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Abstract. Time evolution of initial data in Partial Differential Equations (PDEs) plays an
important role in understanding physical phenomena, and is of particular interest in de-
termining the long term dynamics of perturbed unstable waves. In this paper, we de-
scribe the Python package we have developed for carrying out time evolution studies. This
package allows the user to input a conservation law or reaction-diffusion equation in one
spatial dimension in system form. The Python program then generates the MATLAB dri-
ver and system specific files to be used in carrying out time evolution using the Crank-
Nicolson scheme. We demonstrate the performance of this package in three example sys-
tems: Burgers’ equation, nonisentropic Navier-Stokes, and reactive Navier-Stokes (rNS).
The rNS study suggests the way in which instability of traveling waves is manifested in
that system.

1. Introduction

Partial Differential Equations (PDEs) are used to model a variety of occurrences in nature,
such as roll waves in inclined water flow [1] or shock waves in a combustion process [10].
When these models are accurate, they allow practitioners to gain valuable insight into a
mathematical system before conducting physical experiments. Consequently, determin-
ing how well a model captures natural behavior is important in model verification. When
considering equations and systems of equations, not all give rise to traveling wave solu-
tions. For those that do, however, it is particularly important that the stability properties
of a model’s traveling wave solution are similar to those exhibited physically. Indeed,
stable, or at least metastable, waves should exist in models that correspond to physi-
cally observed waves. In this work, we present a tool we have developed to aid in the
understanding and study of partial differential equations. This tool automatically gener-
ates the time evolution code for conservation and reaction-diffusion laws in one spatial
dimension. Specifically, we consider conservation or reaction-diffusion laws taking the
modified flux form

f 0(~u)t + f 1(~u)x +G(~u) = (B(~u) ~ux)x, (1)
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where ~u is a vector of n system variables, and f 0, f 1,G, and B are functions of the same
system variables with f 0,f 1,G : Rn→R

n, and B : Rn→R
n×Rn; see [3] for details. It is not

necessary that the functions be linear with respect to our system variables. Our software
only requires a user to input the equations f 0, f 1, G, B, and the boundary conditions,
then everything else needed to carryout time evolution code is automatically generated.
Specifically, we use the Crank-Nicolson finite difference scheme for the time evolution
because it is well-known for balancing accuracy and speed [11]. We implement code in
Python, using the SymPy package, which takes as input the functions f 0, f 1, G and B and
writes the MATLAB files needed to carry out time evolution. In sections 3, 4, and 5, we
describe our code for time evolution of Burger’s Equation, nonisentropic Navier-Stokes,
and reactive Navier-Stokes (rNS) respectively. The latter two examples demonstrate that
our code supports systems of PDEs, including reaction-diffusion equations.

2. The code

Our Python program takes minimal input about a mathematical system and writes MAT-
LAB code for carrying out time evolution studies using the Crank-Nicolson finite differ-
ence scheme. To use our program, the user must first represent the system parameters
and variables as SymPy symbols. The user then creates arrays f 0, f 1, G and B corre-
sponding to the same named functions in (1). The user must next provide a path for the
generated MATLAB files to be saved, and at this point the user can run our program by
calling the function, create code.

Our program then proceeds to generate the finite difference code by first distributing the
derivatives of (1), so that the Crank-Nicolson finite differences can be easily substituted
into the equation, which yields

Df 0( ~u )~ut +Df 1( ~u )~ux +G(~u)−
(
∂
∂x
B( ~u )

)
~ux −B( ~u )~uxx = 0, (2)

where Df is the Jacobian of f with respect to ~u. Our Python program creates code for
Df 0( ~u ), Df 1( ~u ), and ∂

∂xB( ~u ) by using SymPy’s diff function. Specifically, our program

expands the ith, jth entry of ∂
∂xB(~u) as

∑n
k=0

∂Bi,j (~u)
∂~uk

∂~uk
∂x . It then performs matrix-vector

multiplication between the terms Df 0(~u), Df 1(~u), ∂
∂xB(~u), B(~u) and ~ut, ~ux, ~ux, ~uxx of (2)

respectively. This results in n SymPy equations. Next, it substitutes in for ~ut, ~ux, and ~uxx
the finite differences corresponding to the Crank-Nicolson scheme.

Because we wish to allow the user to change the values of ∆x and ∆t without having to
again generate the MATLAB code, our program leaves them as parameters. Next, our
Python program converts the n SymPy equations to a string and writes it as a MATLAB
function, fd F, to the file path specified by the user. The inputs for fd F are arrays corre-
sponding to the system variables (rows) evaluated at the nodes (columns) at the future
and current time steps, ∆x, and ∆t, and a MATLAB structure p that holds system param-
eters. Because our MATLAB program uses Newton’s method to solve the nonlinear finite
difference equations, we need the Jacobian of fd F with respect to the unknown variables,
that is the system variables evaluated at the grid points corresponding to the forward
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time step. Again using the diff function in SymPy, our Python program calculates the Ja-
cobian of our symbolic function fd F, converts it to a string, and writes it to the file path,
specified previously by the user, as a MATLAB function named fd jac. The function fd jac
takes the same inputs as fd F.

At this point, the user can write a driver function, specify system parameters, input
an initial function, define boundary conditions, assign values to ∆x and ∆t, and then
evolve the PDE forward in time by passing these parameters to our MATLAB function
finite diff advance.

The function finite diff advance forms a function F by attaching the generated fd F func-
tion and the user specified boundary conditions. It forms the Jacobian of F by putting
together the fd jac function and the user specified boundary condition derivatives. Then,
by using the multivariable Newton method, it solves the finite difference equations to
advance the solution forward in time.

The source code is available on GitHub under the repository github.com/finitediff/

finite_difference_matlab.

3. Example: Viscous Burgers’ Equation

Burgers’ equation is given by

ut +
(
u2

2

)
x

= uxx,

where u represents a conserved quantity. We look for a traveling wave solution of the
form u(ξ) where ξ = x − ct. We then have an ODE of the form,

− cu′ +uu′ = u′′. (3)

Taking u− := limx→−∞u(x) = 2, u+ := limx→+∞u(x) = 0, yields c = 1 due the well known
Rankine-Hugoniot condition for conservation laws. In the modified flux form, Burgers’
equation is thus written

~u =
(
u
)
, f 0(~u) =

(
u
)
, f 1(~u) =

(
u2

2 −u
)
, G(~u) =

(
0
)
, B(~u) =

(
u
)
.

An explicit traveling wave solution to (3) is given by u0(x) := 1 − tanh(x2 ). We display
snapshots of the evolution of the perturbation v(x) = u0(x) + sin(x)exp(−x2/5) in Figure 1.
To create the figure, we use x ∈ [−30,30], ∆t = 0.1, and ∆x = 0.1, and Dirichlet boundary
conditions u(−30) = 2, u(30) = 0. In addition, we perform a convergence study keeping
∆t

(∆x)2 constant. To measure the rate of convergence of the finite difference scheme, we take

∆t0 := 0.1, and ∆x0 := 0.1. We then evolve the PDE until time T = 12 for ∆t = ε2∆t0 and
∆x = ε∆x0 with ε ∈ {1, 1

2 ,
1
4 ,

1
8 }. We consider the solution corresponding to ε = 1

8 to be the
true solution, name it u∗, and measure the convergence of solutions to u∗ in the infinity
norm as ε decreases. We report the trial statistics in Table 1. We note that the convergence
error reduces by a little more than 1/4 each time we half the size of ε, which is consistent
with the second order accuracy one would expect when using the Crank-Nicolson finite
difference scheme for a parabolic system; see [11].

github.com/finitediff/finite_difference_matlab
github.com/finitediff/finite_difference_matlab
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Figure 1. Plot of the time evolution of the perturbation v(x) = u0(x) +
sin(x)exp(−x2/5) in Burgers’ equation. A thin red curve indicates the ini-
tial perturbation v, a black dotted line corresponds to the traveling wave
solution u0, and a thick green line indicates the evolution of v at time T = 0,
T = 0.1, T = .5, T = 5. The stability of this wave is manifest as the evolution
of the perturbed solution approaches the traveling wave.

The Python code specific to this system is available on GitHub at finite_difference_
matlab in the examples folder under Viscous Burgers. As a concrete example of the code
our Python program generates, we note that the finite difference equations at interior
nodes take the following form for Burgers’ equation using the Crank-Nicolson scheme,

un+1
j −unj
∆t

+un+1
j

un+1
j+1 −u

n+1
j−1 +unj+1 −u

n
j−1

4∆x

− un+1
j+1 − 2un+1

j +un+1
j−1 +unj+1 − 2unj +unj−1

2(∆x)2 = 0.

Each term with a superscript n is known and each term with a superscript n + 1 is an
unknown variable when solving the finite difference equations. Because the equations
are clearly nonlinear, we use a multidimensional Newton solver. In this example and
the ones that follow, we consider the Newton solver to have converged when the infinity
norm between successive iterations in the solver varies no more than 1e-8.

ε 1 1/2 1/4

‖u −u∗‖∞ 5.17e-4 1.23e-4 2.46e-5

Table 1. Table displaying for Burgers’ equation, the convergence of the
solution u of the finite difference scheme to u∗ as step size decreases,
∆t = ε2/10, ∆x = ε/10.

4. Example: Nonisentropic Navier-Stokes

The one-dimensional compressible Navier-Stokes equations in Eulerian coordinates are
given by

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = (2µ+ η)uxx,

(ρ(e+u2/2))t + (ρu(e+u2/2) +up)x = (2µ+ η)uux +κexx,

(4)

finite_difference_matlab
finite_difference_matlab
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where ρ represents density, u the fluid velocity, and e the specific internal energy of the
system. The coefficient ν corresponds to the dynamic viscosity, µ to the second viscosity,
and κ to the heat conductivity of the system. The coefficient Γ relates the pressure of the
system in terms of the density and specific internal energy according to the pressure law
given by p = Γ ρe. See [8] for details. Due to Galilean invariance, we may take the wave
speed to be zero. In modified flux coordinates, equation (4) is

~u =

ρu
e

 , f 0( ~u ) =

 ρ
ρu

ρ(e+u2/2)

 , f 1( ~u ) =

 ρu
ρu2 + Γ ρe

ρu(e+u2/2) + Γ ρue

 ,
G(~u) =

0
0
0

 , B( ~u ) =

0 0 0
0 2µ+ η 0
0 (2µ+ η)u κ

 .
Using code provided courtesy of the authors of STABLAB, see [4], we obtain a numerical
approximation of the traveling wave solution, which we label u0. Gilbarg showed exis-
tence of traveling waves solutions to the system in [7]. We form a perturbation of the
traveling wave, v(x) = u0(x) + sin(x)exp(−2x2), for the initial condition of the time evolu-
tion. We apply Dirichlet boundary conditions to ρ, u, and e at x = −10, and to u and e at
x = 10. We utilize a no flux boundary condition for ρ at x = 10. Details about why these
are the appropriate choice of boundary conditions are given in [9]. For parameter values,
we use Γ = 2/3, µ = 1, η = −2µ/3, and κ = 2µ. The boundary condition of u at x = 10 is
chosen to be 0.3. All other parameters are are given via the Rankine-Hugoniot conditions,
as described in [8]. We display the time evolution of this perturbation in Figure 2. The
time evolution study is consistent with stability of u0.

We also perform a convergence study for this model, following the exact same protocol
as for Burgers’ equation. See Table 2 for the related data.

ε 1 1/2 1/4

‖u −u∗‖∞ 2.19e-3 2.74e-4 5.44e-5

Table 2. Table displaying for nonisentropic Navier-Stokes, the convergence
of the solution u of the finite difference scheme to u∗ as step size decreases,
∆t = ε2/10, ∆x = ε/10.

5. Example: Reactive Navier-Stokes

We demonstrate how our code performs when a reaction term is present by carrying
out time evolution studies in the reactive Navier-Stokes (rNS) equations in Lagrangian
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Figure 2. Plot of the time evolution of the perturbation v(x) = u0(x) +
sin(x)exp(−2x2) in the nonisentropic Navier-Stokes equations. Black dot-
ted lines indicate the initial perturbation v, a red curve corresponds to the
traveling wave solution u0, and thick green lines indicate the evolution of v
at time T = 0, T = 0.5, T = 1, T = 60.

coordinates; see [2], for example. The equations are given by

τt − τx −ux = 0,

ut −ux + px =
(νux
τ

)
x
,(

e+
u2

2

)
t

−
(
e+

u2

2

)
x

+ (pu)x − qkφ(T )z =
(νuux
τ

+
κTx
τ

)
x
,

zt − zx + kφ(T )z =
(Dzx
τ2

)
x
,

(5)

where volume, velocity, energy, and mass fraction of reactant of the gas are given by τ , u,
e, and z, respectively. Viscosity coefficients are given by ν, κ, and D, and the difference
in the heat of formation of the reactant and the product is given by q. We specifically
consider an ideal, polytropic gas, hence, p = RT

τ and e = cνT where temperature is given by
T , andR and cν are constants that characterize the gas. In our study, we take cν = 1, so that
e = T . We use an Arrhenius type ignition function, φ(T ) = exp(−A/(cν(T − Tig))) if T > Tig
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and 0 otherwise. Here A is the activation energy and Tig is the ignition temperature. In
flux coordinates, equation (5) is

~u =


τ
u
e
z

 , f 0( ~u ) =


τ
u

e+u2/2
z

 , f 1( ~u ) =


−u − τ
Re/τ −u

Reu/τ − (e+u2/2)
−z

 ,

R(~u) =


0
0

−qkφ(T )z
kφ(T )z

 , B( ~u ) =


0 0 0 0
0 ν/τ 0 0
0 νu/τ κ/(cντ) 0
0 0 0 D/τ2

 .
Because the ignition function is piecewise constant, our code does not support these equa-
tions directly. However, by running the Python code with the non-zero portion of the
ignition function, we were able to then manually insert the piecewise ignition function
into the generated MATLAB files so it would be defined properly.

We experimented with various boundary conditions until we found ones that did not lead
to finite blow up of the numerical solution. We used Dirichlet boundary conditions on the
left for all the components, and on the right for τ , u, and e. We used a no flux boundary
condition for z on the right.

We carried out a time evolution study for a stable and unstable wave solution provided
to us courtesy of the authors of [2]. Existence of traveling wave solutions to the system
was examined in [5], [6], and [12].

In Figure 3, we plot snapshots of the time evolution of a perturbed traveling wave with a
profile solution determined by the parameter values, A = 2.7, R = 0.2, s = 1, q = 0.6231,
k = 12.3609, Tig = 0.0664, cν = 1, ν = 0.1, κ = 0.1. We note that in [2], it was found that
this traveling wave is stable. Figure 4 shows a time evolution of all four system variables
overlaid on a single graph to demonstrate the overall behavior of the system.

In addition to the stable wave, we demonstrate how the time evolution code behaves with
the unstable wave, where A = 7. We use R = 0.2, s = 1, q = 0.6231, k = 1.4723 × 105,
Tig = .0664, cν = 1, ν = 0.1, κ = 0.1. All other parameters are given via the Rankine-
Hugoniot conditions, as described in [2]. The time evolution of this perturbed unstable
wave is shown in Figure 5 and suggests the way in which the instability is manifest. It
seems to be traveling and diffusing to the left. In Table 3 we display the results of our
convergence study.

ε 1 1/2 1/4

‖u −u∗‖∞ 4.90e-3 1.00e-3 2.05e-4

Table 3. Table displaying for reactive Navier-Stokes the convergence of the
solution u of the finite difference scheme to u∗ as step size decreases, ∆t =
ε2/10, ∆x = ε/10.
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Figure 3. Plot of the time evolution of the perturbation v(x) = u0(x) +
0.015sin(x)exp(−4(x + 2)2) in the reactive Navier Stokes equations for A =
2.7. Black dotted lines indicate the initial perturbation v, a red curve corre-
sponds to the traveling wave solution u0, and thick green lines indicate the
evolution of v at time T = 0, T = 0.1, T = .5, T = 10. The graph is zoomed in
to make it more visible. This wave was found to be stable in [2], and that is
what we observe.

6. Conclusion

We carry out the first time evolution study in rNS for some of the specific traveling waves
considered in [2]. In particular, we evolve a perturbation of a stable and unstable wave.
Time evolution of the perturbed stable wave approaches a translate of the traveling wave
consistent with stability. Time evolution of the unstable wave suggests the manner in
which the instability manifests itself. In particular, it appears that a small perturbation
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Figure 4. Plot of rNS with a stable value of A = 2.7 showing all four system
variables in one graph. Black dotted lines indicate the initial perturbation v,
a red curve corresponds to the traveling wave solution u0, and thick green
lines indicate the evolution of v at time steps, T = 0, T = .1, T = .5, and
T = 10.
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Figure 5. Plot of rNS with an unstable value of A = 7, showing all four
system variables in one graph. Black dotted lines indicate the initial per-
turbation v, a red curve corresponds to the traveling wave solution u0, and
thick green lines indicate the evolution of v at time steps, T = 0, T = 5,
T = 10, and T = 20.

of the traveling wave diffuses to the left while maintaining its original structure to the
right.

We provide Python code and supporting MATLAB code that makes it so a researcher
can input a conservation or reaction-diffusion law of the form given in (1) and all of
the system specific code needed for time-evolution using the Crank-Nicolson scheme is
automatically derived and written to MATLAB files. This code saves the user a signif-
icant amount of time since the derivations are automated, and also has the potential
to save time since the automated code circumvents the opportunity to introduce hu-
man error into the derivation. This code is freely available at GitHub under finited-
iff/finite difference matlab.

We demonstrate our code with application to Burgers’ equation, the nonisentropic Navier-
Stokes equations, and the reactive Navier-Stokes equations to show that it is versatile and
can work with systems of various dimensions.

In the future, we plan to build functionality into the code allowing the user to choose
various finite difference schemes. In particular, we would like the user to be able to
choose a different finite difference scheme for the hyperbolic equations and parabolic
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equations in a hyperbolic-parabolic system, like isentropic Navier-Stokes. We also plan
to improve the efficiency of the code. We believe this code will provide a useful tool to
researchers studying the stability of traveling waves.

Solving for the unstable manifold in the rNS system to verify the way in which instability
manifests itself would be an interesting direction, which we plan to pursue. Our time
evolution code will be useful in verifying the manifold for which we solve.
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