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Abstract. Approximations to the integral
∫ b
a

∫ d
c
f (x,y)dy dx are obtained under the as-

sumption that the partial derivatives of the integrand are in an Lp space, for some 1 ≤
p ≤ ∞. We assume ‖fxy‖p is bounded (integration over [a,b] × [c,d]), assume ‖fx(·, c)‖p
and ‖fx(·,d)‖p are bounded (integration over [a,b]), and assume ‖fy(a, ·)‖

p
and ‖fy(b, ·)‖

p
are

bounded (integration over [c,d]). The methods are elementary, using only integration by
parts and Hölder’s inequality. Versions of the trapezoidal rule, composite trapezoidal rule,
midpoint rule and composite midpoint rule are given, with error estimates in terms of the
above norms.

1. Introduction

In this paper, we derive versions of the trapezoidal rule and midpoint rule for double in-
tegrals over finite rectangles. In order to generate an error estimate for a quadrature rule,
it is necessary to assume something about the integrand other than mere integrability.
If f is a real-valued function on the rectangle Ω = [a,b] × [c,d], then we give numerical

integration formulas for
∫ b
a

∫ d
c
f (x,y)dy dx under the assumption that the mixed partial

derivative fxy is in one of the Lebesgue spaces Lp(Ω) for some 1 ≤ p ≤ ∞. (When p =∞,
this includes the case of continuously differentiable f .) We also assume the first order par-
tial derivatives fx and fy are in an Lp space when integrated over just x or y, respectively.
The methods being presented are elementary, depending only on Hölder’s inequality and
integration by parts.

Our results are stated for Lebesgue integrals. A suitable reference is [1]. By considering f
to have continuous second partial derivatives the reader can easily transfer results to the
Riemann integral.

The basis of our method is to take φ to be a function smooth enough so that we can carry

out integration by parts on
∫ b
a

∫ d
c
fxy(x,y)φ(x,y)dy dx. If φ is chosen so that φxy = 1, then

∗ Corresponding author
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this leads to a formula relating
∫ b
a

∫ d
c
f (x,y)dydx to integrals of derivatives of f multiplied

by φ or its derivatives (Proposition 2.1). Hölder’s inequality then gives estimates of the
error in terms of Lp norms of fx, fy , and fxy . Various choices for φ lead to a double
integral version of the trapezoidal rule, composite trapezoidal rule (Section 3), midpoint
rule, and composite midpoint rule (Section 4). In Section 5, we show that when 1 < p <∞
the unique choice of φ that minimizes the error coefficient of ‖fxy‖p is the same as the
choice that gives the trapezoidal rule.

The literature on one-variable numerical integration is vast; however, the literature on
several-variable numerical integration is sparse. General overviews to the problems of
numerical approximation of multiple integrals are contained in [5, 12]. Three sources
that use the integration by parts method are Mikeladze [7], Sard [9], and Stroud [10]. We
extend the results in these papers by considering fxy ∈ Lp(Ω) for all 1 ≤ p ≤∞, by comput-
ing error estimates, and by establishing conditions under which the error is minimized.

2. Background

First we present the basic integration by parts formula that will be used throughout the
paper. Then we look at minimal conditions under which it holds.

Proposition 2.1 (Integration by Parts). Suppose f and φ are C2 functions on [a,b] × [c,d],
then ∫ b

a

∫ d

c
f (x,y)φxy(x,y)dy dx (1)

=f (a,c)φ(a,c) + f (b,d)φ(b,d)− f (a,d)φ(a,d)− f (b,c)φ(b,c) (2)

+
∫ b

a
[fx(x,c)φ(x,c)− fx(x,d)φ(x,d)]dx (3)

+
∫ d

c

[
fy(a,y)φ(a,y)− fy(b,y)φ(b,y)

]
dy (4)

+
∫ b

a

∫ d

c
fxy(x,y)φ(x,y)dy dx. (5)

The proposition is proved using integration by parts and the Fubini–Tonelli theorem. See
Proposition 2.3 below for weaker conditions under which it holds.

If we now choose φ such that φxy = 1, then (1) and (2) give a quadrature formula for∫ b
a

∫ d
c
f (x,y)dy dx with error in (3)–(5). To estimate the integrals in the error we assume

fx, fy and fxy are in Lp spaces.

What are the solutions of the partial differential equation φxy = 1? They are φ(x,y) =
xy +α(x) + β(y) where α and β are differentiable functions of one variable. We will make
different choices for α and β to derive trapezoidal and midpoint rules and also to mini-
mize the resulting error terms.
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Error estimates arise from Hölder’s inequality. We use the p-norms

‖f ‖p =
(∫ b

a

∫ d

c
|f (x,y)|p dy dx

)1/p

for 1 ≤ p <∞ and ‖f ‖∞ = esssup(x,y)∈[a,b]×[c,d]|f (x,y)| in the case p =∞. This reduces to the
maximum of |f (x,y)| when f is continuous. Also, the one-variable norms for 1 ≤ p < ∞
are

‖f (·, e2)‖p =
(∫ b

a
|f (x,e2)|p dx

)1/p

and ‖f (e1, ·)‖p =
(∫ d

c
|f (e1, y)|p dy

)1/p

where e2 ∈ [c,d] and e1 ∈ [a,b], with similar definitions when p =∞.

Denote the absolutely continuous functions on [a,b] by AC[a,b] and the absolutely con-
tinuous functions on [c,d] by AC[c,d].

If 1 < p <∞, then p and q are conjugate exponents if 1/p+1/q = 1. The pairs (p,q) = (1,∞)
and (∞,1) are also conjugate.

Proposition 2.2. Suppose f and φ satisfy the conditions of Proposition 2.3 and for some
1 ≤ p ≤ ∞ the following norms exist: ‖fxy‖p, ‖fx(·, c)‖p, ‖fx(·,d)‖p, ‖fy(a, ·)‖p, and ‖fy(b, ·)‖p.
Suppose φ(x,y) = xy +α(x) + β(y) for α ∈ AC[a,b] and β ∈ AC[c,d]. Then∫ b

a

∫ d

c
f (x,y)dy dx = f (a,c)φ(a,c) + f (b,d)φ(b,d)− f (a,d)φ(a,d)− f (b,c)φ(b,c) +E(f ,φ),

where

E(f ,φ) =
∫ b

a
[fx(x,c)φ(x,c)− fx(x,d)φ(x,d)]dx+

∫ d

c

[
fy(a,y)φ(a,y)− fy(b,y)φ(b,y)

]
dy

+
∫ b

a

∫ d

c
fxy(x,y)φ(x,y)dy dx

and

|E(f ,φ)| ≤ ‖fx(·, c)‖p‖φ(·, c)‖q + ‖fx(·,d)‖p‖φ(·,d)‖q + ‖fy(a, ·)‖p‖φ(a, ·)‖q
+‖fy(b, ·)‖p‖φ(b, ·)‖q + ‖fxy‖p‖φ‖q.

Here, p and q are conjugate exponents.

Proof. This follows from Proposition 2.1, Proposition 2.3, and Hölder’s inequality. �

Now we consider weaker conditions under which the formula in Proposition 2.1 holds.
Note that the integration by parts formula∫ b

a
f ′(x)φ(x)dx = f (b)φ(b)− f (a)φ(a)−

∫ b

a
f (x)φ′(x)dx

holds for Lebesgue integrals when f and φ are in AC[a,b]. See [1, Theorem 4.6.3].
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If fxy ∈ L1([a,b]× [c,d]) and if φ ∈ L∞([a,b]× [c,d]), then, by the Fubini–Tonelli Theorem,
the two iterated integrals equal the double integral:∫ b

a

(∫ d

c
fxy(x,y)φ(x,y)dy

)
dx =

∫ d

c

(∫ b

a
fxy(x,y)φ(x,y)dx

)
dy

=
∫ b

a

∫ d

c
fxy(x,y)φ(x,y)dy dx.

From now on we can omit the parentheses in iterated integrals. We also assume f ∈ L1(Ω).

A sufficient condition for equality fxy = fyx almost everywhere on Ω is that fx and fy exist
on Ω and fxx, fxy , fyx and fyy exist almost everywhere. This condition is due to Currier
[3]. Continuity of the mixed partial derivatives also ensures their equality everywhere.

For fixed x ∈ [a,b], we can integrate by parts to get∫ d

c
fxy(x,y)φ(x,y)dy (6)

= fx(x,d)φ(x,d)− fx(x,c)φ(x,c)−
∫ d

c
fx(x,y)φy(x,y)dy. (7)

By the Fundamental Theorem of Calculus for Lebesgue integrals, this holds if

fx(x, ·),φ(x, ·) ∈ AC[c,d] for almost all x ∈ (a,b).

We would now like to integrate (6) and (7) over x ∈ [a,b]. Since fxy ∈ L1(Ω) and φ ∈ L∞(Ω),
we know we can do this in (6). Hence, we can also do this in (7). To integrate each term
in (7) separately, we also assume fx ∈ L1(Ω) and φy ∈ L∞(Ω). We then get∫ b

a

∫ d

c
fxy(x,y)φ(x,y)dy dx =

∫ b

a
[fx(x,d)φ(x,d)− fx(x,c)φ(x,c)]dx

−
∫ b

a

∫ d

c
fx(x,y)φy(x,y)dy dx. (8)

Since fx ∈ L1(Ω) and φy ∈ L∞(Ω), the Fubini–Tonelli Theorem allows us to reverse the
integration order in (8). If f (·, y),φ(·, y) ∈ AC[a,b] for almost all y ∈ [c,d], then we can
integrate by parts:∫ b

a

∫ d

c
fx(x,y)φy(x,y)dy dx =

∫ d

c

∫ b

a
fx(x,y)φy(x,y)dxdy (9)

=
∫ d

c
[f (b,y)φy(b,y)− f (a,y)φy(a,y)]dy

−
∫ d

c

∫ b

a
f (x,y)φxy(x,y)dxdy. (10)

We have also integrated (9) and (10) over x ∈ [a,b]. This is valid under the assumptions
f ∈ L1(Ω) and φxy ∈ L∞(Ω).

These conditions are collected in the following proposition, noting that we could have
performed the initial integration by parts over x instead of over y.
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Proposition 2.3. Consider the following properties:

(i) gx ∈ L1(Ω); gx(x, ·) ∈ AC[c,d] for almost all x ∈ [a,b]; g(·, y) ∈ AC[a,b] for almost all
y ∈ [c,d],

(ii) gy ∈ L1(Ω); gy(·, y) ∈ AC[a,b] for almost all y ∈ [c,d]; g(x, ·) ∈ AC[c,d] for almost all
x ∈ [a,b].

Assume fx and fy exist on Ω such that fxx, fxy , fyx, and fyy exist almost everywhere. Then
fxy = fyx almost everywhere. Assume also that f , fxy ∈ L1(Ω) and φ,φxy ∈ L∞(Ω). Now
suppose if f satisfies (i), then φ satisfies (ii), and if f satisfies (ii), then φ satisfies (i). Then the
formula in Proposition 2.1 holds.

Note that since our rectangle is finite, we have Ls ⊂ Lr when s > r. When we write φ(x,y) =
xy+α(x)+β(y), all of the conditions on φ are satisfied when α ∈ AC[a,b] and β ∈ AC[c,d].

If we are willing to use a Riemann–Stieltjes integral, then an integration by parts formula

is
∫ b
a
f ′(x)φ(x)dx = f (b)φ(b) − f (a)φ(a) −

∫ b
a
f (x)dφ(x), provided f is continuous and φ is

of bounded variation. There is a related formula when f is merely regulated, i.e. it has
left and right limits at each point. See [6]. With this formulation, the conditions on f in
Proposition 2.3 can be weakened as long as the conditions on φ are suitably strengthened.

3. Trapezoidal Rule

For a function of one variable, a trapezoidal rule is
∫ b
a
g(x)dx = [g(a) + g(b)](b − a)/2 +

E(g), where E(g) = −
∫ b
a
g ′(x)(x − c)dx, and c is the midpoint of [a,b]. This follows from

integration by parts. See [2, Theorem 1.8]. Hölder’s inequality, then, gives the estimate

|E(g)| ≤


1
2‖g
′‖1(b − a), p = 1,

1
2 (q+ 1)−1/q ‖g ′‖p(b − a)1+1/q, 1 < p <∞,
1
4‖g
′‖∞(b − a)2, p =∞,

where, again, p and q are conjugate exponents. The estimate is sharp in the sense that
the coefficients of the norms cannot be reduced. The paper [11] shows an integration by
parts method that can be used to derive the usual trapezoidal rule when it is assumed g ′′

is bounded.

For a function of two variables, we choose φ so that f is evaluated at the four corners
of the rectangle [a,b] × [c,d]. For this we let m1 be the midpoint of [a,b], let m2 be the
midpoint of [c,d], and take φ(x,y) = (x −m1)(y −m2) = xy −m2x −m1y +m1m2 so that
α(x) = −m2x+m1m2 and β(y) = −m1y.

Theorem 3.1 (Trapezoidal Rule). Suppose f satisfies the conditions of Proposition 2.3, and
for some 1 ≤ p ≤ ∞ the following norms exist: ‖fxy‖p, ‖fx(·, c)‖p, ‖fx(·,d)‖p, ‖fy(a, ·)‖p, and
‖fy(b, ·)‖p. Then we have that∫ b

a

∫ d

c
f (x,y)dy dx=[f (a,c)+f (b,d)+f (a,d)+f (b,c)]

(b − a)(d − c)
4

+E(f ).
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If p = 1, then

|E(f )| ≤ (‖fx(·, c)‖1 + ‖fx(·,d)‖1)
(b − a)(d − c)

4
+
(
‖fy(a, ·)‖1 + ‖fy(b, ·)‖1

) (b − a)(d − c)
4

+
‖fxy‖1(b − a)(d − c)

4
.

If 1 < p <∞, then

|E(f )| ≤
(
‖fx(·, c)‖p + ‖fx(·,d)‖p

) (d − c)(b − a)2−1/p

4

(
p − 1

2p − 1

)1−1/p

+
(
‖fy(a, ·)‖p + ‖fy(b, ·)‖p

) (b − a)(d − c)2−1/p

4

(
p − 1

2p − 1

)1−1/p

+
‖fxy‖p(b − a)2−1/p(d − c)2−1/p

4

(
p − 1

2p − 1

)2(1−1/p)

.

If p =∞, then

|E(f )| ≤ (‖fx(·, c)‖∞ + ‖fx(·,d)‖∞)
(b − a)2(d − c)

8
+
(
‖fy(a, ·)‖∞ + ‖fy(b, ·)‖∞

) (b − a)(d − c)2

8

+
‖fxy‖∞(b − a)2(d − c)2

16
.

Proof. Puttingφ(x,y) = (x−m1)(y−m2) into Proposition 2.2 yields the quadrature formula.

Let ψ(t) = t. Compute the norms of ψ over [−1,1]. If 1 ≤ q <∞, then

‖ψ‖q =
(∫ 1

−1
|t|q dt

)1/q

=
(
2
∫ 1

0
tq dt

)1/q

=
(

2
q+ 1

)1/q

.

If q =∞, we have

‖ψ‖∞ = max
|t|≤1
|t| = 1.

Hölder’s inequality and a linear change of variables give∣∣∣∣∣∣
∫ b

a
fx(x,c)φ(x,c)dx

∣∣∣∣∣∣ ≤ ‖fx(·, c)‖p
(∫ b

a
|x −m1|q dx

)1/q
(d − c)

2
.

Note that (∫ b

a
|x −m1|q dx

)1/q

=
(∫ b−m1

a−m1

|x|q dx
)1/q

= ‖ψ‖q
(
b − a

2

)1+1/q

=
(b − a)1+1/q

2(q+ 1)1/q
.

If p = 1 we have

max
a≤x≤b

|x −m1| = max
a−m1≤x≤b−m1

|x| = max
|t|≤(b−a)/2

|ψ(t)| = ‖ψ‖∞
b − a

2
=
b − a

2
.
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If we observe that, for 1 < p ≤∞,

|E(f )| ≤
(
‖fx(·, c)‖p + ‖fx(·,d)‖p

)
‖ψ‖q

(
b − a

2

)1+1/q (
d − c

2

)
+
(
‖fy(a, ·)‖p + ‖fy(b, ·)‖p

)
‖ψ‖q

(
b − a

2

)(
d − c

2

)1+1/q

+‖fxy‖p‖ψ‖q
(
b − a

2

)1+1/q (
d − c

2

)1+1/q

,

then the result follows upon writing q in terms of p. For p = 1, take the limit of the above
expression as q→∞. �

Corollary 3.2. If |∇f | ≤M and |fxy | ≤N for some M,N ∈R, then

|E(f )| ≤ M(b − a)2(d − c)
4

+
M(b − a)(d − c)2

4
+
N (b − a)2(d − c)2

16
.

Corollary 3.3 (Trapezoidal Composite Rule). Define a uniform partition of [a,b] by xi =
a + i∆x where ∆x = (b − a)/m for some m ∈ N. Then, for 0 ≤ i ≤ m, we have a = x0 < x1 <
. . . < xm = b. Define a uniform partition of [c,d] by yj = c + j∆y where ∆y = (d − c)/n for some
n ∈N. Then, for 0 ≤ j ≤ n, we have c = y0 < y1 < . . . < yn = d. Then∫ b

a

∫ d

c
f (x,y)dy dx =

 f (a,c) + f (b,d) + f (a,d) + f (b,c)

+2
n−1∑
j=1

f (a,yj)+2
n−1∑
j=1

f (b,yj)+2
m−1∑
i=1

f (xi , c)+2
m−1∑
i=1

f (xi ,d)

(b−a)(d−c)4mn

+E(f ).

If p = 1, then

|E(f )| ≤

‖fx(·, c)‖1 + 2
n∑
j=1

‖fx(·, yj)‖1 + ‖fx(·,d)‖1

 (b − a)(d − c)
4mn

+

‖fy(a, ·)‖1 + 2
m∑
i=1

‖fy(xi , ·)‖1 + ‖fy(b, ·)‖1

 (b − a)(d − c)
4mn

+
‖fxy‖1(b − a)(d − c)

4mn
.

If 1 < p <∞, then

|E(f )| ≤

‖fx(·, c)‖p+2
n∑
j=1

‖fx(·, yj)‖p+‖fx(·,d)‖p

(d−c)(b−a)2−1/p

4mn

(
p−1

2p−1

)1−1/p

+

‖fy(a,·)‖p+2
m∑
i=1

‖fy(xi ,·)‖p + ‖fy(b,·)‖p

(b − a)(d − c)2−1/p

4mn

(
p−1

2p−1

)
1−1/p

+
‖fxy‖p(b − a)2−1/p(d − c)2−1/p

4mn

(
p − 1

2p − 1

)2(1−1/p)

.
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If p =∞, then

|E(f )| ≤

‖fx(·, c)‖∞ + 2
n∑
j=1

‖fx(·, yj)‖∞ + ‖fx(·,d)‖∞

 (d − c)(b − a)2

8mn

+

‖fy(a, ·)‖∞ + 2
m∑
i=1

‖fy(xi , ·)‖∞ + ‖fy(b, ·)‖∞

 (b − a)(d − c)2

8mn

+
‖fxy‖∞(b − a)2(d − c)2

16mn
.

If |∇f | ≤M and |fxy | ≤N for some M,N ∈R, then

|E(f )| ≤ M(2n+ 1)(d − c)(b − a)2

8mn
+
M(2m+ 1)(b − a)(d − c)2

8mn
+
N (b − a)2(d − c)2

16mn
.

Note that (2n+ 1)/n ≤ 3 and (2n+ 1)/n ∼ 2 as n→∞.

Proof. To obtain the integral approximation, define φ(x,y) = Ui(x)Vj(y) where Ui(x) =
(x − ui) when x ∈ (xi−1,xi) for some 1 ≤ i ≤ m and Ui = 0 otherwise and Vj(y) = (y − vj)
when y ∈ (yj−1, yj) for some 1 ≤ j ≤ n and Vj = 0 otherwise. Here, ui = (xi−1 + xi)/2 and
vj = (yj−1 + yj)/2. Now write∫ b

a

∫ d

c
f (x,y)dy dx =

m∑
i=1

n∑
j=1

∫ xi

xi−1

∫ yj

yj−1

f (x,y)dy dx,

and apply Proposition 2.2 to each term in the sum.

The error becomes

E(f ) =−
m∑
i=1

n∑
j=1

{ ∫ xi

xi−1

[
fx(x,yj−1) + fx(x,yj)

]
Ui(x)dx

∆y

2

−
∫ yj

yj−1

[
fy(xi−1, y) + fy(xi , y)

]
Vj(y)dy

∆x
2

+
∫ xi

xi−1

∫ yj

yj−1

fxy(x,y)Ui(x)Vj(y)dy dx


=−

∫ b

a

fx(x,c) + 2
n∑
j=1

fx(x,yj) + fx(x,d)

Ui(x)dx
∆y

2

−
∫ d

c

fy(a,y) + 2
m∑
i=1

fy(xi , y) + fy(b,y)

Vj(y)dy
∆x
2

+
∫ b

a

∫ d

c
fxy(x,y)Ui(x)Vj(y)dy dx.

The error estimate, then, follows as in the theorem. We can take limits as p→ 1 or p→∞
as in the theorem. �
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4. Midpoint Rule

The midpoint rule for a function of one variable is
∫ b
a
g(x)dx = g(m)(b − a) + E(g), where

m is the midpoint of interval [a,b], E(g) = −
∫ b
a
g ′(x)ω(x)dx, ω(x) = x − a for a ≤ x < m, and

ω(x) = x−b for m < x ≤ b. This follows upon integration by parts. Since it is used only for
integration, the value of ω at m is irrelevant. Notice that ω(a) = ω(b) = 0, ω has a jump
discontinuity at m, and ω′(x) = 1 for all x ,m.

To construct a midpoint rule when integrating over [a,b] × [c,d], look at the formulas in
Proposition 2.2. We would like to choose φ to vanish on the boundary of the rectangle.
As in the one-variable problem, this can be done with a piecewise definition.

Theorem 4.1 (Midpoint Rule). Suppose f satisfies the conditions of Proposition 2.3 and
for some 1 ≤ p ≤ ∞ the following norms exist: ‖fxy‖p, ‖fx(·, c)‖p, ‖fx(·,d)‖p, ‖fy(a, ·)‖p, and
‖fy(b, ·)‖p. Let m1 be the midpoint of [a,b] and m2 be the midpoint of [c,d]. Then∫ b

a

∫ d

c
f (x,y)dy dx = f (m1,m2)(b − a)(d − c) +E(f ).

If p = 1, then

|E(f )| ≤ ‖fx(·,m2)‖1
(b − a)(d − c)

2
+ ‖fy(a, ·)‖1

(b − a)(d − c)
2

+
‖fxy‖1(b − a)(d − c)

4
.

If 1 < p <∞, then

|E(f )| ≤ ‖fx(·,m2)‖p
(d − c)(b − a)2−1/p

2

(
p − 1

2p − 1

)1−1/p

+‖fy(m1, ·)‖p
(b − a)(d − c)2−1/p

2

(
p − 1

2p − 1

)1−1/p

+
‖fxy‖p(b − a)2−1/p(d − c)2−1/p

4

(
p − 1

2p − 1

)2(1−1/p)

.

If p =∞, then

|E(f )| ≤ ‖fx(·,m2)‖∞
(b − a)2(d − c)

4
+ ‖fy(m1, ·)‖∞

(b − a)(d − c)2

4
+
‖fxy‖∞(b − a)2(d − c)2

16
.

Proof. It is simplest to first solve the normalized problem when [a,b] × [c,d] = [−1,1] ×
[−1,1] and the function to be integrated is f̃ . Define

φ(s, t) =


(s − 1)(t − 1); 0 < s ≤ 1, 0 < t ≤ 1,
(s+ 1)(t − 1); −1 ≤ s < 0, 0 < t ≤ 1,
(s+ 1)(t + 1); −1 ≤ s < 0, −1 ≤ t < 0,
(s − 1)(t + 1); 0 < s ≤ 1, −1 ≤ t < 0.

See Figure 1 for a plot of φ.
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Figure 1. Midpoint rule φ.

Consider integration in the region [0,1]× [0,1]. Using Proposition 2.1,∫ 1

0

∫ 1

0
f̃ (s, t)dt ds =f̃ (0,0)−

∫ 1

0
f̃s(s,0)(s − 1)ds

−
∫ 1

0
f̃t(0, t)(t − 1)dt +

∫ 1

0

∫ 1

0
f̃st(s, t)(s − 1)(t − 1)dt ds.

There are similar formulas for the other three regions. We can then define γ(x) = x+1 for
x < 0 and γ(x) = x − 1 for x > 0. Next we have∫ 1

−1

∫ 1

−1
f̃ (s, t)dt ds =4f̃ (0,0)− 2

∫ 1

−1
f̃s(s,0)γ(s)ds

− 2
∫ 1

−1
f̃t(0, t)γ(t)dt +

∫ 1

−1

∫ 1

−1
f̃st(s, t)γ(s)γ(t)dt ds.

This gives ∫ 1

−1

∫ 1

−1
f̃ (s, t)dt ds = 4f̃ (0,0) +E(f̃ ), (11)

where

E(f̃ ) = −2
∫ 1

−1
f̃s(s,0)γ(s)ds − 2

∫ 1

−1
f̃t(0, t)γ(t)dt +

∫ 1

−1

∫ 1

−1
f̃st(s, t)γ(s)γ(t)dt ds.
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Hölder’s inequality shows

|E(f̃ )| ≤ 2‖f̃s(·,0)‖p‖γ‖q + 2‖f̃t(0, ·)‖p‖γ‖q + ‖f̃st‖p‖γ‖2q , (12)

where the norms are now taken over [−1,1] and [−1,1]× [−1,1].

Note that if 1 ≤ q <∞, then

‖γ‖q =
(∫ 0

−1
(1 + s)qds+

∫ 1

0
(1− s)qds

)1/q

=
(
2
∫ 1

0
uqdu

)1/q

=
(

2
q+ 1

)1/q

,

and, ‖γ‖∞ = 1.

The transformation x = (b − a)s/2 +m1 and y = (d − c)t/2 +m2, maps the unit square onto
[a,b]× [c,d]. Let f̃ (s, t) = f (x,y). In (11),∫ 1

−1

∫ 1

−1
f̃ (s, t)dt ds =

4
(b − a)(d − c)

∫ b

a

∫ d

c
f (x,y)dy dx. (13)

For 1 ≤ p <∞, we also have

‖f̃s(·,0)‖p =
(∫ 1

−1
|f̃s(s,0)|p ds

)1/p

=
(∫ b

a

∣∣∣∣∣∂f (x,m2)
∂x

dx
ds

∣∣∣∣∣p dsdx dx
)1/p

= ‖fx(·,m2)‖p
(
dx
ds

)1−1/p

= ‖fx(·,m2)‖p
(
b − a

2

)1−1/p

. (14)

And,

‖f̃s(·,0)‖∞ = max
|s|≤1

∣∣∣f̃s(s,0)
∣∣∣ = max

a≤x≤b

∣∣∣∣∣fx(x,m2)
dx
ds

∣∣∣∣∣ = ‖fx(·,m2)‖∞(b − a)/2.

The other norms in (12) are handled similarly.

Now putting (14) and these other results into (13) and (12) gives the formulas in the
theorem. �

Corollary 4.2 (Midpoint Composite Rule). Define a uniform partition of [a,b] by xi = a+i∆x
where ∆x = (b − a)/m for some m ∈N. Then, for 0 ≤ i ≤m, we have a = x0 < x1 < . . . < xm = b.
Define a uniform partition of [c,d] by yj = c+ j∆y where ∆y = (d − c)/n for some n ∈N. Then,
for 0 ≤ j ≤ n, we have c = x0 < y1 < . . . < yn = d. Let mi be the midpoint of [xi−1,xi], and nj be
the midpoint of [yj−1, yj]. We write∫ b

a

∫ d

c
f (x,y)dy dx =

m∑
i=1

n∑
j=1

f (mi ,nj)
(b − a)(d − c)

mn
+E(f ).
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If p = 1, then

|E(f )| ≤
n∑
j=1

‖fx(·,nj)‖1
(b − a)(d − c)

2n
+

m∑
i=1

‖fy(mi , ·)‖1
(b − a)(d − c)

2m
+
‖fxy‖1(b − a)(d − c)

4
.

If 1 < p <∞, then

|E(f )| ≤
n∑
j=1

‖fx(·,nj)‖p
(b − a)2−1/p(d − c)

2m1−1/pn
+

m∑
i=1

‖fy(mi , ·)‖p
(b − a)(d − c)2−1/p

2mn1−1/p

+
‖fxy‖p(b − a)2−1/p(d − c)2−1/p

4(mn)1−1/p

(
p − 1

2p − 1

)2(1−1/p)

.

If p =∞, then

|E(f )| ≤
n∑
j=1

‖fx(·,nj)‖∞
(b − a)2(d − c)

4mn
+

m∑
i=1

‖fy(mi , ·)‖∞
(b − a)(d − c)2

4mn
+
‖fxy‖∞(b − a)2(d − c)2

4mn
.

If |∇f | ≤M and |fxy | ≤N for some M,N ∈R, then

|E(f )| ≤ M(b − a)2(d − c)
4m

+
M(b − a)(d − c)2

4n
+
N (b − a)2(d − c)2

4mn
.

Proof. Define

φ(x,y) =


(x − xi)(y − yj), (x,y) ∈ (mi ,xi)× (nj , yj),
(x − xi−1)(y − yj), (x,y) ∈ (xi−1,mi)× (nj , yj),
(x − xi−1)(y − yj−1), (x,y) ∈ (xi−1,mi)× (yj−1,nj),
(x − xi)(y − yj−1), (x,y) ∈ (mi ,xi)× (yj−1,nj),

where

γi(x) =


x − xi , if x ∈ (mi ,xi) for some 1 ≤ i ≤m,
x − xi−1, if x ∈ (xi−1,mi) for some 1 ≤ i ≤m,
0, otherwise,

δj(y) =


y − yj , if y ∈ (nj , yy) for some 1 ≤ j ≤ n,
y − yj−1, if y ∈ (yj−1,nj) for some 1 ≤ j ≤ n,
0, otherwise.

Applying Proposition 2.1 to each of the four regions gives∫ xi

xi−1

∫ yj

yj−1

f (x,y)dy dx =
f (xi , yj)(b − a)(d − c)

mn
(15)

−d − c
n

∫ xi

xi−1

fx(x,nj)γi(x)dx (16)

−b − a
m

∫ yy

yj−1

fy(mi , y)δj(y)dy (17)

+
∫ xi

xi−1

∫ yj

yj−1

fxy(x,y)γi(x)δj(y)dy dx. (18)
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Summing over i and j, (15) gives the integral approximation.

Let χI be the characteristic function of interval I , that is χI (x) = 1 if x ∈ I and 0 otherwise.

From (16), with Hölder’s inequality,

d − c
n

∣∣∣∣∣∣∣∣
m∑
i=1

n∑
j=1

∫ xi

xi−1

fx(x,nj)γi(x)dx

∣∣∣∣∣∣∣∣ ≤ d − cn
n∑
j=1

∫ b

a
|fx(x,nj)γi(x)χ(xi−1,xi )(x)|dx

≤ d − c
n

n∑
j=1

‖fx(·,nj)‖p‖γi(x)χ(xi−1,xi )‖q.

Note that

‖γi(x)χ(xi−1,xi )‖q =

 m∑
i=1

∫ mi

xi−1

|x − xi−1|q dx+
∫ xi

mi

|x − xi |q dx

1/q

=

2
m∑
i=1

∫ ∆x/2

0
xq dx

1/q

=


b−a

2 , p = 1,
(b−a)2−1/p

2m1−1/p

(
p−1

2p−1

)1−1/p
, 1 < p <∞,

(b−a)2

4m , p =∞.

Equation (17) is handled similarly.

With (18) we let Γ (x,y) = γi(x)δj(y) if (x,y) ∈ (xi−1,xi)× (yj−1, yj) for some i and j, and Γ is
zero otherwise. Then∣∣∣∣∣∣∣∣

m∑
i=1

n∑
j=1

∫ xi

xi−1

∫ yj

yj−1

fxy(x,y)γi(x)δj(y)dy dx

∣∣∣∣∣∣∣∣ ≤
∫ b

a
|fxy(x,y)Γ (x,y)|dy dx

≤ ‖fxy‖p‖Γ ‖q,

and

‖Γ ‖q =

 m∑
i=1

n∑
j=1

∫ xi

xi−1

|γi(x)|q dx
∫ yj

yj−1

|δj(y)|q dy


1/q

=

4
m∑
i=1

n∑
j=1

∫ ∆x/2

0
xq dx

∫ ∆y/2

0
yq dy


1/q

=


(b−a)(d−c)

4 , p = 1,
(b−a)2−1/p(d−c)2−1/p

4(mn)1−1/p

(
p−1

2p−1

)2(1−1/p)
, 1 < p <∞,

(b−a)2(d−c)2

4mn , p =∞.

�
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Remark. At the end of Corollaries 3.3 and 4.2 we have estimates for the error in the trape-
zoidal and midpoint composite rules under the assumptions |∇f | ≤ M and |fxy | ≤ N for
some M,N ∈ R. If we take partitions with equal number of intervals in the x and y di-
rection (m = n) then the error estimates for both composite rules are E(f ) = O(1/n) as
n→∞.

Note that only under the assumptions that ‖fx(·, y)‖p is uniformly bounded for c ≤ y ≤ d
and ‖fy(x, ·)‖p is uniformly bounded for a ≤ x ≤ b the trapezoidal rule has a better error
estimate (E(f ) =O(1/n)) than the midpoint rule (E(f ) =O(1/n1−1/p)).

5. Minimizing error estimates

The error estimate in Proposition 2.2 depends on ‖φ‖q, where φ(x,y) = xy + α(x) + β(y).
We needed to choose particular functions α and β to generate the trapezoidal rule (The-
orem 3.1) and the midpoint rule (Theorem 4.1). A natural question is: how can α and β
be chosen to minimize ‖φ‖q? As we see below, if 1 < q <∞, there is a unique function of
this type that minimizes the norm of φ and this is the same φ as in the trapezoidal rule
of Theorem 3.1. If q =∞ the minimizer is not unique but the minimum norm is the same
as in the trapezoidal rule. For q = 1 we find the minimum norm but know nothing about
uniqueness of the minimizing function.

First note that in a normed linear spaceX with norm ‖·‖, if xi ∈ X are linearly independent
and z ∈ X, then the problem of finding ai ∈ R to minimize ‖z − a1x1 − a2x2 − · · · − anxn‖
has a solution for each n ∈ N. This is called the problem of best approximation. For
example, [4, Theorem 7.4.1]. Whether this problem has a unique solution depends on
the notion of a strictly convex normed linear space: X is strictly convex if for all x,y ∈ X
with ‖x‖ = ‖y‖ = 1 and x , y we have ‖(x + y)/2‖ < 1. Geometrically, this means the
surface of a ball contains no line segments. It is known that for 1 < p < ∞ the spaces
Lp([−1,1]× [−1,1]) are strictly convex and are not strictly convex if p = 1 or if p =∞. See
[8, p. 112, exercise 3]. If the elements xi are linearly independent in X, and X is strictly
convex, then the best approximation problem has a unique solution [4, Theorem 7.5.3].

Theorem 5.1. Define φ : [a,b] × [c,d]→ R by φ(x,y) = xy + α(x) + β(y) where α and β are
functions of one variable in Lq([−1,1]). The minimum of ‖φ‖q, by varying α and β, is

‖φ‖q =


(

2
q+1

)2/q
, 1 < q <∞,

1, q = 1 or∞.
If 1 < q <∞, then the unique minimum is given by φ(x,y) = (x −m1)(y −m2) where m1 is the
midpoint of [a,b], and m2 is the midpoint of [c,d]. If q = 1, or q =∞, the minimum is achieved
by more than one function, but ‖φ‖∞ = 1 with φ(x,y) = (x −m1)(y −m2).

Proof. It suffices to consider [a,b]×[c,d] = [−1,1]×[−1,1], and then a linear transformation
can be used to map the unit square onto [a,b]× [c,d].

Let ψ(x,y) = xy.

If 1 < q <∞ then the q-norm is strictly convex. By the paragraph preceding the theorem,
this means that if xi are fixed linearly independent functions in Lq([−1,1]2), then for each
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n ∈ N the problem of choosing ai ∈ R to minimize ‖ψ + a1x1 + . . . + anxn‖q has a unique
solution. In our problem, the functions xi are functions of one variable. We first need a
result on linear independence.

Suppose αe, αo, βe, and βo are, respectively, non-constant even and odd functions of one
variable. We claim that the set of functions {αe(s),αo(s),βe(t),βo(t)} is linearly independent
on [−1,1]2. Suppose λ1αe(s) +λ2αo(s) +λ3βe(t) +λ4βo(t) = 0 for all (s, t) ∈ [−1,1]2 for some
constants λi . Then λ1αe(s) + λ2αo(s) = −λ3βe(t) − λ4βo(t). Since s and t can be varied
independently this shows existence of a constant k so that λ1αe(s) +λ2αo(s) = −λ3βe(t) −
λ4βo(t) = k for all s and t. Let s , 0. Then λ1αe(s)−λ2αo(s) = k. Adding gives λ1αe(s) = k.
Since αe is not constant we must have λ1 = k = 0. Subtracting the equations now gives
λ2αo(s) = 0 and α2 is not constant so λ2 = 0. Similarly, λ3 = λ4 = 0 and the functions are
linearly independent.

With the functions αe, αo, βe and βo fixed as above consider the expression

‖ψ + a1αe + a2αo + a3βe + a4βo‖
q
q =

∫ 1

−1

∫ 1

−1
|st + a1αe(s) + a2αo(s) + a3βe(t) + a4βo(t)|q dt ds,

where a1, a2, a3, a4 are the unique constants that give the minimum. Changing variables
(s, t) 7→ (−s, t) in the integral gives

‖ψ + a1αe + a2αo + a3βe + a4βo‖
q
q = ‖ψ − a1αe + a2αo − a3βe − a4βo‖

q
q.

But the coefficients are unique so a1 = −a1, a3 = −a3 and a4 = −a4. Hence, these coefficients
are 0. The change of variables (s, t) 7→ (s,−t) in the integral now shows a2 = 0. Therefore,
for any set of fixed even and odd functions of one variable the minimum of ‖ψ + a1αe +
a2αo + a3βe + a4βo‖q is ‖ψ‖q.

Now we show that we get the same result when we vary the functions. Suppose α and
β are any fixed functions in Lq([−1,1]). The even part of α is αe(s) = (α(s) +α(−s))/2 and
the odd part is αo(s) = (α(s)−α(−s))/2. Similarly with β. Again, using the convention that
α functions are evaluated at the first variable and β functions at the second variable, we
have

min
c1,c2∈R

‖ψ + c1α + c2β‖q = min
c1,c2∈R

‖ψ + c1αe + c1αo + c2βe + c2βo‖q

≥ min
ai∈R
‖ψ + a1αe + a2αo + a3βe + a4βo‖q = ‖ψ‖q.

But taking c1 = c2 = 0 gives ‖ψ‖q in ‖ψ + c1α + c2β‖q so this is its minimum as well.

Suppose there were functions ξ,η ∈ Lq([−1,1]) so that if ξ is evaluated at the first variable
and η is evaluated at the second variable then ‖ψ + ξ + η‖q < ‖ψ‖q. Then

‖ψ + ξ + η‖q = ‖ψ + 1ξ + 1η‖q ≥ min
c1,c2∈R

‖ψ + c1ξ + c2η‖q = ‖ψ‖q.

This contradiction shows that

min
α,β∈Lq([−1,1])

‖ψ +α + β‖q = ‖ψ‖q.

The norm is computed following (12).
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Now consider q =∞. The maximum of ψ(x,y) = xy on [−1,1]×[−1,1] is ψ(1,1) = ψ(−1,−1)
= 1 and the minimum is ψ(1,−1) = ψ(−1,1) = −1. Hence, ‖ψ‖∞ = 1. For φ(s, t) = st +α(s) +
β(t) to have ‖φ‖∞ ≤ ‖ψ‖∞, we must have

α(1) + β(1) ≤ 0, (19)

α(−1) + β(−1) ≤ 0, (20)

α(1) + β(−1) ≥ 0, (21)

α(−1) + β(1) ≥ 0. (22)

This is because the maximum of ψ is positive, and the minimum is negative. And,

(19) and (21) give β(1)− β(−1) ≤ 0,
(20) and (22) give β(−1)− β(1) ≤ 0;

hence β(1) = β(−1). Similarly, α(1) = α(−1). Equations (19) and (21) now show 0 ≤ α(1) +
β(1) ≤ 0 and so α(1) + β(1) = 0. We then get α(1) = α(−1) = −β(1) = −β(−1). But then

φ(1,1) = 1 +α(1) + β(1) = 1

φ(−1,−1) = 1 +α(−1) + β(−1) = 1

φ(1,−1) = −1 +α(1) + β(−1) = −1

φ(−1,1) = −1 +α(−1) + β(1) = −1.

This shows ‖φ‖∞ ≥ 1 = ‖ψ‖∞, so minα,β‖φ‖∞ = ‖ψ‖∞ = 1.

Now consider q = 1. Given ε > 0, for each α,β ∈ L1([−1,1]), there are continuous functions
α,β such that |‖ψ +α + β‖1 − ‖ψ +α + β‖1| < ε. Then α,β ∈ Lq([−1,1]) for each 1 ≤ q ≤∞ so

‖ψ +α + β‖1 ≥ ‖ψ +α + β‖1 − ε
= lim

q→1+
‖ψ +α + β‖q − ε

≥ lim
q→1+
‖ψ‖q − ε

= lim
q→1+

(∫ 1

−1

∫ 1

−1
|st|q dt ds

)1/q

− ε

= lim
q→1+

(
2
∫ 1

0
sq ds

)2/q

− ε

= lim
q→1+

(
2

q+ 1

)2/q

− ε

= 1− ε.
Therefore, since ε > 0 is arbitrary,

min
α,β∈L1([−1,1])

‖ψ +α + β‖1 ≥ 1.

But,

‖ψ + 0α + 0β‖1 =
∫ 1

−1

∫ 1

−1
|st|dt ds = 4

(∫ 1

0
sds

)2

= 1.
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Hence,
min

α,β∈L1([−1,1])
‖ψ +α + β‖1 = 1.

An example that shows the minimizing function is not unique when q = ∞ is φ(s, t) =
st − |s| + |t|. The gradient does not vanish in any of the four open regions (0,1) × (0,1),
(−1,0)× (0,1), (−1,0)× (−1,0) or (0,1)× (−1,0). The extreme values are then on the s-axis
for |s| ≤ 1, on the t-axis for |t| ≤ 1, on one of the line segments given by |s| = 1, or on one
of the line segments given by |t| = 1. It is then seen that the maxima and minima on these
line segments are 1 and −1. Hence, ‖φ‖∞ = 1. Further examples with unit norm can be
obtained by considering φ(s, t) = st±u|s|v ∓u|t|v for u,v > 0. A linear transformation then
maps the unit square onto [a,b]× [c,d]. �

We do not know of an example of non-uniqueness of the minimizing function when q = 1.

An approach to the proof for q = 2 that does not require facts about the uniform convexity
of the norm is the following. Note that∫ 1

−1

∫ 1

−1
|st +α(s) + β(t)|2dt ds =

∫ 1

−1

∫ 1

−1

{
s2t2 + 2stα(s) + 2stβ(t) + [α(s) + β(t)]2

}
dt ds

=
∫ 1

−1

∫ 1

−1

{
s2t2 + [α(s) + β(t)]2

}
dt ds.

The norm of φ is then minimized when α(s) = −β(t). Then α and β are both constant so
the minimizer is φ(s, t) = st.
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