
The Minnesota Journal of Undergraduate Mathematics

Sponsored by
School of Mathematics

University of Minnesota
Minneapolis, MN 55455

On regrouping convergent series into

absolutely convergent series.

E. Alvarez and R. Raphael

Concordia University, Montréal, Canada.
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Abstract. We demonstrate how any conditionally convergent series of real numbers can

be regrouped as an absolutely convergent series. The regrouping can be expressed using a

monotone subsequence of partial sums. The result can be extended to series of real-valued

functions under specific conditions; these cases, as well as a constructive counterexample,

are presented in detail.

1. Introduction

The study of series and sums is intertwined with Calculus, and understanding their con-
vergence is important when considering series approximation such as Taylor and Laurent
series. In the study of simple sums and of series of functions, rearrangement has perhaps
gotten more attention, due to Riemann’s Rearrangement theorem [2, Theorem 7.13]. In
terms of regrouping, very few propositions exist. This paper considers the latter, as how,
curiously, convergence may be improved through regrouping.

Absolute convergence can be advantageous in a variety of contexts. Series in themselves
have a wide range of applications, and their convergence is crucial in their study. The
difference between conditional and absolute convergence is highlighted as a condition
for applying theorems or deriving properties. For example in number theory, L-functions
have a half-plane of convergence [4, p1] and in complex analysis we study disks of con-
vergence; in both cases one has conditional convergence on the boundary while one has
absolute convergence on the interior. Were one to regroup from the boundary appropri-
ately, one could extend the area of absolute convergence. In Fourier analysis, absolute
convergence of the Fourier coefficients implies convergence of the Fourier series [6, p42].

∗ Corresponding author
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Regrouping is also used for improving convergence rates in applied mathematics, among
the tools in the theory of convergence acceleration [8, p15] which dates back as far as Eu-
ler. There are further examples of the utility of absolute convergence, such as the Cauchy
product of two convergent series converges if at least one of the series is absolutely con-
vergent. In probability, absolute convergence is required to apply the Fubini-Tonelli the-
orem [7, p207]. It is already known that regrouping cannot diminish the convergence of a
series, but our result shows how one can regroup certain conditionally convergent series
into absolutely convergent series. Conceptually, it is interesting that regrouping impacts
the convergence of a series.

1.1. Preliminaries. Recall that an infinite series,
∞∑
n=1

an is said to be convergent if the

sequence of its partial sums, denoted sn =
n∑
k=1

ak tends to a limit, say L. Formally
∞∑
n=1

an

converges to L if for all ε > 0 there exists an N such that for all n ≥ N , |sn − L| < ε. The
series is said to be absolutely convergent if the sequence of the partial sums of the series of

absolute values of each term also tends to a limit, that is if
∞∑
n=1
|an| converges. If the series

converges but is not absolutely convergent, then it is said to be conditionally convergent.
It is well known that absolute convergence implies convergence.

We define a regrouping of a convergent series by placing parentheses around a disjoint
collection of a finite number of terms of an infinite series. The new series is called a
regrouping of the original, and is related in the sense that both series converge to the
same value. We can regroup a regrouping, and thus a regrouping of a regrouping is itself
a regrouping. It can be useful to think of a regrouping as corresponding (bijectively) to a
subsequence of the sequence of partial sums of the original series.

2. Regrouping

In this section, we will make use of the following result.

Lemma 2.1. A conditionally convergent series has infinitely many positive and negative terms,
therefore if all but a finite number of its terms are of the same sign (positive or negative) then a
convergent infinite series is absolutely convergent.

Proof. In [2], Lemma 7.2 states that if
∞∑
n=1

an converges conditionally, then the sum of the

positive terms pn := |an|+an2 and the sum of the negative terms qn := |an|−an2 , both diverge. �

Theorem 2.2. Every convergent series of real numbers has an absolutely convergent regroup-
ing.
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Proof. We need to specifically show that every conditionally convergent series has an ab-

solutely convergent regrouping. Let
∞∑
n=1

an converge conditionally to A. We will consider

the sequence of its partial sums, denoted sn =
n∑
k=1

ak. Note that sn also converges to A.

Every sequence contains a nondecreasing or nonincreasing subsequence [5, p378], there-
fore without loss of generality we consider a nondecreasing subsequence of the partial
sums. Then, there exist values for n = λ1 < · · · < λt < . . . such that the subsequence of
partial sums sλ1

≤ · · · ≤ sλt ≤ . . . is monotone increasing. Now the original series can be
regrouped using this monotone subsequence of partial sums:

∞∑
n=1

an = sλ1
+ (sλ2

− sλ1
) + · · ·+ (sλp − sλ(p−1)

) + . . .

Define each term of the regrouping
∞∑
t=1

Λt as

• Λ1 = sλ1
for t = 1

• Λt = (sλt - sλ(t−1)
) for t > 1

=⇒
∞∑
n=1

an =
∞∑
t=1

Λt

Given that the subsequence of partial sums is monotone increasing, each term in the

regrouping Λt is nonnegative except potentially the first term. Therefore,
∞∑
t=1

Λt is abso-

lutely convergent by Lemma 2.1, and it defines an absolutely convergent regrouping of

the conditionally convergent series
∞∑
n=1

an. If the subsequence of partial sums is monotone

decreasing, then each term in the regrouping (except perhaps the first term) is nonposi-
tive, which also produces an absolutely convergent regrouping. �

3. Regrouping series of functions

We now consider conditionally convergent series of functions. The issue is a convergent

series such as F(x) =
∞∑
n=1

fn(x), where there exists at least one element x in the domain of F

such that
∞∑
n=1

fn(x) does not converge absolutely. We start by presenting some elementary

properties, and then several cases where such a series can be regrouped as an absolutely
convergent series are discussed. In the next section we will present a counterexample.
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3.1. Elementary Properties.

Remark. If a series is absolutely convergent, then every regrouping formed by inserting
parentheses will also be absolutely convergent.

Proof. Let
∞∑
n=1

fn be absolutely convergent, and consider an arbitrary regrouping
∞∑
m=1

gm. If

gm = (fp+fp+1+· · ·+fp+t) then |gm| ≤ |fp|+ |fp+1|+· · ·+ |fp+t |. By assumption,
∞∑
n=1
|fn| converges,

therefore
∞∑
m=1
|gm| also converges by the Comparison Test [2, p146]. �

The proofs of the following remarks are immediate.

Remark. If
∞∑
n=1

fn(x) has an absolutely convergent regrouping on a domain D, then the

series has an absolutely convergent regrouping on every subset of D.

Remark. Consider a convergent series of periodic functions fn :D→R which all have the

same period p. Then, F(x) =
∞∑
n=1

fn also has period p. Let K = D ∩ [0,p]. If
∞∑
n=1

fn has an

absolutely convergent regrouping on K , then the same regrouping yields an absolutely
convergent series on D.

Remark. Let D be a subset of the reals, E be any set, fn :D→R be a sequence of functions
and t : E→D be a surjective map. Consider the composition hn(e) = fn(t(e)) for all n ∈N,
for all e ∈ E. Then the following hold:

(1) If
∞∑
n=1

fn converges, so does
∞∑
n=1

hn

(2) If
∞∑
n=1

fn converges conditionally, absolutely or uniformly, then the same holds for

∞∑
n=1

hn

(3) If t and fn are continuous for all n, then hn is continuous for all n

Proposition 3.1. Let D ⊂ R and consider
∞∑
n=1

fn with partial sums denoted sn. Suppose there

exists a subsequence of the partial sums, {snk } such that

|snk+1
− snk | ≤Mk

for some constant Mk. Also assume
∞∑
k=1

Mk < ∞. Then,
∞∑
n=1

fn has an absolutely convergent

regrouping.
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Proof. We apply the Weierstrass M-test to the sequence {snk+1
− snk }. Then,

∞∑
k=1

(snk+1
− snk ) is

uniformly absolutely convergent, and together with sn1
defines an absolutely convergent

regrouping for
∞∑
n=1

fn following the method in Theorem 2.2. �

Remark. For the following result, it suffices that there exist a uniformly convergent re-
grouping, in other words, that there be a subsequence of partial sums that converges
uniformly. To simplify the exposition, we will assume general uniform convergence.

Theorem 3.2. Let D ⊂R, and let fn :D→R with
∞∑
n=1

fn converging uniformly to a function F

on D. Then, the series has an absolutely convergent regrouping.

Proof. We will apply Proposition 3.1, with constants Mk = 1
2k

. By uniform convergence,
there is an n1 such that

|F − sn| <
1
4

for all n ≥ n1. Again by uniform convergence, there exists an n2 > n1 such that

|F − sn| <
1
8

for all n ≥ n2. Now

|sn1
− sn2
| ≤ |sn1

−F|+ |sn2
−F| < 1

2
Without loss of generality, pick n3 > n2 such that

|F − sn3
| < 1

16
for alln ≥ n3 =⇒ |sn3

− sn2
| < 1

4

This process yields a subsequence of partial sums {snk }, with |snk+1
−snk | <

1
2k

. Since
∞∑
k=1

1
2k
→

1 then by Proposition 3.1 we can define an absolutely convergent regrouping of
∞∑
n=1

fn. �

3.2. Consequences of Theorem 3.2. Uniform convergence is very useful for regrouping
into absolute convergence. The following corollaries illustrate a range of cases where
uniform convergence is used to obtain an absolutely convergent regrouping.

Corollary 3.3. IfD is a finite set and
∞∑
n=1

fn converges to F, then it has an absolutely convergent

regrouping.

Proof. A series of functions which converges pointwise on a finite set converges uniformly.
Apply Theorem 3.2 �



MJUM Vol. 4 (2018-19) Page 6

Corollary 3.4. If D =D1∪D2, and if
∞∑
n=1

fn converges absolutely to F on D1 and uniformly on

D2 then the series has an absolutely convergent regrouping on D.

Proof. By Theorem 3.2 the series has an absolutely convergent regrouping on D2. Then,
by Lemma 3.1 we can apply that regrouping over all of D. �

Corollary 3.5. If a real-valued function has a Taylor series representation then we can regroup
it to form an absolutely convergent series on the whole interval of convergence.

Proof. Since the series converges absolutely on the open interval of convergence (c−R,c+
R), there are at most two points (the endpoints) of conditional convergence. Then, apply
3.3. �

Corollary 3.6. Suppose
∞∑
n=1

fn converges to a continuous function F on a compact set D and

that for all n, fn is monotone increasing. Then, the series has an absolutely convergent regroup-
ing.

Proof. We invoke Polya’s theorem [1, p173] which states that if we have a sequence of
monotone increasing functions gn, and if g(x) = lim

n
(gn(x)) is continuous, then the conver-

gence is uniform. Since the partial sums of a series of monotone increasing functions are

also monotone increasing, we conclude that
∞∑
n=1

fn converges to F uniformly. By Theorem

3.2 an absolutely convergent regrouping exists. �

Corollary 3.7. Given a series
∞∑
n=1

fn of measurable functions fn which converges on a set A of

finite measure, then for all ε > 0, there exists a subset B of measure ε, B ⊂ A such that the series
has an absolutely convergent regrouping on A \B

Proof. By Egorov’s theorem, the series will converge uniformly on A \B, and we conclude
by invoking Theorem 3.2. �

Corollary 3.8. Let
∞∑
n=1

fn converge to F on [a,b] with partial sums sn. If there is a subsequence

of sn that is uniformly bounded and equicontinuous, then
∞∑
n=1

fn has an absolutely convergent

regrouping.

Proof. By the Arzela-Ascoli theorem, there is a subsequence of the subsequence that con-
verges uniformly to F. Use that subsequence to define the regrouping for the series, and
apply Theorem 3.2. �
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Corollary 3.9. (Certain inner products). Given two series of functions
∞∑
n=1

fn and
∞∑
n=1

gn, their

inner product is the series
∞∑
n=1

fngn. There are natural instances when the inner product is

uniformly convergent, and hence has an absolutely convergent regrouping by Theorem 3.2. Two
cases of interest are found in Dirichlet’s Test and Abel’s Test c.f. [1, p318]. By way of contrast,

the convergent alternating series
∞∑
n=1

(−1)n 1√
n

has a divergent inner product with itself.

3.3. Regrouping via a monotone subsequence of partial sums. Although Theorem 2.2
follows from Theorem 3.2, we presented it separately partly because it was at the root
of our motivation. It involves finding an absolutely convergent regrouping specifically
through a monotone subsequence of partial sums. We will refer to such a regrouping

as the monotone case. It is clear that if a series of functions
∞∑
n=1

fn converges to F and

has a monotone subsequence of partial sums {snk }, then this sequence defines an abso-
lutely convergent regrouping by the argument of Theorem 2.2. Note that the presence
of such a monotone subsequence of partial sums does not mean that one is working in
the uniformly convergent case. There are easy examples of convergent series of functions
which can be regrouped using the method of the monotone case, but fail to be uniformly
convergent. Thus, one can sometimes regroup a series even in the absence of uniform
convergence or an adequate monotone subsequence of partial sums. The following two
results, the countable case and the Hölder case, both follow from the monotone case.

3.4. A countable domain.

Theorem 3.10. Every convergent series of functions defined on a countable domain D has an
absolutely convergent regrouping on D.

The following diagonalization argument is due to T. Kenney and G. Lukacs.

Proof. Enumerate D by N. If the series converges absolutely, then there is nothing to

show. Suppose
∞∑
n=1

fn(x) converges conditionally to F(x) for at least one x ∈N. We’ll first

find an absolutely convergent regrouping for the series evaluated at a fixed point, starting
with 1, as in Corollary 3.3 and Theorem 2.2. Let g1,m denote the absolutely convergent
regrouping of the series evaluated at 1. That is,

∞∑
n=1

fn(x) =
∞∑
m=1

g1,m(x) ∀x ∈N
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and
∞∑
m=1

g1,m(1) converges absolutely. The first term of this regrouping, g1,1 is our first

term of the regrouping for all N. We will proceed to regroup
∞∑
m=1

g1,m(2) but starting with

the second term, since we want to keep g1,1 fixed. That is, we want to find an absolutely

convergent regrouping for
∞∑
m=2

g1,m(2)

Let g2,k denote the absolutely convergent regrouping for the series evaluated at 2, past
the first fixed term. Recall that by Lemma 2.1, we don’t mind that the first term isn’t
regrouped, since it’s just a finite sum. We have

∞∑
n=1

fn(x) = g1,1(x) +
∞∑
k=1

g2,k(x) ∀x ∈N

and in particular g1,1(2) +
∞∑
k=1

g2,k(2) converges absolutely. By Lemma 3.1, we know that

g1,1(1) +
∞∑
k=1

g2,k(1) also converges absolutely. Again, we pull out the first term, g2,1 and

fix it for the whole domain. This is our second term of the regrouping for the series over

N. Next we find the absolutely convergent regrouping for
∞∑
m=3

g2,m(3). We proceed in

this manner by induction. Suppose gn−1,s is the absolutely convergent regrouping for the
series on Dn−1 = {1,2, ...,n− 1} that is,

∞∑
n=1

fn(x) = g1,1(x) + · · ·+ gn−2,1(x) +
∞∑
s=1

gn−1,s(x)

converges absolutely on Dn−1. Then, we know that there exists a regrouping gn,t such that

g1,1(x) + · · ·+ gn−1,1(x) +
∞∑
t=1

gn,t(x)

converges absolutely on Dn−1 ∪ {n}. �

3.5. Hölder continuous series of functions.

Definition 3.11. A real valued function f is said to be Hölder continuous if there exist
nonnegative K,α ∈R such that for all x,y in the domain of f ,

|f (x)− f (y)| ≤ K |x − y|α

The proofs of the following remarks are immediate.

Remark. Given two Hölder continuous functions with the same α and respective constants
K1 and K2, their sum is Hölder continuous using the same α, the associated constant will
be K = max {K1,K2} and K < K1 +K2.
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Remark. If a function fn is Hölder continuous with α and K , then |fn| is also Hölder con-
tinuous for α and K .

Proposition 3.12. Consider a convergent series of functions fn that are all Hölder continuous

on a domain D. Suppose that α is fixed for all fn and that
∞∑
n=1

Kn is finite. Then, we can find an

absolutely convergent regrouping for
∞∑
n=1

fn(x) on D.

Proof. To form an absolutely convergent regrouping with this series of functions, begin
by choosing a fixed y in D. Since a series of functions evaluated at a fixed domain point
is simply a series of real numbers, we can find an absolutely convergent regrouping at y
using Theorem 2.2. Call it

∞∑
m=1

gm(y)

Let Pm be the Hölder constants for each individual function gm. By Remark 3.5, Pm is

smaller than a finite sum of the Kn. Since
∞∑
n=1

Kn converges by our assumption, then
∞∑
m=1

Pm

also converges. Let P =
∞∑
m=1

Pm. Now we consider the regrouping gm(x) for any x ∈ D. By

the Hölder inequality,
|gm(x)− gm(y)| ≤ Pm|x − y|α

=⇒ |gm(x)| − |gm(y)| ≤ Pm|x − y|α

=⇒ |gm(x)| ≤ |gm(y)|+ Pm|x − y|α

Taking the infinite sum on both sides, we get
∞∑
m=1

|gm(x)| ≤ P |x − y|α +
∞∑
m=1

|gm(y)| (1)

Then,
∞∑
m=1
|gm(x)| is bounded for all x ∈ D, therefore

∞∑
m=1

gm(x) is an absolutely convergent

regrouping for
∞∑
n=1

fn(x) on D. �

Example 3.13. As an example, consider the clearly conditionally convergent series of
functions fn where

fn : [0,1]→R fn(x) =
x
2n

+
(−1)n+1

n
and

∞∑
n=1

x
2n

+
(−1)n+1

n
→ x+ ln(2)
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Taking α = 1 and Kn = 1
2n , fn is Hölder continuous (in fact, Lipschitz) as

∣∣∣∣∣∣ x2n − y2n +
(−1)n+1

n
− (−1)n+1

n

∣∣∣∣∣∣ ≤ 1
2n
|x − y|

Since
∞∑
n=1

1
2n → 1, we satisfy the requirement that

∞∑
n=1

Kn be finite, thus we can regroup this

series to be absolutely convergent by Proposition 3.12.

Example 3.14. Here is an example where we can use Proposition 3.2, but not Proposition
3.12 (since for n > 1, the Hölder constants associated to each fn, are Kn >

1
n ). Let D =

[1
2 ,

3
4 ] and consider first the partial sums sn(x) = (−1)nxn. Let s0 = 0. Now we define the

functions as
fn(x) = sn(x)− sn−1(x)

then
∞∑
n=1

fn(x) clearly converges uniformly to F(x) = 0 on D, with nth partial sum sn , 0 for

all x ∈D, and for all n ≥ 1.

4. Constructing a counterexample

Lemma 4.1. Given an interval [a,b] of length 2L, a term x ∈ [a,b] and a sequence of real
numbers {yn} with 0 ≤ yn ≤ L, then for all m, there are real numbers {z1, ..., zn} such that each

|zn| = yn and
(
x+

m∑
n=1

zn

)
∈ [a,b]

Proof. We proceed inductively. If x ∈ [a,a + L], we make the positive choice, z1 = y1, and
x+z1 ≤ a+2L = b. Similarly, if x ∈ [a+L,b], then we add a negative term. We can continue
this process m times, since each 0 ≤ yn ≤ L. �

The following is based on an argument suggested by P. Selinger. It uses the terms from
the harmonic series, but the result also holds working from an arbitrary conditionally
convergent series.

Theorem 4.2. There exists a convergent series of functions on a domain D such that no re-
grouping yields an absolutely convergent series on D.

Proof. First we define a set of sequences obtained from the infinite Cartesian product

A := {−1,1} ×
{−1

2
,
1
2

}
× · · · ×

{−1
n
,
1
n

}
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With the product topology, this is a Cantor space which can be embedded in R. Consider
the subset D of A, which contains all the sequences (an) which yield convergent series
∞∑
n=1

an. Define the canonical projection for each n:

fn :D→R fn((a1, a2, . . . )) = an

Clearly, by our choice of D, the series of functions
k1∑
m=1

fm((an)) converges for all (an) ∈ D.

However, there is no absolutely convergent regrouping over all D. This is shown by
contradiction. Suppose that such a regrouping did exist, and call it gs((an)) where ki

corresponds bijectively to the subsequence of partial sums of
∞∑
m=1

fm((an)) such that

g1 =
k1∑
m=1

fm((an)) g2 =
k2∑

m=k1+1

fm((an)) . . .

To arrive at a contradiction, we construct a sequence (an) in D, such that
∞∑
s=1
gs((an)) has

a regrouping
∞∑
n=1

cn which is not absolutely convergent. By Lemma 3.1, this implies that

the regrouping
∞∑
s=1
gs((an)) was not absolutely convergent either. Our construction is via a

sequence bn ∈ In, where

I1 = [1,2]

In =
[ −1
n− 1

,
−1
n

]
for n even

In =
[1
n
,

1
n− 1

]
for n odd, n ≥ 3

The first few intervals are [1,2], [−1,−1/2], [1/3,1/2]. The intervals In have length 1
n(n−1) ,

alternate from the positive to negative sides of the origin, and tend to the origin as n→∞.
We will choose (an) in order to construct a sequence (bn) of its partial sums with the
following three properties:

(1) Each bn ∈ In

(2) The last term in each bn will be the last term of gs((an)) for some s.

(3) The last term in each bn will be less or equal to 1
2n(n+1)
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Condition (2) ensures that
∞∑
n=1

cn is a regrouping of
∞∑
n=1

gs((an)), while condition (3) allows

us to invoke Lemma 4.1.

We define the bn inductively, starting with b1. Let a1 = 1. The first partial sum is inside the
interval I1 of length 1, and all subsequent terms satisfy condition (3): |an| ≤ 1

2 (for n > 1),
so we can apply Lemma 4.1 to the interval I1 where x = 1 and {y1, y2, ...} = {1/2,1/3, ...}.

The uniform regrouping has infinitely many regrouped terms, therefore there is a kp1

with the property that for all m > kp1
, |am| ≤ 1

2(1+1) = 1
4 . Now apply Lemma 4.1 to obtain

b1 = 1 + a2 + ...+ akp1
so that b1 ∈ I1. It is clear that b1 satisfies conditions (1), (2), and (3).

Suppose now that we have defined b1, ...,bn, and now define bn+1 for the inductive step.
Without loss of generality assume n is odd so that we are on the positive side of the
origin. We want to move over into In+1. We work with terms that begin where kpn ends.
By condition (3), each of those terms am ≤ 1

2n(n+1) , therefore is smaller than half the length
of In+1. A finite number of negative terms will get us close to In+1 because the harmonic
series diverges. There is no danger of “jumping past” In+1 because each term is smaller
than the length of In+1. So, there is a finite sum

st =
t∑

n=1

an ∈ In+1

Now find kpn+1
> t so thatm > kpn+1

=⇒ |am| ≤ 1
2(n+1)(n+2) , and apply Lemma 4.1 with x = st

and {y1, ..., yl} = {at+1, ...akpn+1
} to get bn+1.

Define a sequence cn by c1 = b1, cn = (bn − bn−1) for n > 1. Then,
∞∑
n=1

an = b1 + (b2 − b1) + · · · = b1 +
∞∑
n=1

(bn − bn−1) :=
∞∑
m=1

cm

∞∑
m=1

cm is a regrouping of the absolutely convergent regrouping
∞∑
s=1
gs((an)) on D, therefore

by Lemma 3.1 it should be absolutely convergent as well. However, |c1| = |b1| ≥ 1 and for
each n > 1,

|cn| = |bn − bn−1| ≥ |bn| ≥
1
n

therefore by comparison with the harmonic series,
∞∑
m=1

cm cannot converge absolutely,

although it does converge, since
∞∑
m=1

cm is a telescoping series with nth partial sum equal

to bn which goes to 0 as n→∞. We have a contradiction, therefore we conclude that the

initial regrouping
∞∑
s=1
gs((an)) was not absolutely convergent for all (an) ∈D. �



MJUM Vol. 4 (2018-19) Page 13

Remark. Given a < b, consider [a,b], a compact connected interval on the real line. We can
transfer the canonical projections fn in Theorem 4.2 from D to a subset of [a,b]. Indeed,
if D0 is the set of sequences whose canonical projections yield a series which converges
to zero, then we have a subset of [a,b] on which the series converges conditionally to the
(continuous) zero function. We can extend this series to all of [a,b] by choosing a fixed
series from D0, and applying it on [a,b]\D0. This yields a series converging conditionally
to zero on [a,b]. By 4.2, this series of functions does not have an absolutely convergent
regrouping. Note that by Theorem 3.2 these functions do not converge uniformly.

4.1. An absolutely convergent regrouping via Dini’s Theorem. We now give an exam-
ple of a series of functions which can be regrouped to be absolutely convergent, yet fails
to have a monotone subsequence of partial sums. We will invoke Dini’s theorem, which
states that a monotone increasing series of continuous functions which converges to a
continuous function on a compact space must converge uniformly.

Proposition 4.3. There exists a convergent series of functions with an absolutely convergent
regrouping, but no monotone subsequence of partial sums.

Proof. We work with the functions fn on [0,1]

fn = nx(1− x2)(n),n ∈N

as studied in [2, p168], where it is shown that fn→ 0, but not uniformly so, because their
integrals tend to 1

2 . For the same reason, no subsequence of the fn converges uniformly.

Let D be the compact set [0,1]∪ {2} and let kn be defined as follows:

k1 =

 f1 x ∈ [0,1]
1 x = 2

n > 1, kn =

 fn − fn−1 x ∈ [0,1]
(−1)n+1

n x = 2

Clearly all the kn are continuous. If sn =
n∑

m=1
km then sn = fn on [0,1] and is the nth par-

tial sum of the alternating harmonic series at 2. Thus the series
∞∑
n=1

kn converges to 0 on

[0,1], to ln(2) at 2 and is conditionally convergent. Note that it is absolutely convergent at
each point of [0,1] because the zero of kn in [0,1] lies at 1√

n+1
which means that given any

x ∈ (0,1], kn is positive for all n with only a finite number of exceptions (all but finitely
many of the 1√

n+1
lie to the right of x). Therefore all but finitely many of the fn(x)− fn−1(x)
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are negative. By Corollary 3.5,
∞∑
n=1

kn has an absolutely convergent regrouping, for exam-

ple the standard one used for the alternating harmonic series. However, no regrouping
can contain a monotone subsequence of partial sums, as then sm

∣∣∣
[0,1]

has a monotone sub-
sequence. But these partial sums are just the fn as noted above. So there would be a
monotone subsequence of the fn converging to the zero function on [0,1]. By Dini’s theo-
rem this would imply that a subsequence of the fn converges uniformly which we know
to be false. �

Remark. If one examines the (standard) regrouping of
∞∑
n=1

kn (the functions as defined

above) dictated by the alternating harmonic series,

(k1 + k2) + (k3 + k4) + . . .

and passes to their absolute values

|k1 + k2|+ |k3 + k4|+ . . .

one knows that one has convergence. Interestingly, the function to which this sum con-
verges cannot be continuous, as shown next by again invoking Dini’s Theorem.

Proposition 4.4. Let kn be continuous, and suppose
∞∑
n=1

kn converges on a compact space K .

Suppose the convergence is not uniform. Also suppose that any regrouping
∞∑
m=1

gm does not con-

verge uniformly either (this happens in our example above). If a regrouping
∞∑
m=1

gm is absolutely

convergent, then the function to which it converges cannot be continuous, yet it is continuous
on a dense subset of K .

Proof. Let
∞∑
m=1
|gm| converge to a function G. The convergence of the partial sums is ob-

viously monotone. If the limit function G is continuous, then Dini’s theorem applies
because all of the |gm| are continuous and their partial sums are continuous. This says

that
∞∑
m=1
|gm| is uniformly convergent and therefore

∞∑
m=1

gm is uniformly convergent which

is false. Therefore, G cannot be continuous. It has to be continuous on a dense subset of
K as a consequence of the Baire Category Theorem [3, p158]. �
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