x) = f (|x|).

Next, we recall that a vector field v is circularly symmetric if

v (Rθx) = Rθv (x) , for all x ∈D,

where θ ∈ [0,2π] and Rθ is the rotation matrix that rotates the vector x counterclockwise
θ radians.

We now state our first proposition.

Proposition 3.1. Let v be a vector field. Then v is circularly symmetric if and only if there
exists radial functions S0 and S1 such that

v (x) = S0 (|x|)x⊥ + S1 (|x|)x.

Proof. We first assume that v is circularly symmetric. Since x and x⊥ are linearly inde-
pendent, we have that v (x) = f0 (x)x⊥ + f1 (x)x, for some f0, f1 : R2→ R, and our goal is to
show that f0 and f1 must be radial.

We start by observing that

v (Rθx) = f0 (Rθx) (Rθx)⊥ + f1 (Rθx)Rθx, (4)

and
Rθv (x) = Rθf0 (x)x⊥ +Rθf1 (x)x. (5)

Equation (5) can be rearranged as

Rθv (x) = f0 (x)Rθ
(
x⊥

)
+ f1 (x)Rθx,

because f1(x) and f2(x) are scalars, and thus commute with the matrix Rθ. Since rotation
matrices commute, we have that

Rθ
(
x⊥

)
= RθRπ/2x = Rπ/2Rθx = (Rθx)⊥ , (6)

and so
Rθv (x) = f0 (x) (Rθx)⊥ + f1 (x)Rθx. (7)

Since v is circularly symmetric, equations (4) and (7) are equal to each other, and we can
conclude through linear algebra that

f1 (Rθx) = f0 (x) ,

f2 (Rθx) = f1 (x) .

By Proposition 5.1, f0 and f1 are radial, which completes this direction of the proof.

For the other direction, we first assume that

v(x) = S0(|x|)x⊥ + S1(|x|)x,

and we need to show that v(Rθx) = Rθv(x) for any θ. To begin, we have

v (Rθx) = S0 (|Rθx|) (Rθx)⊥ + S1 (|Rθx|)Rθx.
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The magnitude of a vector is not affected by rotation, so |Rθx| = |x|, and we can rewrite
the previous equation as

v (Rθx) = S0 (|x|) (Rθx)⊥ + S1 (|x|)Rθx. (8)

Next, recalling that S0(|x|) and S1(|x|) are scalars (and thus commute with Rθ), we have

Rθv (x) = RθS0 (|x|)x⊥ +RθS1 (|x|)x
= S0 (|x|)Rθx⊥ + S1 (|x|)Rθx
= S0 (|x|) (Rθx)⊥ + S1 (|x|)Rθx, (9)

where the last equality used equation (6).

Comparing equations (8) and (9) shows that

v (Rθx) = Rθv (x) ,

which completes the proposition. �

Our next result further classifies circularly symmetric vector fields subject to a boundary
condition. But first we recall that a vector field is parallel to the boundary of a region R
if the vector field is parallel to the tangent vectors of the points on the boundary.

In our case, the region R isD = {v ∈R2 : |v| ≤ 1} and so the boundary of R is the unit circle,
S1. From calculus, we know that for any y ∈ S1, the tangent vector at y is

T (y) = y⊥. (10)

Now we are ready to state our next proposition.

Proposition 3.2. Let v be a smooth divergence free circularly symmetric vector field on D and
assume v is parallel to S1. Then

v(x) = S0(|x|)x⊥,

where S0 is a smooth radial function.

Proof. Proposition 3.1 allows us to write v(x) = S0(|x|)x⊥ + S1(|x|)x for all x, and so the
proof will be completed if we show that S1(|x|) = 0 for all x ∈ D. From equation (10), we
know that for any y ∈ S1, T (y) = y⊥, and so

v (y) = S0 (|y|)y⊥.

This completes the proof for v restricted to the boundary of D. To complete the Proposi-
tion, we let x ∈ D be arbitrary. This means we have to go back to v = S0(|x|)x⊥ + S1(|x|)x.
Then by definition,

div S0(|x|)x⊥ = − ∂
∂x1

S0

(√
x2

1 + x2
2

)
x2 +

∂
∂x2

S0

(√
x2

1 + x2
2

)
x1.

By Proposition 5.2, we have

div S0(|x|)x⊥ = −
x1x2S

′
0 (|x|)
|x|

+
x2x1S

′
0 (|x|)
|x|

= 0. (11)
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Turning to the other term, we have

div S1(|x|)x = S1 (|x|) +
x2

1S
′
1 (|x|)
|x|

+ S1 (|x|) +
x2

1S
′
1 (|x|)
|x|

= 2S1 (|x|) + S ′1 (|x|) |x|. (12)

Using (11) and (12), we have that since div v = 0,

2S1 (|x|) + S ′1 (|x|) |x| = 0.

If we substitute t for |x|, this becomes the first order differential equation

2S1 (t) + S ′1 (t) t = 0,

and separating variables gives

S ′1(t)t = −2S1(t)

⇐⇒
S ′1 (t)
S1 (t)

=
−2
t

⇐⇒ 1
S1 (t)

dS1(t)
dt

=
−2
t
.

Integrating both sides gives
lnS1 (t) = −2ln t +C,

and then taking the exponential of both sides returns

S1 (t) = Ct−2.

Substituting |x| back in for t, we finally have

S1 (|x|) = C|x|−2.

Now, to find the constant C, we have to use an initial condition. We don’t know the
condition at t = 0, but we do know from the beginning of the argument that when |x| = 1,
S1 (|x|) = S1 (1) = 0, and we can use that information to solve for the constant. This gives

S1 (1) = C1−2 = 0

which requires C = 0, and that means that S1 (|x|) = 0 for all x ∈ D. This completes the
proof. �

Our next set of results involve showing that many of the nonlinear terms of the MHD-α
equations are conservative vector fields. To do so, we will rely on the just proven Propo-
sition 3.2.

3.1. Conservative Vector Fields. Before proceeding, we recall that a vector field v is con-
servative if there exists a scalar valued function p such that v = ∇p.

Proposition 3.3. Let v (x) = R (|x|)x⊥ and let u (x) = S (|x|)x⊥ for smooth R and S. Then
(u · ∇)v = (v · ∇)u = T (|x|)x for some radial function T .
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Proof. Recalling that if x = 〈x1,x2〉, then x⊥ = 〈−x2,x1〉, we have

(u · ∇)v =
(
−x2S (|x|) ∂

∂x1

+ x1S (|x|) ∂
∂x2

)
〈−R (|x|)x2,R (|x|)x1〉 .

Using the radial derivatives found in Proposition 5.2, we will substitute and distribute to
get

(u · ∇)v =
〈
− x2S (|x|)

(
−x1x2R

′ (|x|)
|x|

)
+ x1S (|x|)

(
−R (|x|)−

x2
2R
′ (|x|)
|x|

)
,

−x2S (|x|)
(
R (|x|) +

x2
1R (|x|)
|x|

)
+ x1S (|x|)

(
x1x2R

′ (|x|)
|x|

)〉
.

After simplifying, the result is

(u · ∇)v = 〈−x1S (|x|)R (|x|) ,−x2S (|x|)R (|x|)〉 = −S (|x|)R (|x|)〈x1,x2〉 = T (|x|)x,

where T is defined by the last equality. Swapping the roles of u and v in the above
calculation shows that (v · ∇)u = −R(|x|)S(|x|)x which completes the proof. �

Next, we will show that any radial function multiplied by the vector x is also a conserva-
tive vector field.

Proposition 3.4. Let f be an integrable radial function and let p(x) = −
∫ 1
|x| f (ρ)ρdρ. Then

f (|x|)x = ∇p.

Proof. Let F be the anti-derivative of f (ρ)ρ. Then

∂xip(x) = ∂xi

(
−
∫ 1

|x|
f (ρ)ρdρ

)
= ∂xi (− [F (1)−F (|x|)]) = ∂xi (F (|x|)−F (1))

=
F′ (|x|)xi
|x|

=
f (|x|) |x|xi
|x|

= f (|x|)xi ,

where we again used Proposition 5.2. So ∇p =
(
∂x1
p,∂x2

p
)

= (f (|x|)x1, f (|x|)x2) = f (|x|)x0.
�

The next result shows that the Laplacian of a circularly symmetric vector field remains
circularly symmetric. This will be important later when working with the Heat equation.

Proposition 3.5. If v (x) = S (|x|)x⊥ for a smooth S, then ∆v = R (|x|)x⊥, where R is a radial
function.
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Proof. We know that x = 〈x1,x2〉 and x⊥ = 〈−x2,x1〉. Then,

∂
∂x1

S (|x|) (−x2) =
∂
∂x1

S

(√
x2

1 + x2
2

)
(−x2)

= S ′
(√
x2

1 + x2
2

)
(−x2) · 1

2

(√
x2

1 + x2
2

)− 1
2

· 2x1

= −
x1x2S

′
(√
x2

1 + x2
2

)
√
x2

1 + x2
2

= −x1x2S
′ (|x|)
|x|

,

and
∂
∂x2

S (|x|) (−x2) =
∂
∂x2

S

(√
x2

1 + x2
2

)
(−x2)

= −x2 (x2)S ′ (|x|)
|x|

− (1)S (|x|)

= −
x2

2S
′ (|x|)
|x|

− S (|x|) .

For the second derivatives, using the quotient rule gives

∂2

∂x1
2S (|x|) (−x2) =

|x|
[
−x2S

′ (|x|)− x1x2S
′′(|x|)x1
|x|

]
− −x1x2S

′(|x|)
|x|

(
x1
|x|

)
|x|2

= −x2S
′ (|x|)
|x|

−
x2

1x2S
′′ (|x|)
|x|2

+
x2

1x2S
′ (|x|)
|x|4

,

and

∂2

∂x2
2S (|x|) (−x2) = −S

′ (|x|) (−x2)
|x|

+
|x|

[
−2x2S

′ (|x|) + (−x2
2)S ′′(|x|)x2
|x|

]
− x

2
2S
′(|x|)
|x|

(
x2
|x|

)
|x|2

= −3x2S
′ (|x|)
|x|

−
x3

2S
′′ (|x|)
|x|2

−
x3

2S
′ (|x|)
|x|4

.

Adding these two results together gives

∆S (|x|) (−x2) = −4x2S
′ (|x|)
|x|

−
x2

1x2S
′′ (|x|)
|x|2

−
x2

1x2S
′ (|x|)
|x|4

−
x3

2S
′′ (|x|)
|x|2

−
x3

2S
′ (|x|)
|x|4

= −4x2S
′ (|x|)
|x|

− S
′′ (|x|) (−x2)
|x|2

[
x2

1 + x2
2

]
− S
′ (|x|) (−x2)
|x|2

[
x2

1 + x2
2

]
= −4x2S

′ (|x|)
|x|

+ x2S
′′ (|x|)− −x2S

′ (|x|)
|x|2

.



MJUM Vol. 4 (2018-2019) Page 11

Setting

R(|x|) =
4S ′ (|x|)
|x|

− S ′′ (|x|)− −S
′ (|x|)
|x|2

,

we get
∆S (|x|) (−x2) = R (|x|) (−x2) . (13)

To compute the second entry, we need ∆S(|x|)(x1). By symmetry, this will only differ from
equation (13) by replacing x2 with x1 and removing the minus sign. So we have

∆S (|x|) (x1) =
4x1S

′ (|x|)
|x|

+ x1S
′′ (|x|) +

x1S
′ (|x|)
|x|2

= R(|x|)x1. (14)

Combining equations (13) and (14) gives

∆v = 〈R (|x|) (−x2) ,R (|x|) (x1)〉
= R (|x|)〈−x2,x1〉
= R (|x|)x⊥,

which completes the proof. �

Now we finally address the nonlinear terms unique to the MHD-α system. Because these
terms are not in the Navier-Stokes equations, these results are not adapted from the re-
sults in [4].

Lemma 3.6. Let v (x) = S (|x|)x⊥ for a smooth S. Then

∇v (1−∆)v −α2 (∇v)T ∆v = ∇p,
where p is a scalar function.

Proof. By linearity,
∇v (1−∆)v = ∇vv −∇v (∆v) ,

and so we will show that, for some scalar functions p0,p1, and p2,

∇vv = ∇p0, (15a)

−∇v (∆v) = ∇p1, (15b)

−α2 (∇v)T ∆v = ∇p2.

Setting p = p0 + p1 + p2 will then complete the proof.

Beginning with equation (15a), by Proposition 3.3, we have that

(v · ∇)v = ∇p0,

for some scalar function p0.

Turning to equation (15b), Proposition 3.5 gives that ∆v = R(|x|)x⊥, and so by Proposition
3.3 we have that

−(v · ∇)∆v =Q(|x|)x,
where Q is another radial function. Due to Proposition 3.4, we know that any radial
function multiplied with the vector x is a conservative vector field, and so

(v · ∇)∆v = ∇p1,
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for some scalar function p1.

We now turn our attention to −α2 (∇v)T 4v. Because −α2 is a constant, it will be ignored
in the following calculations for notation simplicity. By Proposition 5.3 (and recalling
that v(x) = S(|x|)x⊥), we have

(∇v)T =

 −x1x2S
′(|x|)

|x| S (|x|) + x2
1S
′(|x|)
|x|

−S (|x|) + −x
2
2S
′(|x|)
|x|

x1x2S
′(|x|)
|x|

 .
Recalling that ∆v = R(|x|)x⊥, we have

(∇v)T ∆v =

 −x1x2S
′(|x|)

|x| S (|x|) + x2
1S
′(|x|)
|x|

−S (|x|) + −x
2
2S
′(|x|)
|x|

x1x2S
′(|x|)
|x|


[
−x2R (|x|)
x1R (|x|)

]
= 〈I1, I2〉 , (16)

where

I1 =
x1x

2
2S
′ (|x|)R (|x|)
|x|

+ x1S (|x|)R (|x|) +
x3

1S
′ (|x|)R (|x|)
|x|

,

I2 = x2S (|x|)R (|x|) +
x3

2S
′ (|x|)R (|x|)
|x|

+
x2

1x2S
′ (|x|)R (|x|)
|x|

.

Then for I1 we have

I1 = x1


(
x2

1 + x2
2

)
S ′(|x|)R(|x|)
|x|

+ S(|x|)R(|x|)


= (S(|x|)R(|x|) + S ′(|x|)R(|x|)|x|)x1 =N (|x|)x1, (17)

where the last equality defines N (|x|). For I2, we have

I2 = x2

S(|x|)R(|x|) +

(
x2

1 + x2
2

)
S ′(|x|)R(|x|)
|x|

 =N (|x|)x2. (18)

Using (17) and (18) in (16) gives

(∇v)T ∆v =N (|x|)x.

Once again, because of Proposition 3.4, we can assert that N (|x|)x is conservative and
thus

α2 (∇v)T ∆v = ∇p2,

for some scalar function p2. This completes the proof. �

3.2. Heat Equation Results. The goal of this section is to establish results related to the
Heat equation, but we begin by recalling some properties of reflection operators from
linear algebra. For any unit vector ω, the operator Φω is the reflection across the line
generated by ω. The reflection matrix associated to Φω is[

cos(2θ) sin(2θ)
sin(2θ) −cos(2θ)

]
,

where θ is the angle the unit vector ω makes with the positive x-axis.
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Φω can also be defined directly. For any vector x ∈ R2, since ω and ω⊥ are linearly inde-
pendent, x can be written as x = aω+ bω⊥, where a = x ·ω and b = x ·ω⊥. Then

Φω

(
aω+ bω⊥

)
= aω − bω⊥.

Now we are ready to prove the following.

Proposition 3.7. Let ω be a unit vector in R
2 and let v be a vector field. Then v (x) = S (|x|)x⊥

if and only if v (Φωx) = −Φωv(x).

Proof. We begin by assuming v(x) = S(|x|)x⊥ and we will show that v (Φωx) = −Φωv (x).

Evaluating v at Φωx gives

v (Φωx) = S (|Φωx|) (Φωx)⊥ = S (|x|)
(
(x ·ω)ω −

(
x ·ω⊥

)
ω⊥

)⊥
, (19)

where we used the definition of Φω and that, since Φω is an isometry, S(|Φωx|) = S(|x|) for
any x.

Similarly,

−Φωv (x) = −
((
S |x|x⊥ ·ω

)
ω −

(
S |x|x⊥ ·ω⊥

)
ω⊥

)
= S (|x|)

((
−x⊥ ·ω

)
ω+

(
x⊥ ·ω⊥

)
ω⊥

)
. (20)

By Proposition 5.4, we know that(
(x ·ω)ω −

(
x ·ω⊥

)
ω⊥

)⊥
=

((
−x⊥ ·ω

)
ω+

(
x⊥ ·ω⊥

)
ω⊥

)
, (21)

and so equations (19) and (20) are equal.

Now, we will prove the other direction. We begin by assuming that v (Φωx) = −Φωv (x) ,
and we will show that v (x) = S (|x|)x⊥.We will assume that v has the form v (x) = f1 (x)x⊥+
f2 (x)x. Then we have

v (Φωx) = f1 (Φωx) (Φωx)⊥ + f2 (Φωx) (Φωx)

= f1 (Φωx)
(
(x ·ω)ω − (x ·ω⊥)ω⊥

)⊥
+ f2 (Φωx)

(
(x ·ω)ω − (x ·ω⊥)ω⊥

)
.

Next, we will look at the other side of the equality, which is

−Φωv(x) = −f1(x)Φω
(
x⊥

)
− f2(x)Φω(x)

= f1(x)
(
(−x⊥ ·ω)ω+ (x⊥ ·ω⊥)ω⊥

)
− f2(x)

(
(x ·ω)ω − (x ·ω⊥)ω⊥

)
= f1(x)

(
(x ·ω)ω −

(
x ·ω⊥

)
ω⊥

)⊥
− f2(x)

(
(x ·ω)ω − (x ·ω⊥)ω⊥

)
,

where we used equation (21). Because v(Φωx) = −Φωv(x), we can say that

f1 (Φωx) = f1(x),

f2 (Φωx) = −f2(x),
(22)

for all ω ∈ S1.
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Starting with f2, we set ω∗ = x
|x| , and we have that f2 (Φω∗x) = f2(x). By equation (22),

f2 (Φ∗ωx) = −f2(x), which means f2(x) = −f2(x) for all x, and so we conclude that f2(x) = 0,
because zero is the only number equal to its own negative.

An argument analogous to the proof of Proposition 5.1 shows that f1 is a radial function,
and this concludes the proof. �

Now we recall the incompressible Heat equation, which is given by

∂tu = 4u,
u(0,x) = u0,

div u0 = div u = 0.
(23)

We will consider this problem for u :D→R
2, with the assumption that the flow is parallel

to the boundary.

Proposition 3.8. Let u0 be circularly symmetric vector field on the unit disk, parallel to the
boundary, and divergence free. If u solves the Heat equation given in (23), then for any unit
vector ω, the vector field v(t,x) = −Φωu (t,Φωx) also solves (23).

Proof. We will first show that ∂tv = ∆v. Since partial derivatives commute with matrix
multiplication, we have

∂tv(t,x) = −Φω (∂tu) (t,Φωx) , (24)
and

∆v(t,x) = −Φω∆ (u (t,Φωx)) .

Because Φω is an orthogonal transformation, we can use Proposition 5.5 and we get

∆v(t,x) = −Φω∆ (u (t,Φωx)) = −Φω (∆u) (t,Φωx) . (25)

Since u solves the Heat equation (and thus ∂tu = 4u), equations (24) and (25) show that
∂tv = ∆v.

Next we will show that v(0,x) = u0(x). Since v(t,x) = −Φωu (t,Φωx) for any t, evaluating
at t = 0 gives

v(0,x) = −Φωu(0,Φωx) = −Φωu0(Φωx).

From Proposition 3.7, we know that u0(Φωx) = −Φωu0(x). Since Φω is its own inverse,
multiplying on each side by −Φω gives

v(0,x) = −Φωu0(Φωx) = −Φω (−Φωu0(x)) = u0(x),

which completes the argument.

A calculation showing that v is divergence free can be found in Proposition 5.6, so the
last step in the argument is proving that v is parallel to S1.

To be parallel to the boundary,

u (t,Φωx) = C (Φωx)⊥ ,

where C is a constant. If we apply −Φω to both sides, we get

−Φωu (t,Φωx) = C
[
−Φω (Φωx)⊥

]
= Cx⊥,
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which shows that both v and u are both solutions, but they are just flowing around the
boundary in different directions. �

We have the following very useful corollary.

Corollary 3.9. If u solves the Heat equation on D with circularly symmetric initial data u0
that is parallel to the boundary, then u(x) = S(|x|)x⊥ for some radial function S.

Proof. By the Existence and Uniqueness Theorem for differential equations, since u and v
from Proposition 3.8 both solve the same differential equation and have the same initial
and boundary conditions,

u(t,x) = v(t,x) = −Φωu (t,Φωx) .

Multiplying both sides by the inverse of Φω gives

Φω
−1u (t,x) = Φω

−1 (−Φωu (t,Φωx)) .

Since Φω is a reflection matrix, Φω = Φω
−1, and so we have

Φωu (t,x) = −u (t,Φωx) .

So by Proposition 3.7, this means u(x) = S(|x|)x⊥. �

4. Proof of Theorem 2.1

In this section we finally prove Theorem 2.1.

Proof. Let u0 and b0 be circularly symmetric vector fields on the unit disk, parallel to the
boundary, and divergence free. Then let (uν ,bη) be the known solution to

∂tu = ν∆u,

∂tb = η∆b,

div uν = div bη = 0,

uν(0,x) = u0(x), bη(0,x) = b0(x).

(26)

By Corollary 3.9, uν and bη are circularly symmetric. Recalling that wν = (1−α2∆)uν , we
apply (1−α2∆) to both sides of the u equation and get

∂tw
ν = ν∆wν , (27a)

∂tb
η = η∆bη . (27b)

By Lemma 3.6 and Proposition 3.3, we have that

(uν · ∇)wν −α2 (∇uν)T ∆uν = ∇p1,

(bη · ∇)bη = ∇p2,

for some scalar functions p1 and p2. This means equation (27a) is equivalent to

∂tw
ν + (uν · ∇)wν −α2 (∇uν)T ∆uν = ν∆wν + (bη · ∇)bη +∇(p1 − p2). (28)
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Again using Proposition 3.3, we have that (u ·∇)b = (b ·∇)u, and so equation (27b) becomes

∂tb
η + (uν · ∇)bη = η∆bη + (bη · ∇)uν . (29)

Combining equations (28) and (29), we have

∂tw
ν + (uν · ∇)wν −α2 (∇uν)T ∆uν +

1
2
∇|bη |2 = ν∆wν + (bη · ∇)bη +∇p,

∂tb
η + (uν · ∇)bη = η∆b+ (bη · ∇)uν ,

where we set p = p1−p2 + 1
2 |b

η |2. Since we already know uν and bη satisfy the appropriate
boundary and initial conditions, this means the pair (uν ,bη) from equation (26) are also
the solutions to the MHD-α system. �

As we discussed in Section 2, this means the Vanishing Viscosity Problem for the MHD-α
is equivalent to the Vanishing Viscosity Problem for the Heat equation. This problem is
very well understood in the context of the Heat equation, with positive known results in
many standard settings (like Sobolev spaces). More details can be found in [4].

5. Appendix: Vector Calculus Computations

This appendix includes the sometimes tedious computations we performed that would
distract from the main point of various arguments. Our first set of results involve rotation
matrices.

Proposition 5.1. Let f : R2→R. If

f (Rθx) = f (x)

for any rotation matrix Rθ, then f is a radial function.

Proof. To see this, we will shift from Cartesian coordinates to polar coordinates where
〈x1,x2〉 =

〈
r cosφ,r sinφ

〉
. Then Rθx =

〈
r cos(φ+θ), r sin(φ+θ)

〉
, and so f (x) = f (Rθx)

implies

f (r,φ) = f (r cos(φ), r sin(φ)) = f (r cos(φ+θ), r sin(φ+θ)) = f (r,φ+θ)

for any angle θ. By substituting in θ = −φ, we get f (r,φ) = f (r,0) which illustrates f is
independent of the angle of rotation. �

The next proposition details the tedious calculations for differentiating radial functions
that we use extensively in Section 3.1.

Proposition 5.2. Let S : R2→R be a radial function. Then

∂xiS(|x|) =
xiS
′(|x|)
|x|

for i = 1,2.
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Proof. Recalling that |x| =
√
x2

1 + x2
2, we have

∂
∂xi

S (|x|) =
∂
∂xi

S

(√
x2

1 + x2
2

)
= S ′

(√
x2

1 + x2
2

)
· 1

2

(√
x2

1 + x2
2

)− 1
2

· 2xi

=
xiS
′
(√
x2

1 + x2
2

)
√
x2

1 + x2
2

=
xiS
′ (|x|)
|x|

.

�

This result was used in the beginning of the proof of Lemma 3.6.

Proposition 5.3. Let v(x) = S(|x|)x⊥. Then

(∇v)T =

 −x1x2S
′(|x|)

|x| S (|x|) + x2
1S
′(|x|)
|x|

−S (|x|) + −x
2
2S
′(|x|)
|x|

x1x2S
′(|x|)
|x|

 .
Proof. We start by using equation (3) and get

∇v =

 ∂
∂x1
S (|x|) (−x2) ∂

∂x2
S (|x|) (−x2)

∂
∂x1
S (|x|) (x1) ∂

∂x2
S (|x|) (x1)

 .
Taking the derivatives gives −x1x2S

′(|x|)
|x| −S (|x|) + −x

2
2S
′(|x|)
|x|

S (|x|) + x2
1S
′(|x|)
|x|

x1x2S
′(|x|)
|x|

 .
Taking the transpose finishes the proof. �

Our next result is an exercise in linear algebra that will be useful in the proof of Proposi-
tion 3.7.

Proposition 5.4. Let x ∈R2 and ω be a unit vector. Then(
(x ·ω)ω −

(
x ·ω⊥

)
ω⊥

)⊥
=

(
−x⊥ ·ω

)
ω+

(
x⊥ ·ω⊥

)
ω⊥. (30)

Proof. Recalling that x⊥ = Rπ/2x, we have that

Rπ/2
[
(x ·ω)ω −

(
x ·ω⊥

)
ω⊥

]
=(x ·ω)Rπ/2ω −

(
x ·ω⊥

)
Rπ/2Rπ/2ω

=(x ·ω)ω⊥ −
(
x ·ω⊥

)
Rπω = (x ·ω)ω⊥ +

(
x ·ω⊥

)
ω, (31)

where we recall that RθRω = Rθ+ω and Rπ = −1.
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Now, if we compare the right side of equation (30) and the conclusion of equation (31),
the problem is completed if we show (−x⊥ ·ω) = (x ·ω⊥) and (x⊥ ·ω⊥) = (x ·ω).

For the first term, we have(
−x⊥ ·ω

)
= (RπRπ/2x ·ω) = (R3π/2x ·ω) =

(
RTπ/2x ·ω

)
= (x ·Rπ/2ω) =

(
x ·ω⊥

)
,

and for the second term we have(
x⊥ ·ω⊥

)
= (Rπ/2x ·Rπ/2ω) = (RTπ/2(Rπ/2x) ·ω) = (R3π/2(Rπ/2x) ·ω) = (R2πx ·ω) = (x ·ω),

which completes the proof. �

Our next proposition involves the Laplacian and is central to the proof of Proposition 3.8.

Proposition 5.5. Let u : R2→R and let A = (aij) be a two-by-two orthogonal matrix. Then

∆u(Ax) = (∆u) (Ax).

Proof. Setting x = 〈x1,x2〉, we have that

u(Ax) = u(a11x1 + a12x2, a21x1 + a22x2).

We will next take the ∂x1
derivative of u(Ax), and using the chain rule gives

∂x1
u(Ax) = ux1

(Ax) · a11 +ux2
(Ax) · a21.

After taking a second ∂x1
derivative, the result is

∂x1x1
u(Ax) = a2

11ux1x1
(Ax) + a11a21ux1x2

(Ax) + a21a11ux2x1
(Ax) + a2

21ux2x2
(Ax).

Similarly,

∂x2x2
u(Ax) = a2

12ux1x1
(Ax) + a12a22ux1x2

(Ax) + a22a12ux2x1
(Ax) + a2

22ux2x2
(Ax).

Adding these results, we get

∆(u(Ax)) = (a2
11 + a2

12)ux1x1
(Ax) + (2a11a21 + 2a12a22)ux1x2

(Ax) + (a2
21 + a2

22)ux2x2
(Ax). (32)

Since A is an orthogonal matrix,

a11a21 + a22a12 = 0,

a2
11 + a2

12 = 1,

a2
21 + a2

22 = 1.

So equation (32) reduces to

∆(u(Ax)) = (1)ux1x1
(Ax) + (0)ux1x2

(Ax) + (1)ux2x2
(Ax) = ux1x1

(Ax) +ux2x2
(Ax) = (∆u) (Ax),

which completes the argument. �

Our last result involves the divergence operator.

Proposition 5.6. Let u be a circularly symmetric divergence free vector field. Then Φω(u(Φωx))
is divergence free for any unit vector ω.
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Proof. We begin by recalling from (3.2) that the matrix representation of any reflection
matrix is of the form [

a b
b −a

]
.

This means
Φωx = 〈ax1 + bx2,bx1 − ax2〉 ,

and
Φωu(x1,x2) = 〈au1(x1,x2) + bu2(x1,x2),bu1(x1,x2)− au2(x1,x2)〉 ,

where u(x1,x2) = (u1(x1,x2),u2(x1,x2)).

And so we get

Φω(u(Φωx)) = 〈au1(ax1 + bx2,bx1 − ax2) + bu2(ax1 + bx2,bx1 − ax2),

bu1(ax1 + bx2,bx1 − ax2)− au2(ax1 + bx2,bx1 − ax2)〉 .

Taking the divergence of Φω(u(Φωx)) gives

div (Φω(u(Φωx))) = I + J, (33)

where
I =∂x1

(au1(ax1 + bx2,bx1 − ax2) + bu2(ax1 + bx2,bx1 − ax2)) ,

J =∂x2
(bu1(ax1 + bx2,bx1 − ax2)− au2(ax1 + bx2,bx1 − ax2)) .

By the chain rule,

I = a
(
a∂x1

u1(Φωx) + b∂x2
u1(Φωx)

)
+ b

(
b∂x1

u1(Φωx)− a∂x2
u1(Φωx)

)
,

J = b
(
a∂x1

u2(Φωx) + b∂x2
u2(Φωx)

)
− a

(
b∂x1

u2(Φωx)− a∂x2
u2(Φωx)

)
,

and so
I + J =a2∂x1

u1(Φωx) + ab∂x2
u1(Φωx) + b2∂x1

u1(Φωx)− ab∂x2
u1(Φωx)

+ ab∂x1
u2(Φωx) + b2∂x2

u2(Φωx)− ab∂x1
u2(Φωx) + a2∂x2

u2(Φωx)

=a2∂x1
u1(Φωx) + b2∂x1

u1(Φωx) + b2∂x2
u2(Φωx) + a2∂x2

u2(Φωx).

Plugging this back into equation (33), we get

div (Φω(u(Φωx))) = (a2 + b2)(∂x1
u1(Φωx) +∂x2

u2(Φωx)).

Since u is divergence free, ∂x1
u1(Φωx) +∂x2

u2(Φωx) = 0, and therefore,

div (Φωu) = a2 (0) + b2 (0) = 0.

�
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