The Minnesota Journal of Undergraduate Mathematics

Properties and Calculations of
Constructive Orderings of Z/nZ

Zackary Baker
The King’s University

\

The Minnesota Journal of Undergraduate Mathematics

Volume 4 (2018-2019 Academic Year)

Sponsored by
School of Mathematics

University of Minnesota
Minneapolis, MN 55455

MJUM Vol. 4 (2018-2019) Page 1

The Minnesota Journal of Undergraduate Mathematics

Volume 4 (2018-2019 Academic Year)

Properties and Calculations of Constructive
Orderings of Z/nZ

Zackary Baker
The King’s University

ABsTRACT. A sequencing of a finite group G of order n is a sequence gi,$»,...,g, of the ele-
ments of G whose set of partial products {g;¢,---g;|1 <i < n} contains every element of the
group G. In this paper, we study this in the particular case of additive groups modulo #,
replacing the partial products with partial sums. We make and prove several observations
about these sequencings, and calculate how many there are for n < 16.

To do this, we define an operator called the dagger on a sequence, and collect the results
of this operator into what we call the dagger set of the group. We then analyze several
properties of this set and collect computational data on it.

1. INTRODUCTION

This paper proves results on sequenceable groups in the specific case of the additive group
Z/nZ for positive integers n. If any readers of this paper do not know the definition of a
group, but understand the structure of Z/nZ, they can read and understand the majority
of the content of this paper.

The idea of a sequenceable group was first defined in 1961 by B. Gordon|[2]:

Definition 1.1. A finite group G of order n is sequenceable if the elements of G can be
arranged in a sequence g, gy, ..., £, such that the partial products

k
[s
i=1
are distinct for 1 <k <.

Here, we reframe this definition into language that is easy to work with in the case of the
additive group Z/nZ. To begin, let < be a strict total order on G. If an additive group G
of size n is ordered so that g < g, <--- < g,, we denote the kth partial sum, 1 <k <n, by

* Corresponding author

MJUM Vol. 4 (2018-2019) Page 2

grt. That is,
k
grt:= Zgi-
i=1

The notation gt is inspired by the fact that a partial sum can be loosely viewed as an
additive version of a factorial: instead of multiplying a positive integer with all integers
smaller than it, we are adding an integer with all integers smaller than it under <. One
might wish to call g;1 a sort of additive factorial. Now that we have the notion of these
partial sums, or daggers, as we will call them, we wish to talk about them collectively:

Definition 1.2. Given an additive group G with some strict total order <, the dagger set
of G with respect to < is defined to be D_(G) := {gt. | g € G}.

We can now define a sequenceable additive group using this language:

Definition 1.3. A finite additive group G is sequenceable if and only if there exists an
ordering < such that D_(G) = G.

In this paper we do not only wish to determine whether or not a group is sequenceable,
but rather to know more about the orderings < such that D_(G) = G. In some literature, a
sequence g1, 9, ...,g, on a finite group G which can be used to show that G is sequenceable
is called a sequencing. We will use the term constructive ordering (of G) to describe an
ordering < such that D_(G) = G.

Some known results on sequenceable additive groups Z/nZ are:
Proposition 1.4. [2]

(a) An ordering < such that D_(Z/nZ) = Z/nZ always has its least element equal to 0.

(b) There exists an ordering < such that D_(Z/nZ) = Z/nZ if and only if n is even. (Note
that in contrast, not every group of even order is sequenceable; the Klein 4 group is an
example of an even order group that is not sequenceable.)

(c) (Dagger Uniqueness Property) For any g;,8; € Z/nZ, if gt = g;t for i = j, then
D (Z/nZ) # Z/nZ.

Though these results are well-known for sequenceable groups, we state and prove Propo-
sition a) and the forward direction of Proposition [1.4(b) here. This is because the
proofs in the literature need more mathematical background than we are assuming all
readers of this paper have. Here, we write the proofs using elementary notions.

Proof of Proposition [1.4(a):

Proof. This proof is by contradiction. Assume that 0 is not the least element of the order-
ing <. Then g; = 0 for some i such that 2 <i <#n. Then g;t =0+g; 1t = g;_11, so an element
is duplicated and the dagger set is smaller than the group. Thus, D_ (Z/nZ) cannot equal
Z/nZ, and so a contradiction is reached. O

MJUM Vol. 4 (2018-2019) Page 3

Remark. Here, we remind ourselves of the definition of triangular numbers, and a formula
for them, as they will be useful in the following proof and throughout this paper. If < is
any order on Z/nZ, and the elements of Z/nZ can be written as g; < g, <--- < g, then

we always have
n-1 n(n _
i=0

This is the same as the (n —1)* triangular number, which is denoted T,_;. It is well

known that if 7 is odd then T,,_; =0 (mod #), and if nis even, T,,_; = 5 (mod n), and will

be shown here. From the above definition, T, = n(n;l If n is even, then % in an integer,

meaning it is in Z/nZ. We can rewrite T, as * 2+”, or & . 5 = n5+7. Taking this expression

mod n clearly shows that T, = 5 (mod n). If n is odd, then n+1 is even, and ”—+1 is an

n=7
integer. Then, since T, = n- ”+1 , it is clear to see that T,, = 0 (mod n).
Partial proof of Proposition[1.4(b): Here, we prove the contrapositive of the forward direc-
tion of this “if and only if” statement. That is, we prove that if #n is odd, then we have
D_(Z/nZ) # Z/nZ for any ordering <.

Proof. We prove this by showing that D_(Z/nZ) will have fewer than n elements whenever
n is odd. By Proposition a) we know that 0 must be the first element of this ordering;
i.e. g1 =0,and gt =0. Also, as remarked above, g,t =T, 1 =0 (mod n). Thus D_(Z/nZ)
is always smaller than Z/nZ when n is odd. O

When we first began writing this paper, we were not only interested in sequenceable
groups, but also in groups where the dagger set was equal to a subgroup of the original
group. We quickly observed that the dagger set will never give a proper subgroup of
Z/nZ. We state and prove this fact below, and in the remainder of this paper only focus
on the case where the dagger set is equal to the entire group.

Proposition 1.5. If D_(Z/nZ) is a proper subset of Z/nZ, then it is not a subgroup of Z/nZ.

Proof. This proof is by contradiction. Assume that there exists an order < such that
D_.(Z/nZ) is a subgroup of Z/nZ. Since Z/nZ is cyclic, we have that D_(Z/nZ) =<k>
for some nontrivial divisor k of n. Then every element of D_(Z/nZ) is a multiple of k.
Let g1 < g, <+ < g, be the order of the elements of Z/nZ under <. For some i € {1,...,n},
g =1. If i =1 then gt =1 ¢<k>, so assume i > 1. Then, either g; ;1 or g;1 will not be
in D_(Z/nZ), since they differ by 1 and thus cannot both be multiples of k, so a contra-
diction is reached. Thus, there are no orderings on Z/nZ such that D_(Z/nZ) is a proper
subgroup of Z/nZ for any n € IN. O

2. PROPERTIES OF CONSTRUCTIVE ORDERINGS

In this section, we prove several properties of constructive orderings for Z/nZ. As ob-
served in the previous section, constructive orderings only exist when 7 is even. There-
fore, throughout this section and the rest of the paper, we will assume that #n is even.

MJUM Vol. 4 (2018-2019) Page 4

2.1. The natural order. If an ordering < is defined by 0 <1 <:-- <n—1, then we call <
the natural order, and denote it <. In this section we consider whether the natural order
is ever a constructive ordering, and if so, when it is or is not.

As an example we compute D_(Z/nZ) for n < 16, and determine whether or not it is a
constructive ordering.

n D(Z/nZ) Is < a constructive ordering for Z/nZ?
2 {0,1} v
4 {0,1,2,3} v
6 {0,1,3,4) x
8 {0,1,2,3,4,5,6,7} v
10 {0,1,3,5,6,8} X
12 {0,1,3,4,6,7,9,10} x
14 {0,1,3,6,7,8,10,13} X
16 | {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15} v

TaBLe 1. Dagger subsets of Z/nZ, n <16 using the natural order

In the small set of examples, we do see that the natural order is a constructive ordering
for n = 2,4,8 and 16. After computing a number of other examples, we were led to the
following conclusion:

Theorem 2.1. For < the natural order, D.(Z/nZ) = Z/nZ if and only if n = 2~ for some
positive integer k.

Proof. We will prove the forward direction by contrapositive. Let n = (2¢ + 1) - x, where
¢ e Nand x > 2is a power of 2, and let c be the smallest positive integer such that cx > €. If
there exist g;, g; € Z/nZ such that g;T = g;t, then <is not a constructive ordering. Choose
gi=cx—{—1and g; = cx+{. We must confirm that g; and g; are reduced modulo n. We
begin by showing that g; > 0. We begin with the inequality cx > ¢. This inequality is the
same as cx > ¢ + 1. Rearranging this equation, we have that cx —¢ -1 > 0. Next, we will
show that g; <n. Since c is defined to be the smallest integer such that cx > £, we know
that (¢ — 1)x < €. From this, we obtain (c — 1)x + £ < 2¢, from which we can derive that
(c—1)x+¢ < 2{x. Adding x to both sides gives cx+¢ < 2¢x + x. Rearranging the right hand
side results in the inequality cx + ¢ < x(2€ + 1), which we can rewrite as cx + ¢ < n. Finally,
since cx —{ —1 is clearly less than cx + ¢, we know that 0 < g; < g; <n. Therefore, g; and g;
are reduced modulo n.

Calculating g;t and g;t, we get
gt=0+1+2+---+(cx—-C—-1)
and
gt=0+1+2+ - +(cx—O)+(cx—LC+1)+---+(cx—1)+cx+(cx+ 1)+ + (ex +).
Thus,

git—gt=(cx+O)+--+(ex+1)+ex+(cx—1)+---+(cx—€+ 1)+ (cx).

MJUM Vol. 4 (2018-2019) Page 5

There are 2¢ + 1 terms in this series, and the average of the series is cx. Thus,
git-gt=20+1)-cx=c-(20+1)x=c-n=0 (mod n).
This means that g;t = g;t, and so by Proposition c), the natural ordering is not a

constructive ordering for Z/nZ.

Now we will prove the reverse direction. This proof will be by induction on k. For the
base case of k = 1, the group in question is Z/2Z. The natural order for Z/2Z is (0,1).
Calculating the dagger set for this ordering gives 0t = 0 and 1t =0+ 1 =1, so we have
D_(Z/2Z) = Z/2Z, and the base case holds. Assume that for some positive integer m, we
have that D_(Z/2™Z) = Z/2™7Z. Now consider D_(Z/2"1Z). Define

Dy :={0t,11,...(2" - 1)t}

and
D, := {2, (2" + D)t,..., (2" - 1)t

Here, D; and D, are subsets of D_(Z/2™*'Z). Since the partial sums 0t,11,...,(2" — 1)t
are all unique modulo 2™, by the assumption that D_(Z/2™Z) = Z/2"Z, it follows that
these are also all unique modulo 2"*!. Thus there are no repeat elements in D;, a subset
of D(Z/2™1 7).

Thus, to prove that D_(Z/2"™1Z) = Z/2™*'Z we must prove that every dagger in D,
evaluates to a unique element in Z/2™"1Z and also that D; N D, = 0, since this would
imply that |D<(Z/2m+1Z)| = 2"*1 and thus the dagger set is equal to the whole group.

First, we show that 2"t,(2" + 1)1,...,(2"*! — 1)t are all unique mod 2"*!. Each of these
expressions can be written as (2" + c¢)t where 0 < ¢ < 2" —1. We observe that
R"+o)t=2"+c)+ (2" +c-1)+---+ (2" +2)+ (2" + 1)+ 2™

+(2"-1)+(2"=2)+---+ (2" =(c=1))+ (2" =¢)

+(2" = (c+1)+ (2" =(c+2))+---+1
=2"+0)+ (2" +c—-1)+---+ 2"+ 2)+ (2" + 1)+ 2™
+(2" =)+ (2" =(c=1))+--+ (2" =2)+ (2" - 1)
+(2"=(c+1)+ (2" =(c+2))+---+ 1.

If we look at the last three lines of this equation, we see that there is a lot of simplification
that we can do, since we're adding, for example, (2" + c¢) with (2" —¢) in the line below
it. The sum of these two quantities adds to 2"*!. The same cancellation is possible with
several other pairs of terms. Thus we have

2"+ o)t = (27 4 2m e 2T) 4 o
+(2"=(c+ 1)+ (2" =(c+2))+---+1
=24 (2" —(c+1)+ (2" —(c+2))+---+1 (mod 2"*1)
=2"+ (2" —(c+1))t.

MJUM Vol. 4 (2018-2019) Page 6

Thus, since each element in D, can be written as 2" + (2" — (c + 1))t for a unique integer
¢, and we know that the quantities (2" — (c + 1))t are all unique mod 2™*!, then clearly
the quantities 2" + (2™ —(c + 1))t are also all unique mod 2"*!. Therefore, D, contains 2"
distinct elements.

Now to show that D; "D, =) we observe that every element in D, differs from an element
in Dy by 2™. Since 0t,11,...,(2™ 1)t are all unique mod 2", no two of these daggers differ
by 2™, or else they would not be unique. Thus we must have that D; N D, = 0. Therefore
D(Z/2"7Z) = Z/2™1Z, and the proof is established by induction. O

2.2. Results on constructive orderings. In this section we make several observations
about constructive orderings and prove them. Throughout this section, we assume # is
an even, positive integer.

Proposition 2.2. If n> 2, 5 cannot be the greatest element in a constructive ordering.

Proof. This will be a proof by contradiction. Assume 7 is the greatest element of Z/nZ
under a constructive ordering <. Then, since the dagger of the largest element of Z/nZ
is T,_1, 5t =T,_; =5 (mod n). Let g be the element directly preceding 5 under the order
<. Then, gt = 5 +-5 = 5 — 5 = 0. But since 0 must be the first element under this order by
Proposition a), we have two separate elements with daggers equal to 0. Therefore, by
Proposition c), D_(Z/nZ) # Z/nZ. OJ

Proposition 2.3. The value 5 cannot be the second smallest element in a constructive ordering.

Proof. By Proposition a) we know that the least element in a constructive ordering is
0. If % is the second least element, then %‘l’ = %+ 0= % However, we know that the dagger
of the greatest element of Z/nZ is 5 (as stated in the remark in the introduction). Thus,
if the secgnd least‘element is 5, then 5t equals g,t, so by Proposition c), <is not a
constructive ordering.

Proposition 2.4. Let g; <--- < g, be an ordering such that g; + gi,1 + - + g;j = n for some
i,j€{2,...,n—=1},j>1isuch that i+ j < n. Then < is not a constructive ordering.

Proof. Clearly,
Qirjt=8ivj+&ivjor1 + -+ & +&i+&at=n+g 1.

Then g;,;t=g;_1t (mod 1), and so by Proposition ¢), <isnot a constructive ordering.
O

The next propositions concern more than one ordering, and their relationship to each
other in terms of whether or not two related orderings can both be constructive orderings.
In these proofs, it will be necessary to distinguish whether or not the dagger is being taken
with respect to an ordering <; or an ordering <,. As such, we will use a subscript to clear
up this ambiguity, using the notation t_ or t_, to clarify which ordering is being used.

Proposition 2.5. Let < be the ordering 0 <; ¢ <1 g3 <1 L4 <1 =+ <1 g, and <, be the
ordering 0 <, g3 < 90 <p 4 <o -++ < g this is the first order with the second and third
elements swapped. If <; is a constructive ordering then <, is not.

MJUM Vol. 4 (2018-2019) Page 7

Proof. The first three daggers under <; are 0t =0, gt = ¢ and g3t = ¢» + 3. When
the positions of g, and g3 are interchanged in the order, the first three daggers under <,
are 0t_, =0, g3t., = g3 and g1, = ¢, + g3. If <; is a constructive ordering for Z/nZ, the
value g3 is in D_ (Z/nZ). Since this value is not equal to any of the first three daggers
under <y, and g;t. = gt., for all i > 3, we have that g3 = g;t., for some j € {4,...,n}.
Thus under <, the value g3 is given by two daggers: gzt and g;t_,, so by Proposition
c), <, cannot be a constructive ordering. O

Proposition 2.6. Let < be a constructive ordering 0 <; g <1 g3 <1 **+ <1 §u. Then the
ordering <, given by 0 <, n— gy <p 1 —g3 <y -++ <p n— g, is also a constructive ordering.

Proof. Since <7 is a constructive ordering then each partial sum under <; is a distinct
residue mod n. We also observe that for each i € {2,...,n}, taking partial sums under <, we
have

(n—gi)t,=-g—8-1-82--—-%—-0 (mod n)

Thus, (n—-g)t, = —(8i+<1) (mod n). Since all g;t. must be distinct modulo 7, so are all
-git<,- Thus, <, gives us n distinct daggers and is therefore a constructive ordering. [

Proposition 2.7. Let <y be a constructive ordering 0 <y g <1 g3 <1 **+ <1 §u- Then the
ordering <, corresponding to 0 <, g, <, -+ <p g3 < § 15 also a constructive ordering.

Proof. Observe that for 2<i<mn

gt =0+g,+g 1+ +g

=0+ gt gurt gt gt t8)= (g1t +g)
n
=5 81 ts,-

Since all of the elements g;_;t_, are unique mod n, then so are the terms g;t_, = 5-g;_1t<,.
Thus by Proposition C), <, is a constructive ordering. O

2.3. Examples. Here we will compute some examples of dagger sets and verify whether
certain orderings are constructive or not, to help the reader see how the above observa-
tions interact with these sets.

Example 2.8. We will naively determine if the ordering <= (0,3,1,4,7,2,5,6) is a con-
structive ordering for Z/8Z. To begin, we must calculate the daggers for each element of

MJUM Vol. 4 (2018-2019) Page 8

Z/87Z, to construct D_(Z/8Z). All calculations are reduced modulo 8:
0t=0 (mod 8)
31=0+3=3 (mod 8)
1t=0+3+1=4 (mod 8)
4t=0+3+1+4=8=0 (mod 8)
7t=0+3+1+4+7=15=7 (mod 8)
2t=0+3+1+4+7+2=17=1 (mod 8)
51=0+3+1+4+7+2+5=22=6 (mod 8)
6t1=0+3+1+4+7+2+5+6=28=4 (mod 8)

Thus, the dagger set of Z/8Z under < is D_(Z/8Z) ={0,1, 3,4, 6,7}. Since this set is miss-
ing 2 and 5, D_(Z/8Z) # Z/8Z, and so < is not a constructive ordering on Z/8Z.
Example 2.9. To show Propositions a) and[1.4{c) in action, we will determine if
<=(1,0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21, 22,23, 24, 25)

is a constructive ordering on Z/26Z. As with the previous example, we will calculate the
daggers of Z/26Z under <:

1t=1

0t=1+0=1

We can stop here, and apply Proposition c), since 11 = 0t. As well, Proposition a)
also directly shows that < is not a constructive ordering on Z/26Z.

Example 2.10. We will attempt to find a counterexample to Proposition [I.4(b) by check-
ing each ordering on Z/37Z to see if a constructive ordering exists. We have 6 orderings
to check:

(0,1,2),(0,2,1)
(1,0,2),(1,2,0)
(2,0,1),(2,1,0)

By Proposition a), we know that if <is a constructive ordering, then it must start with
0. Thus, we only have two orderings to check. For the first ordering, (0,1,2), 0t = 0,
1t=1,and 2t =1+2=3=0 (mod 3), and so the resulting dagger set is {0, 1}. This means
this ordering is not a constructive ordering on Z/3Z. For the second ordering, 0t = 0,
2t=2,and 11 =2+1=3 =0 (mod 3). Thus, the resulting dagger set is {0, 2}, and again
the ordering is not a constructive ordering on Z/3Z. Therefore, there are no constructive
orderings on Z/37Z.

3. CALCULATING CONSTRUCTIVE ORDERINGS

In this section we compute the number of constructive orderings on Z/nZ for even val-
ues of n such that n < 16. We will see that the number of orderings grows quickly and

MJUM Vol. 4 (2018-2019) Page 9

becomes increasingly complex to compute as n grows. As well, the algorithm used to
calculate these orderings will be discussed.

3.1. Number of Constructive Orderings. For use in this section, we will define the set
C(G) :={<|<is a constructive ordering on G}.

As well, we use |C(G)| to denote the number of constructive orderings on G. We have the
following values for |C(Z/nZ)|:

n | |C(Z/nZ)|
2 1

4 2

6 4

8 24

10 288
12 3856
14 89328
16 | 2755968

TaBLe 2. The number of constructive orderings for Z/nZ, n < 16, n even

This sequence corresponds to OEIS sequence A141599[3].

As an example, we include the complete list of constructive orderings on Z/nZ for n < 6:

n | List of constructive orderings for Z/nZ

2 (0,1)
4 (0,1,2,3)
(0,3,2,1)

(0,1,4,3,2,5)
(0,2,5,3,1,4)
(0,4,1,3,5,2)
(0,5,2,3,4,1)
TaBLe 3. All constructive orderings on Z/nZ, n < 6, n even

In order to compute the orderings which belong in C(Z/nZ), we wrote a basic C++ pro-
gram that used some of the facts outlined in the propositions above to restrict our search
in an otherwise brute force algorithm (for example, we only considered orderings be-
ginning with 0 instead of all possible orderings). The computation times in the table
below are for running our algorithm on a machine with an Intel® Core™ i7-4790 CPU @
3.60GHz, multithreaded with 8 cores.

MJUM Vol. 4 (2018-2019) Page 10

n | Time to calculate |C(Z/nZ)| (in seconds)’
2 <1

4 <1

6 <1

8 <1

10 0.02

12 0.93

14 148.54

16 26805.91

TaBLe 4. Times to calculate the number of constructive orderings on Z/nZ
on a modern machine.

One sees that computation time grows very quickly with n. The running time for n = 16
was close to 8 hours, and we expect that this time would continue to increase at a rapid
rate.

We know that the total number of orderings on a finite group G is |G|!, and the total
number of orderings on G which begin with the identity is (|G|-1)! (which by Proposition
[1.4(a), we assume gives us a decent starting point for potential constructive orderings).
In the table below, we compare these quantities with |C(Z/nZ)|.

2 5 =50% 1 =100%

4 % ~ 8% 2 ~33%

6 5 ~ 0.55% 55 ~ 3.33%

8 | 1555 ~0.060% | =535~ 0.48%
10 | 55585~ 0.0079% | s250- ~ 0.079%

TasLE 5. Ratios of the number of constructive orderings to the total number
of orderings on Z/nZ, n <10, n even

From Table |5, it quickly becomes apparent that constructive orderings grow very sparse
in the space of possible orderings for Z/nZ, even when we only look at orderings which
start with the identity. Thus, we are motivated to find more strict criteria for constructive
orderings which are easily computable.

11t is fun to note that similar results were calculated in [1]], in which the authors state that “An IBM 7090
prepared (our results for n = 2 through n =10) in 72 seconds...”. This illustrates both how far computation
power has come since the mid-60s, as well as the sheer difficulty this problem faces for larger values of .

MJUM Vol. 4 (2018-2019) Page 11

3.2. Algorithm Discussion. The algorithm used to calculate the number of constructive
orderings for a particular value of n is presented in pseduocode, as well as in full in
Appendix A.

numQOrderings < 0;
currentPermutation <« (0,1,2,3,...,n—1);
while currentPermutation not (0,n—1,n-2,...,2,1) do
permutationSum < 0;
foreach element e in currentPermutation do
permutationSum < permutationSum+e (mod n);
if permutationSum is 0 or has been seen before then
| break;
end
if End of currentPermutation then
| numOrderings < numOrderings +1;
end
end
currentPermutation < nextPermutation(currentPermutation);
end
Algorithm 1: Pseudocode of algorithm used to find the number of constructive order-
ings

ACKNOWLEDGEMENTS

This research was funded in part by the Natural Sciences and Engineering Research
Council of Canada. The author would like to thank the referees for their diligent work, as
well as his project advisor, Dr. Amy Feaver, for her gracious continuing support through-
out this project. The author would also like to thank the West Coast Number Theory
Conference of 2017 for providing assistance in proving Theorem[2.1} as well as The King’s
University and The King’s University Department of Computing Science for the oppor-
tunity and facilities required to conduct this research.

REFERENCES

[1] E.N. Gilbert. Latin squares which contain no repeated digrams. SIAM Review, 7(2):189-198, 4 1965.
URL: http://www. jstor.org/stable/2027267.

[2] B Gordon. Sequences in groups with distinct partial products. Pacific J. Math, 11(4):1309-1313, 1961.
URL: https://projecteuclid.org/euclid.pjm/1103036916.

[3] OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences (2019), https://oeis.org/
A141599.

http://www.jstor.org/stable/2027267
https://projecteuclid.org/euclid.pjm/1103036916
https://oeis.org/A141599
https://oeis.org/A141599

MJUM Vol. 4 (2018-2019) Page 12

STUDENT BIOGRAPHIES

Zackary Baker: (Corresponding author: zack@zackb.io) Zackary Baker graduated from
The King’s University in 2018 with a B.Sc. in Computing Science. He is currently con-
tinuing to pursue his research on constructive orderings while tutoring and working as
a lab assistant at The King’s University. He plans to begin graduate studies in Computer
Science in the winter.

mailto:zack@zackb.io

MJUM Vol. 4 (2018-2019) Page 13

Appendix A C++ Algorithm

11

13

15

17

21

23

25

27

29

33

35

This is the algorithm in full used to calculate the results in Section (3| written in C++

/%
Copyright 2019 Zackary Baker

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the ”Software”), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/
or sell copies of the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

*/

#include <stdlib.h> //used for atoi

#include <stdio.h> //used for printf

#include <unistd.h> //used for sysconf

#include <chrono> //used for timekeeping variables

#include <vector> //used for the vector datatype

#include <pthread.h> // used for pthread_create, pthread_join
#include <algorithm> //used for std::next_permutation

//typedef used to make definition of large variables more readable
typedef unsigned long largeNum;

//function prototypes

largeNum factorial (int);

int+ lookupOrdering(int, largeNum);
voidx threadProcessorFunc(void=x);
int verifyOrdering(intx, int);

//definition of the struct used to pass information to each thread

struct Thread_Param {
int id; // the id of the thread, beginning at 0
int n; // the size of the group Z/nZ
largeNum partitionSize;// the number of orderings for the thread to process
intx firstOrdering;//a pointer to an array corresponding to the first
ordering the thread will process
//default constructor; not used
Thread_Param () {}
//main constructor used; takes individual values and sets the corresponding
members of the struct

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

MJUM Vol. 4 (2018-2019) Page 14

Thread_Param(int id, int n, largeNum partitionSize) {
//set the member variables passed in
this —>id = id;
this—>n = n;
this—>partitionSize = partitionSize;
//calculate the ordering this thread will begin calculation with
this —>firstOrdering = lookupOrdering(n, id*partitionSize);
}
//deconstructor; frees firstOrdering
“Thread_Param () {
delete [] firstOrdering;
}

Vs

/>(>>('
+ The main method of the program. This program calculates the number of
constructive orderings for the integers mod n
*/
int main(int argc, char const xargv|[])
{
//exit and print usage information if the program is run with 0 args
if (arge==1){
fprintf (stderr, "USAGE: %s n threadMult\n”, argv[0]);
return 1;
}
// get program parameters from the command line as the program is executed
int n = atoi(argv[1l]);
int threadMult = 1;
//set threadMult if provided by the user
if (arge==3){
threadMult = atoi(argv([2]);
J

//calculate the total number of threads to run based on the multiplier
provided by the user and the total number of online processors at the time

of program execution
int maxThreads = threadMultssysconf (.SCINPROCESSORS.-ONLN) ;

printf(”n is %d, threadMult is %d, total threads to create is %d\n”, n,
threadMult, maxThreads);

//the total number of orderings to calculate; Since we only care about
orderings that start with zero, we only have (n-1)! orderings to check,
and since each constructive ordering of the form (0, k, ...), k<n/2 has
exactly one corresponding constructive ordering (0,n-k,...), we only need
to check the first half of the orderings, hence the division by 2

largeNum orderingCount = factorial (n-1)/2;

//if there arent an evenly divisible number of orderings per thread, we can’
t continue
if (orderingCount%maxThreads!=0) {

81

83

87

89

91

93

121

123

127

MJUM Vol. 4 (2018-2019) Page 15

fprintf(stderr ,” [ERROR] The number of orderings (%ld) is not evenly
divisible across the number of threads (%d)\n”, orderingCount, maxThreads)

return 2;
}

//each thread will process exactly partitionSize orderings
largeNum partitionSize = orderingCount/maxThreads;

//create an array of thread objects
pthread_t threads[maxThreads];

//create the variables used for timekeeping
std :: chrono:: time_point<std :: chrono::system_clock> start, end;
start = std::chrono::system_clock::now();

//launch each thread
for(int i=0;i<maxThreads;i++){
Thread _Paramx tp = new Thread Param (i, n, partitionSize);
int threadStatus = pthread_create(&threads[i], NULL, threadProcessorFunc, (
voidx)tp);
if (threadStatus!=0){// if there is an error creating the thread, exit
fprintf(stderr, ”[ERROR] Error creating thread %d\n”, i);
return 3;
}
}

largeNum constructiveOrderings = O0;

for(int i=0;i<maxThreads;i++){
void* results = NULL;
pthread_join (threads[i], &results);
constructiveOrderings+=(largeNum) (results);

}

//multiply the final result by 2, to compensate for the fact that only the
first half of orderings are checked.
constructiveOrderings*=2;

end = std::chrono::system_clock ::now();

std :: chrono:: duration<double> timeTaken = end-start;

printf ("FINISHED - Total constructive orderings: %ld — Time taken: %f\n”,
constructiveOrderings , timeTaken.count());

return 0;

)
/%%

+ A simple recursive implementation of the factorial function

5+ INPUT:

— n: the value to calculate the factorial of
OUTPUT:
returns n!

129

13

—_

133

135

137

139

141

143

145

147

149

151

153

155

157

159

161

163

165

167

169

171

173

175

177

MJUM Vol. 4 (2018-2019) Page 16

*/
largeNum factorial (int n) {
if (n>1){
return factorial (n—1)xn;
}
else{
return 1;
}
}
/%

+ This method calculates the lexicographical ordering based on a given index
for the integers mod n, minus the first element.

Example:

All permutations of the integers mod 3 are listed as follows, in
lexicographical order:

(0,1,2)

(0,2,1)

(1,0,2)

(1,2,0)

(2,0,1)

(2,1,0)

Indexing these in this order gives the following relation:

0 -> (0,1,2)

1 —> (0,2,1)

2 —> (1,0,2)

3 > (1,2,0)

4 —> (2,0,1)

5 > (2,1,0)

Thus, lookupOrdering(3,4), for example, would return [0,1], which is [2,0,1]
without the first element.

INPUT:
— n: the size of the group
— orderingIndex: the index of the ordering we are interested in

OUTPUT:
— the ordering with index orderinglndex, in lexicographical order, minus
the first element

*/

int+ lookupOrdering(int n, largeNum orderinglndex) {
//tuple is an array which holds the factorial representation of
orderinglndex
intx tuple = new int[n-1];
for(int i=0;i<n—-1;i++){
//calculate the ith coefficient of orderinglndex
int coefficient = orderinglndex/factorial (n-1-1);
tuple[i] = coefficient;
//reduce orderinglndex to calculate the next coefficient
orderingIndex—=factorial (n-1-i)xcoefficient;

}

//create a standard vector of size n with values 0 through n-1

181

183

185

189

191

193

195

213

215

223

225

MJUM Vol. 4 (2018-2019) Page 17

std :: vector<int> orderedList;

for(int i=0;i<n;i++){
orderedList.push_back(i);
}
intx ordering = new int[n];
//for each element in the sequence
for(int i=0;i<n—1;i++){
//set each position to the value of the ordered list, indexed by the
values in tuple created above, then remove that value to prevent
duplicates
ordering[i] = orderedList.at(tuple[i]);
orderedList.erase(orderedList.begin ()+tuple[i]);
}
//manually add the final value to the ordering.
ordering [n-1] = orderedList.front();
//simply create a new array from the old array of one size smaller to remove
the first element
intx nl = new int[n-1];
for(int i=0;i<n—-1;i++){
nl[i] = ordering[i+1];
}
delete [] ordering;
delete [] tuple;
return nl;
}
/%%
+ This method is used by each thread to begin calculation.
+ INPUT:
* — args: a pointer which is cast into a Thread_Param pointer, used to
access parameters intended for the method.
OUTPUT:
— the number of constructive orderings in the range for the thread, cast
into a void pointer
*/

voidx threadProcessorFunc(voidx args){
//cast args into a Thread_Param struct
Thread_Paramx params = (Thread_Param=«) (args);

//extract the members of the params struct

int n = params->n;

largeNum partitionSize = params—>partitionSize;

intx currentOrdering = params—>firstOrdering;

// constructiveOrderings holds the count of how many constructive orderings
are in the range of the thread

largeNum constructiveOrderings = 0;

do{//iterate through each permutation in range and verify each of them.

MJUM Vol. 4 (2018-2019) Page 18

constructiveOrderings+=verifyOrdering (currentOrdering, n);
227 partitionSize ——;

if (partitionSize==0){

229 break;

)

231 }while (std :: next_permutation (currentOrdering , currentOrdering+(n—1)));

233 //clean up allocated memory and return constructiveOrderings
delete params;
235 return (void=x)(constructiveOrderings);

237
J
239
/%%
241 This method determines if a given ordering is a constructive ordering.
INPUT:
243 — ordering: an integer array of size n-1 representing a potential

constructive ordering.

— n: the size of the group

245/ OUIPUT:

returns 1 if ordering is a constructive ordering, and 0 otherwise.

247 +/
int verifyOrdering(int+ ordering, int n){
249
int total = 0;// the running total sum
251 boolx elementsSeen = new bool[n](); // an array to keep track of whether
each index has been seen previously
for(int i=0;i<n—1;i++){
253 total += ordering[i];
total %= n;
255 if (total==0 || elementsSeen|[total]==true || (total==n/2 && i!=n-2)){//if
the running total is 0 or this total has been seen before or the total is
n/2 and is not the final total, return 0 (false)
delete [] elementsSeen;
257 return 0;
}
259 else{//otherwise indicate that we have seen this total for future passes
elementsSeen|[total] = true;
261 }
}
263

//if no total is seen twice, and the other conditions are met, this is a
constructive ordering

265 delete [] elementsSeen;

return 1;

267] }

constructiveOrderingsMultithread.cpp

	1. Introduction
	2. Properties of constructive orderings
	2.1. The natural order
	2.2. Results on constructive orderings
	2.3. Examples

	3. Calculating Constructive Orderings
	3.1. Number of Constructive Orderings
	3.2. Algorithm Discussion

	Acknowledgements
	References
	Student biographies

