
The Minnesota Journal of Undergraduate Mathematics

Sponsored by
School of Mathematics

University of Minnesota
Minneapolis, MN 55455

Properties and Calculations of
Constructive Orderings of Z/nZ

Zackary Baker

The King’s University

The Minnesota Journal of Undergraduate Mathematics

Volume 4 (2018-2019 Academic Year)

MJUM Vol. 4 (2018-2019) Page 1

The Minnesota Journal of Undergraduate Mathematics

Volume 4 (2018-2019 Academic Year)

Properties and Calculations of Constructive
Orderings of Z/nZ

Zackary Baker

The King’s University

Abstract. A sequencing of a finite group G of order n is a sequence g1, g2, ..., gn of the ele-
ments of G whose set of partial products {g1g2 · · ·gi |1 ≤ i ≤ n} contains every element of the
group G. In this paper, we study this in the particular case of additive groups modulo n,
replacing the partial products with partial sums. We make and prove several observations
about these sequencings, and calculate how many there are for n ≤ 16.

To do this, we define an operator called the dagger on a sequence, and collect the results
of this operator into what we call the dagger set of the group. We then analyze several
properties of this set and collect computational data on it.

1. Introduction

This paper proves results on sequenceable groups in the specific case of the additive group
Z/nZ for positive integers n. If any readers of this paper do not know the definition of a
group, but understand the structure of Z/nZ, they can read and understand the majority
of the content of this paper.

The idea of a sequenceable group was first defined in 1961 by B. Gordon[2]:

Definition 1.1. A finite group G of order n is sequenceable if the elements of G can be
arranged in a sequence g1, g2, ..., gn such that the partial products

k∏
i=1

gi ,

are distinct for 1 ≤ k ≤ n.

Here, we reframe this definition into language that is easy to work with in the case of the
additive group Z/nZ. To begin, let ≺ be a strict total order on G. If an additive group G
of size n is ordered so that g1 ≺ g2 ≺ · · · ≺ gn, we denote the kth partial sum, 1 ≤ k ≤ n, by

∗ Corresponding author

MJUM Vol. 4 (2018-2019) Page 2

gk†. That is,

gk† :=
k∑

i=1

gi .

The notation gk† is inspired by the fact that a partial sum can be loosely viewed as an
additive version of a factorial: instead of multiplying a positive integer with all integers
smaller than it, we are adding an integer with all integers smaller than it under ≺. One
might wish to call gk† a sort of additive factorial. Now that we have the notion of these
partial sums, or daggers, as we will call them, we wish to talk about them collectively:

Definition 1.2. Given an additive group G with some strict total order ≺, the dagger set
of G with respect to ≺ is defined to be D≺(G) := {g†≺ | g ∈ G}.

We can now define a sequenceable additive group using this language:

Definition 1.3. A finite additive group G is sequenceable if and only if there exists an
ordering ≺ such that D≺(G) = G.

In this paper we do not only wish to determine whether or not a group is sequenceable,
but rather to know more about the orderings ≺ such that D≺(G) = G. In some literature, a
sequence g1, g2, ..., gn on a finite group G which can be used to show that G is sequenceable
is called a sequencing. We will use the term constructive ordering (of G) to describe an
ordering ≺ such that D≺(G) = G.

Some known results on sequenceable additive groups Z/nZ are:

Proposition 1.4. [2]

(a) An ordering ≺ such that D≺(Z/nZ) = Z/nZ always has its least element equal to 0.
(b) There exists an ordering ≺ such that D≺(Z/nZ) = Z/nZ if and only if n is even. (Note

that in contrast, not every group of even order is sequenceable; the Klein 4 group is an
example of an even order group that is not sequenceable.)

(c) (Dagger Uniqueness Property) For any gi , gj ∈ Z/nZ, if gi† = gj† for i , j, then
D≺(Z/nZ) ,Z/nZ.

Though these results are well-known for sequenceable groups, we state and prove Propo-
sition 1.4(a) and the forward direction of Proposition 1.4(b) here. This is because the
proofs in the literature need more mathematical background than we are assuming all
readers of this paper have. Here, we write the proofs using elementary notions.

Proof of Proposition 1.4(a):

Proof. This proof is by contradiction. Assume that 0 is not the least element of the order-
ing ≺. Then gi = 0 for some i such that 2 ≤ i ≤ n. Then gi† = 0+gi−1† = gi−1†, so an element
is duplicated and the dagger set is smaller than the group. Thus, D≺ (Z/nZ) cannot equal
Z/nZ, and so a contradiction is reached. �

MJUM Vol. 4 (2018-2019) Page 3

Remark. Here, we remind ourselves of the definition of triangular numbers, and a formula
for them, as they will be useful in the following proof and throughout this paper. If ≺ is
any order on Z/nZ, and the elements of Z/nZ can be written as g1 ≺ g2 ≺ · · · ≺ gn, then
we always have

gn† =
n−1∑
i=0

i =
n(n− 1)

2
.

This is the same as the (n − 1)st triangular number, which is denoted Tn−1. It is well
known that if n is odd then Tn−1 ≡ 0 (mod n), and if n is even, Tn−1 ≡ n

2 (mod n), and will

be shown here. From the above definition, Tn = n(n+1)
2 . If n is even, then n

2 in an integer,

meaning it is in Z/nZ. We can rewrite Tn as n2+n
2 , or n2

2 + n
2 = nn

2 + n
2 . Taking this expression

mod n clearly shows that Tn ≡ n
2 (mod n). If n is odd, then n + 1 is even, and n+1

2 is an
integer. Then, since Tn = n · n+1

2 , it is clear to see that Tn ≡ 0 (mod n).

Partial proof of Proposition 1.4(b): Here, we prove the contrapositive of the forward direc-
tion of this “if and only if” statement. That is, we prove that if n is odd, then we have
D≺ (Z/nZ) ,Z/nZ for any ordering ≺.

Proof. We prove this by showing that D≺(Z/nZ) will have fewer than n elements whenever
n is odd. By Proposition 1.4(a) we know that 0 must be the first element of this ordering;
i.e. g1 = 0, and g1† = 0. Also, as remarked above, gn† = Tn−1 ≡ 0 (mod n). Thus D≺(Z/nZ)
is always smaller than Z/nZ when n is odd. �

When we first began writing this paper, we were not only interested in sequenceable
groups, but also in groups where the dagger set was equal to a subgroup of the original
group. We quickly observed that the dagger set will never give a proper subgroup of
Z/nZ. We state and prove this fact below, and in the remainder of this paper only focus
on the case where the dagger set is equal to the entire group.

Proposition 1.5. If D≺ (Z/nZ) is a proper subset of Z/nZ, then it is not a subgroup of Z/nZ.

Proof. This proof is by contradiction. Assume that there exists an order ≺ such that
D≺ (Z/nZ) is a subgroup of Z/nZ. Since Z/nZ is cyclic, we have that D≺ (Z/nZ) =<k>
for some nontrivial divisor k of n. Then every element of D≺ (Z/nZ) is a multiple of k.
Let g1 ≺ g2 ≺ · · · ≺ gn be the order of the elements of Z/nZ under ≺. For some i ∈ {1, ...,n},
gi = 1. If i = 1 then gi† = 1 <<k>, so assume i > 1. Then, either gi−1† or gi† will not be
in D≺ (Z/nZ), since they differ by 1 and thus cannot both be multiples of k, so a contra-
diction is reached. Thus, there are no orderings on Z/nZ such that D≺(Z/nZ) is a proper
subgroup of Z/nZ for any n ∈N. �

2. Properties of constructive orderings

In this section, we prove several properties of constructive orderings for Z/nZ. As ob-
served in the previous section, constructive orderings only exist when n is even. There-
fore, throughout this section and the rest of the paper, we will assume that n is even.

MJUM Vol. 4 (2018-2019) Page 4

2.1. The natural order. If an ordering ≺ is defined by 0 ≺ 1 ≺ · · · ≺ n − 1, then we call ≺
the natural order, and denote it <. In this section we consider whether the natural order
is ever a constructive ordering, and if so, when it is or is not.

As an example we compute D<(Z/nZ) for n ≤ 16, and determine whether or not it is a
constructive ordering.

n D<(Z/nZ) Is < a constructive ordering for Z/nZ?
2 {0,1} X
4 {0,1,2,3} X
6 {0,1,3,4} ×
8 {0,1,2,3,4,5,6,7} X

10 {0,1,3,5,6,8} ×
12 {0,1,3,4,6,7,9,10} ×
14 {0,1,3,6,7,8,10,13} ×
16 {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15} X

Table 1. Dagger subsets of Z/nZ, n ≤ 16 using the natural order

In the small set of examples, we do see that the natural order is a constructive ordering
for n = 2,4,8 and 16. After computing a number of other examples, we were led to the
following conclusion:

Theorem 2.1. For < the natural order, D<(Z/nZ) = Z/nZ if and only if n = 2k for some
positive integer k.

Proof. We will prove the forward direction by contrapositive. Let n = (2` + 1) · x, where
` ∈N and x ≥ 2 is a power of 2, and let c be the smallest positive integer such that cx > `. If
there exist gi , gj ∈Z/nZ such that gi† = gj†, then < is not a constructive ordering. Choose
gi = cx − ` − 1 and gj = cx + `. We must confirm that gi and gj are reduced modulo n. We
begin by showing that gi ≥ 0. We begin with the inequality cx > `. This inequality is the
same as cx ≥ ` + 1. Rearranging this equation, we have that cx − ` − 1 ≥ 0. Next, we will
show that gj < n. Since c is defined to be the smallest integer such that cx > `, we know
that (c − 1)x ≤ `. From this, we obtain (c − 1)x + ` ≤ 2`, from which we can derive that
(c−1)x+` < 2`x. Adding x to both sides gives cx+` < 2`x+x. Rearranging the right hand
side results in the inequality cx+ ` < x(2` + 1), which we can rewrite as cx+ ` < n. Finally,
since cx− ` −1 is clearly less than cx+ `, we know that 0 ≤ gi < gj < n. Therefore, gi and gj
are reduced modulo n.

Calculating gi† and gj†, we get

gi† = 0 + 1 + 2 + · · ·+ (cx − ` − 1)

and

gj† = 0 + 1 + 2 + · · ·+ (cx − `) + (cx − ` + 1) + · · ·+ (cx − 1) + cx+ (cx+ 1) + · · ·+ (cx+ `).

Thus,

gj † −gi† = (cx+ `) + · · ·+ (cx+ 1) + cx+ (cx − 1) + · · ·+ (cx − ` + 1) + (cx − `).

MJUM Vol. 4 (2018-2019) Page 5

There are 2` + 1 terms in this series, and the average of the series is cx. Thus,

gj † −gi† = (2` + 1) · cx = c · (2` + 1)x = c ·n ≡ 0 (mod n).

This means that gj† = gi†, and so by Proposition 1.4(c), the natural ordering is not a
constructive ordering for Z/nZ.

Now we will prove the reverse direction. This proof will be by induction on k. For the
base case of k = 1, the group in question is Z/2Z. The natural order for Z/2Z is (0,1).
Calculating the dagger set for this ordering gives 0† = 0 and 1† = 0 + 1 = 1, so we have
D<(Z/2Z) = Z/2Z, and the base case holds. Assume that for some positive integer m, we
have that D<(Z/2m

Z) = Z/2m
Z. Now consider D<(Z/2m+1

Z). Define

D1 := {0†,1†, . . . (2m − 1)†}

and
D2 := {2m†, (2m + 1)†, . . . , (2m+1 − 1)†}.

Here, D1 and D2 are subsets of D<(Z/2m+1
Z). Since the partial sums 0†,1†, . . . , (2m − 1)†

are all unique modulo 2m, by the assumption that D<(Z/2m
Z) = Z/2m

Z, it follows that
these are also all unique modulo 2m+1. Thus there are no repeat elements in D1, a subset
of D<(Z/2m+1

Z).

Thus, to prove that D<(Z/2m+1
Z) = Z/2m+1

Z we must prove that every dagger in D2
evaluates to a unique element in Z/2m+1

Z and also that D1 ∩D2 = ∅, since this would
imply that

∣∣∣D<(Z/2m+1
Z)

∣∣∣ = 2m+1 and thus the dagger set is equal to the whole group.

First, we show that 2m†, (2m + 1)†, . . . , (2m+1 − 1)† are all unique mod 2m+1. Each of these
expressions can be written as (2m + c)† where 0 ≤ c ≤ 2m − 1. We observe that

(2m + c)† = (2m + c) + (2m + c − 1) + · · ·+ (2m + 2) + (2m + 1) + 2m

+ (2m − 1) + (2m − 2) + · · ·+ (2m − (c − 1)) + (2m − c)
+ (2m − (c+ 1)) + (2m − (c+ 2)) + · · ·+ 1

= (2m + c) + (2m + c − 1) + · · ·+ (2m + 2) + (2m + 1) + 2m

+ (2m − c) + (2m − (c − 1)) + · · ·+ (2m − 2) + (2m − 1)

+ (2m − (c+ 1)) + (2m − (c+ 2)) + · · ·+ 1.

If we look at the last three lines of this equation, we see that there is a lot of simplification
that we can do, since we’re adding, for example, (2m + c) with (2m − c) in the line below
it. The sum of these two quantities adds to 2m+1. The same cancellation is possible with
several other pairs of terms. Thus we have

(2m + c)† =
(
2m+1 + 2m+1 + · · ·+ 2m+1

)
+ 2m

+ (2m − (c+ 1)) + (2m − (c+ 2)) + · · ·+ 1

≡ 2m + (2m − (c+ 1)) + (2m − (c+ 2)) + · · ·+ 1 (mod 2m+1)

= 2m + (2m − (c+ 1)) † .

MJUM Vol. 4 (2018-2019) Page 6

Thus, since each element in D2 can be written as 2m + (2m − (c + 1))† for a unique integer
c, and we know that the quantities (2m − (c + 1))† are all unique mod 2m+1, then clearly
the quantities 2m + (2m− (c+ 1))† are also all unique mod 2m+1. Therefore, D2 contains 2m

distinct elements.

Now to show that D1∩D2 = ∅we observe that every element in D2 differs from an element
in D1 by 2m. Since 0†,1†, . . . , (2m−1)† are all unique mod 2m, no two of these daggers differ
by 2m, or else they would not be unique. Thus we must have that D1 ∩D2 = ∅. Therefore
D<(Z/2m+1

Z) = Z/2m+1
Z, and the proof is established by induction. �

2.2. Results on constructive orderings. In this section we make several observations
about constructive orderings and prove them. Throughout this section, we assume n is
an even, positive integer.

Proposition 2.2. If n > 2, n
2 cannot be the greatest element in a constructive ordering.

Proof. This will be a proof by contradiction. Assume n
2 is the greatest element of Z/nZ

under a constructive ordering ≺. Then, since the dagger of the largest element of Z/nZ
is Tn−1, n

2† = Tn−1 ≡ n
2 (mod n). Let g be the element directly preceding n

2 under the order
≺. Then, g† = n

2 †−
n
2 = n

2 −
n
2 = 0. But since 0 must be the first element under this order by

Proposition 1.4(a), we have two separate elements with daggers equal to 0. Therefore, by
Proposition 1.4(c), D≺ (Z/nZ) ,Z/nZ. �

Proposition 2.3. The value n
2 cannot be the second smallest element in a constructive ordering.

Proof. By Proposition 1.4(a) we know that the least element in a constructive ordering is
0. If n

2 is the second least element, then n
2† = n

2 +0 = n
2 . However, we know that the dagger

of the greatest element of Z/nZ is n
2 (as stated in the remark in the introduction). Thus,

if the second least element is n
2 , then n

2† equals gn†, so by Proposition 1.4(c), ≺ is not a
constructive ordering. �

Proposition 2.4. Let g1 ≺ · · · ≺ gn be an ordering such that gi + gi+1 + · · · + gi+j = n for some
i, j ∈ {2, . . . ,n− 1}, j > i such that i + j ≤ n. Then ≺ is not a constructive ordering.

Proof. Clearly,

gi+j† = gi+j + gi+j−1 + · · ·+ gi+1 + gi + gi−1† = n+ gi−1 † .

Then gi+j† ≡ gi−1† (mod n), and so by Proposition 1.4(c), ≺ is not a constructive ordering.
�

The next propositions concern more than one ordering, and their relationship to each
other in terms of whether or not two related orderings can both be constructive orderings.
In these proofs, it will be necessary to distinguish whether or not the dagger is being taken
with respect to an ordering ≺1 or an ordering ≺2. As such, we will use a subscript to clear
up this ambiguity, using the notation †≺1

or †≺2
to clarify which ordering is being used.

Proposition 2.5. Let ≺1 be the ordering 0 ≺1 g2 ≺1 g3 ≺1 g4 ≺1 · · · ≺1 gn and ≺2 be the
ordering 0 ≺2 g3 ≺2 g2 ≺2 g4 ≺2 · · · ≺2 gn; this is the first order with the second and third
elements swapped. If ≺1 is a constructive ordering then ≺2 is not.

MJUM Vol. 4 (2018-2019) Page 7

Proof. The first three daggers under ≺1 are 0†≺1
= 0, g2†≺1

= g2 and g3†≺1
= g2 + g3. When

the positions of g2 and g3 are interchanged in the order, the first three daggers under ≺2
are 0†≺2

= 0, g3†≺2
= g3 and g2†≺2

= g2 + g3. If ≺1 is a constructive ordering for Z/nZ, the
value g3 is in D≺1

(Z/nZ). Since this value is not equal to any of the first three daggers
under ≺1, and gi†≺1

= gi†≺2
for all i > 3, we have that g3 = gj†≺2

for some j ∈ {4, . . . ,n}.
Thus under ≺2 the value g3 is given by two daggers: g3†≺2

and gi†≺2
, so by Proposition

1.4(c), ≺2 cannot be a constructive ordering. �

Proposition 2.6. Let ≺1 be a constructive ordering 0 ≺1 g2 ≺1 g3 ≺1 · · · ≺1 gn. Then the
ordering ≺2 given by 0 ≺2 n− g2 ≺2 n− g3 ≺2 · · · ≺2 n− gn is also a constructive ordering.

Proof. Since ≺1 is a constructive ordering then each partial sum under ≺1 is a distinct
residue mod n. We also observe that for each i ∈ {2, ...,n}, taking partial sums under ≺2 we
have

(n− gi)†≺2
≡ −gi − gi−1 − gi−2 − · · · − g2 − 0 (mod n).

Thus, (n− gi)†≺2
≡ −

(
gi†≺1

)
(mod n). Since all gi†≺1

must be distinct modulo n, so are all
−gi†≺1

. Thus, ≺2 gives us n distinct daggers and is therefore a constructive ordering. �

Proposition 2.7. Let ≺1 be a constructive ordering 0 ≺1 g2 ≺1 g3 ≺1 · · · ≺1 gn. Then the
ordering ≺2 corresponding to 0 ≺2 gn ≺2 · · · ≺2 g3 ≺2 g2 is also a constructive ordering.

Proof. Observe that for 2 ≤ i ≤ n

gi†≺2
= 0 + gn + gn−1 + · · ·+ gi
= (0 + gn + gn−1 + · · ·+ gi + gi−1 + · · ·+ g2)− (gi−1 + · · ·+ g2)

=
n
2
− gi−1 †≺1

.

Since all of the elements gi−1†≺1
are unique mod n, then so are the terms gi†≺2

= n
2−gi−1†≺1

.
Thus by Proposition 1.4(c), ≺2 is a constructive ordering. �

2.3. Examples. Here we will compute some examples of dagger sets and verify whether
certain orderings are constructive or not, to help the reader see how the above observa-
tions interact with these sets.

Example 2.8. We will naively determine if the ordering ≺= (0,3,1,4,7,2,5,6) is a con-
structive ordering for Z/8Z. To begin, we must calculate the daggers for each element of

MJUM Vol. 4 (2018-2019) Page 8

Z/8Z, to construct D≺(Z/8Z). All calculations are reduced modulo 8:

0† = 0 (mod 8)

3† = 0 + 3 = 3 (mod 8)

1† = 0 + 3 + 1 = 4 (mod 8)

4† = 0 + 3 + 1 + 4 = 8 ≡ 0 (mod 8)

7† = 0 + 3 + 1 + 4 + 7 = 15 ≡ 7 (mod 8)

2† = 0 + 3 + 1 + 4 + 7 + 2 = 17 ≡ 1 (mod 8)

5† = 0 + 3 + 1 + 4 + 7 + 2 + 5 = 22 ≡ 6 (mod 8)

6† = 0 + 3 + 1 + 4 + 7 + 2 + 5 + 6 = 28 ≡ 4 (mod 8)

Thus, the dagger set of Z/8Z under ≺ is D≺(Z/8Z) = {0,1,3,4,6,7}. Since this set is miss-
ing 2 and 5, D≺(Z/8Z) ,Z/8Z, and so ≺ is not a constructive ordering on Z/8Z.

Example 2.9. To show Propositions 1.4(a) and 1.4(c) in action, we will determine if

≺= (1,0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)

is a constructive ordering on Z/26Z. As with the previous example, we will calculate the
daggers of Z/26Z under ≺:

1† = 1

0† = 1 + 0 = 1

We can stop here, and apply Proposition 1.4(c), since 1† = 0†. As well, Proposition 1.4(a)
also directly shows that ≺ is not a constructive ordering on Z/26Z.

Example 2.10. We will attempt to find a counterexample to Proposition 1.4(b) by check-
ing each ordering on Z/3Z to see if a constructive ordering exists. We have 6 orderings
to check:

(0,1,2), (0,2,1)

(1,0,2), (1,2,0)

(2,0,1), (2,1,0)

By Proposition 1.4(a), we know that if ≺ is a constructive ordering, then it must start with
0. Thus, we only have two orderings to check. For the first ordering, (0,1,2), 0† = 0,
1† = 1, and 2† = 1+2 = 3 ≡ 0 (mod 3), and so the resulting dagger set is {0,1}. This means
this ordering is not a constructive ordering on Z/3Z. For the second ordering, 0† = 0,
2† = 2, and 1† = 2 + 1 = 3 ≡ 0 (mod 3). Thus, the resulting dagger set is {0,2}, and again
the ordering is not a constructive ordering on Z/3Z. Therefore, there are no constructive
orderings on Z/3Z.

3. Calculating Constructive Orderings

In this section we compute the number of constructive orderings on Z/nZ for even val-
ues of n such that n ≤ 16. We will see that the number of orderings grows quickly and

MJUM Vol. 4 (2018-2019) Page 9

becomes increasingly complex to compute as n grows. As well, the algorithm used to
calculate these orderings will be discussed.

3.1. Number of Constructive Orderings. For use in this section, we will define the set

C(G) := {≺|≺ is a constructive ordering on G}.
As well, we use |C(G)| to denote the number of constructive orderings on G. We have the
following values for |C(Z/nZ)|:

n |C(Z/nZ)|
2 1
4 2
6 4
8 24

10 288
12 3856
14 89328
16 2755968

Table 2. The number of constructive orderings for Z/nZ, n ≤ 16, n even

This sequence corresponds to OEIS sequence A141599[3].

As an example, we include the complete list of constructive orderings on Z/nZ for n ≤ 6:

n List of constructive orderings for Z/nZ
2 (0,1)

4
(0,1,2,3)
(0,3,2,1)

6

(0,1,4,3,2,5)
(0,2,5,3,1,4)
(0,4,1,3,5,2)
(0,5,2,3,4,1)

Table 3. All constructive orderings on Z/nZ, n ≤ 6, n even

In order to compute the orderings which belong in C(Z/nZ), we wrote a basic C++ pro-
gram that used some of the facts outlined in the propositions above to restrict our search
in an otherwise brute force algorithm (for example, we only considered orderings be-
ginning with 0 instead of all possible orderings). The computation times in the table
below are for running our algorithm on a machine with an Intel® CoreTM i7-4790 CPU @
3.60GHz, multithreaded with 8 cores.

MJUM Vol. 4 (2018-2019) Page 10

n Time to calculate |C(Z/nZ)| (in seconds)1

2 � 1
4 � 1
6 � 1
8 � 1

10 0.02
12 0.93
14 148.54
16 26805.91

Table 4. Times to calculate the number of constructive orderings on Z/nZ
on a modern machine.

One sees that computation time grows very quickly with n. The running time for n = 16
was close to 8 hours, and we expect that this time would continue to increase at a rapid
rate.

We know that the total number of orderings on a finite group G is |G|!, and the total
number of orderings on G which begin with the identity is (|G|−1)! (which by Proposition
1.4(a), we assume gives us a decent starting point for potential constructive orderings).
In the table below, we compare these quantities with |C(Z/nZ)|.

n |C(Z/nZ)|
n!

|C(Z/nZ)|
(n−1)!

2 1
2 = 50% 1

1 = 100%

4 2
24 ≈ 8% 2

3 ≈ 33%

6 4
720 ≈ 0.55% 4

120 ≈ 3.33%

8 24
40320 ≈ 0.060% 24

5040 ≈ 0.48%

10 288
3628800 ≈ 0.0079% 288

362880 ≈ 0.079%
Table 5. Ratios of the number of constructive orderings to the total number
of orderings on Z/nZ, n ≤ 10, n even

From Table 5, it quickly becomes apparent that constructive orderings grow very sparse
in the space of possible orderings for Z/nZ, even when we only look at orderings which
start with the identity. Thus, we are motivated to find more strict criteria for constructive
orderings which are easily computable.

1It is fun to note that similar results were calculated in [1], in which the authors state that “An IBM 7090
prepared (our results for n = 2 through n = 10) in 72 seconds...”. This illustrates both how far computation
power has come since the mid-60s, as well as the sheer difficulty this problem faces for larger values of n.

MJUM Vol. 4 (2018-2019) Page 11

3.2. Algorithm Discussion. The algorithm used to calculate the number of constructive
orderings for a particular value of n is presented in pseduocode, as well as in full in
Appendix A.

numOrderings← 0;
currentP ermutation← (0,1,2,3, . . . ,n− 1);
while currentP ermutation not (0,n− 1,n− 2, . . . ,2,1) do

permutationSum← 0;
foreach element e in currentP ermutation do

permutationSum← permutationSum+ e (mod n);
if permutationSum is 0 or has been seen before then

break;
end
if End of currentP ermutation then

numOrderings← numOrderings+ 1;
end

end
currentP ermutation← nextP ermutation(currentP ermutation);

end
Algorithm 1: Pseudocode of algorithm used to find the number of constructive order-
ings

Acknowledgements

This research was funded in part by the Natural Sciences and Engineering Research
Council of Canada. The author would like to thank the referees for their diligent work, as
well as his project advisor, Dr. Amy Feaver, for her gracious continuing support through-
out this project. The author would also like to thank the West Coast Number Theory
Conference of 2017 for providing assistance in proving Theorem 2.1, as well as The King’s
University and The King’s University Department of Computing Science for the oppor-
tunity and facilities required to conduct this research.

References

[1] E.N. Gilbert. Latin squares which contain no repeated digrams. SIAM Review, 7(2):189–198, 4 1965.
URL: http://www.jstor.org/stable/2027267.

[2] B Gordon. Sequences in groups with distinct partial products. Pacific J. Math, 11(4):1309–1313, 1961.
URL: https://projecteuclid.org/euclid.pjm/1103036916.

[3] OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences (2019), https://oeis.org/
A141599.

http://www.jstor.org/stable/2027267
https://projecteuclid.org/euclid.pjm/1103036916
https://oeis.org/A141599
https://oeis.org/A141599

MJUM Vol. 4 (2018-2019) Page 12

Student biographies

Zackary Baker: (Corresponding author: zack@zackb.io) Zackary Baker graduated from
The King’s University in 2018 with a B.Sc. in Computing Science. He is currently con-
tinuing to pursue his research on constructive orderings while tutoring and working as
a lab assistant at The King’s University. He plans to begin graduate studies in Computer
Science in the winter.

mailto:zack@zackb.io

MJUM Vol. 4 (2018-2019) Page 13

Appendix A C++ Algorithm

This is the algorithm in full used to calculate the results in Section 3, written in C++

1 /*
Copyright 2019 Zackary Baker

3

Permission i s hereby granted , f r e e of charge , to any person obtaining a copy
of t h i s software and a s s o c i a t e d documentation f i l e s (the ” Software ”) , to
deal in the Software without r e s t r i c t i o n , including without l i m i t a t i o n the

r i g h t s to use , copy , modify , merge , publish , d i s t r i b u t e , subl icense , and/
or s e l l copies of the Software , and to permit persons to whom the Software

i s furnished to do so , s u b j e c t to the fol lowing condi t ions :
5 The above copyright n o t i c e and t h i s permission n o t i c e s h a l l be included in a l l

copies or s u b s t a n t i a l port ions of the Software .
THE SOFTWARE IS PROVIDED ”AS IS ” , WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY , WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

7 */

9 #include < s t d l i b . h> // used fo r a t o i
include < s t d i o . h> // used for p r i n t f

11 #include <unistd . h> // used fo r sysconf
include <chrono> // used for timekeeping v a r i a b l e s

13 #include <vector > // used for the vector datatype
include <pthread . h> // used for pthread create , p t hread jo in

15 #include <algorithm> // used for std : : next permutation

17

// typedef used to make d e f i n i t i o n of l a r g e v a r i a b l e s more readable
19 typedef unsigned long largeNum ;

21 // funct ion prototypes
largeNum f a c t o r i a l (i n t) ;

23 i n t * lookupOrdering (int , largeNum) ;
void * threadProcessorFunc (void *) ;

25 i n t ver i fyOrdering (i n t * , i n t) ;

27

// d e f i n i t i o n of the s t r u c t used to pass information to each thread
29 s t r u c t Thread Param {

i n t id ; // the id of the thread , beginning at 0
31 i n t n ; // the s i z e of the group Z/nZ

largeNum p a r t i t i o n S i z e ; // the number of order ings for the thread to process
33 i n t * f i r s t O r d e r i n g ; // a pointer to an array corresponding to the f i r s t

ordering the thread w i l l process
// defau l t cons t ruc tor ; not used

35 Thread Param () { }
//main cons t ruc tor used ; takes indiv idual values and s e t s the corresponding

members of the s t r u c t

MJUM Vol. 4 (2018-2019) Page 14

37 Thread Param (i n t id , i n t n , largeNum p a r t i t i o n S i z e) {
// s e t the member v a r i a b l e s passed in

39 th i s −> id = id ;
th i s −>n = n ;

41 th i s −>p a r t i t i o n S i z e = p a r t i t i o n S i z e ;
// c a l c u l a t e the ordering t h i s thread w i l l begin c a l c u l a t i o n with

43 th i s −> f i r s t O r d e r i n g = lookupOrdering (n , id * p a r t i t i o n S i z e) ;
}

45 // deconstructor ; f r e e s f i r s t O r d e r i n g
˜ Thread Param () {

47 d e l e t e [] f i r s t O r d e r i n g ;
}

49

} ;
51

53 /* *
* The main method of the program . This program c a l c u l a t e s the number of

c o n s t r u c t i v e order ings f or the i n t e g e r s mod n
55 */

i n t main (i n t argc , char const * argv [])
57 {

// e x i t and pr int usage information i f the program i s run with 0 args
59 i f (argc ==1) {

f p r i n t f (s tderr , ”USAGE: %s n threadMult \n” , argv [0]) ;
61 return 1 ;

}
63 // get program parameters from the command l i n e as the program i s executed

i n t n = a t o i (argv [1]) ;
65 i n t threadMult = 1 ;

// s e t threadMult i f provided by the user
67 i f (argc ==3) {

threadMult = a t o i (argv [2]) ;
69 }

71 // c a l c u l a t e the t o t a l number of threads to run based on the m u l t i p l i e r
provided by the user and the t o t a l number of onl ine processors at the time

of program execution
i n t maxThreads = threadMult * sysconf (SC NPROCESSORS ONLN) ;

73

p r i n t f (”n i s %d , threadMult i s %d , t o t a l threads to c r e a t e i s %d\n” , n ,
threadMult , maxThreads) ;

75 // the t o t a l number of order ings to c a l c u l a t e ; Since we only care about
order ings that s t a r t with zero , we only have (n−1) ! order ings to check ,
and s i nc e each c o n s t r u c t i v e ordering of the form (0 , k , . . .) , k<n/2 has
e x a c t l y one corresponding c o n s t r u c t i v e ordering (0 , n−k , . . .) , we only need
to check the f i r s t h a l f of the orderings , hence the d i v i s i o n by 2

largeNum orderingCount = f a c t o r i a l (n−1) / 2 ;
77

// i f there arent an evenly d i v i s i b l e number of order ings per thread , we can ’
t continue

79 i f (orderingCount%maxThreads !=0) {

MJUM Vol. 4 (2018-2019) Page 15

f p r i n t f (s tderr , ” [ERROR] The number of order ings (%ld) i s not evenly
d i v i s i b l e ac ros s the number of threads (%d) \n” , orderingCount , maxThreads)
;

81 return 2 ;
}

83 // each thread w i l l process e x a c t l y p a r t i t i o n S i z e order ings
largeNum p a r t i t i o n S i z e = orderingCount /maxThreads ;

85

// c r e a t e an array of thread o b j e c t s
87 pthread t threads [maxThreads] ;

89

// c r e a t e the v a r i a b l e s used fo r timekeeping
91 std : : chrono : : t ime point <std : : chrono : : system clock > s t a r t , end ;

s t a r t = std : : chrono : : system clock : : now () ;
93

// launch each thread
95 fo r (i n t i =0; i <maxThreads ; i ++) {

Thread Param * tp = new Thread Param (i , n , p a r t i t i o n S i z e) ;
97 i n t threadStatus = pthread crea te (& threads [i] , NULL, threadProcessorFunc , (

void *) tp) ;
i f (threadStatus !=0) { // i f there i s an e r r o r c r e a t i n g the thread , e x i t

99 f p r i n t f (s tderr , ” [ERROR] Error c r e a t i n g thread %d\n” , i) ;
return 3 ;

101 }
}

103

largeNum construct iveOrder ings = 0 ;
105

fo r (i n t i =0; i <maxThreads ; i ++) {
107 void * r e s u l t s = NULL;

pth read jo in (threads [i] , &r e s u l t s) ;
109 construct iveOrder ings +=(largeNum) (r e s u l t s) ;

}
111

// multiply the f i n a l r e s u l t by 2 , to compensate fo r the f a c t that only the
f i r s t h a l f of order ings are checked .

113 construct iveOrder ings *=2;

115 end = std : : chrono : : system clock : : now () ;
s td : : chrono : : duration<double> timeTaken = end− s t a r t ;

117 p r i n t f (”FINISHED − Total c o n s t r u c t i v e order ings : %ld − Time taken : %f \n” ,
construct iveOrder ings , timeTaken . count ()) ;

119

return 0 ;
121 }

123 /* *
* A simple r e c u r s i v e implementation of the f a c t o r i a l funct ion

125 * INPUT :
− n : the value to c a l c u l a t e the f a c t o r i a l of

127 OUTPUT:
re turns n !

MJUM Vol. 4 (2018-2019) Page 16

129 */
largeNum f a c t o r i a l (i n t n) {

131 i f (n>1) {
return f a c t o r i a l (n−1) *n ;

133 }
e l s e {

135 return 1 ;
}

137 }

139 /*
* This method c a l c u l a t e s the l e x i c o g r a p h i c a l ordering based on a given index

fo r the i n t e g e r s mod n , minus the f i r s t element .
141 Example :

All permutations of the i n t e g e r s mod 3 are l i s t e d as fol lows , in
l e x i c o g r a p h i c a l order :

143 (0 , 1 , 2)
(0 , 2 , 1)

145 (1 , 0 , 2)
(1 , 2 , 0)

147 (2 , 0 , 1)
(2 , 1 , 0)

149

Indexing these in t h i s order g ives the fol lowing r e l a t i o n :
151 0 −> (0 , 1 , 2)

1 −> (0 , 2 , 1)
153 2 −> (1 , 0 , 2)

3 −> (1 , 2 , 0)
155 4 −> (2 , 0 , 1)

5 −> (2 , 1 , 0)
157

Thus , lookupOrdering (3 , 4) , f o r example , would return [0 , 1] , which i s [2 , 0 , 1]
without the f i r s t element .

159

INPUT :
161 − n : the s i z e of the group

− orderingIndex : the index of the ordering we are i n t e r e s t e d in
163 OUTPUT:

− the ordering with index orderingIndex , in l e x i c o g r a p h i c a l order , minus
the f i r s t element

165 */
i n t * lookupOrdering (i n t n , largeNum orderingIndex) {

167 // tuple i s an array which holds the f a c t o r i a l r e p r e s e n t a t i o n of
orderingIndex

i n t * tuple = new i n t [n−1] ;
169 fo r (i n t i =0; i <n−1; i ++) {

// c a l c u l a t e the i t h c o e f f i c i e n t of orderingIndex
171 i n t c o e f f i c i e n t = orderingIndex / f a c t o r i a l (n−1− i) ;

tuple [i] = c o e f f i c i e n t ;
173 // reduce orderingIndex to c a l c u l a t e the next c o e f f i c i e n t

orderingIndex−= f a c t o r i a l (n−1− i) * c o e f f i c i e n t ;
175 }

177 // c r e a t e a standard vector of s i z e n with values 0 through n−1

MJUM Vol. 4 (2018-2019) Page 17

std : : vector < int > orderedLis t ;
179 fo r (i n t i =0; i <n ; i ++) {

orderedLis t . push back (i) ;
181 }

i n t * ordering = new i n t [n] ;
183 // for each element in the sequence

fo r (i n t i =0; i <n−1; i ++) {
185 // s e t each p o s i t i o n to the value of the ordered l i s t , indexed by the

values in tuple created above , then remove that value to prevent
d up l i c a t e s
ordering [i] = orderedLis t . a t (tuple [i]) ;

187 orderedLis t . e rase (orderedLis t . begin () +tuple [i]) ;
}

189 // manually add the f i n a l value to the ordering .
ordering [n−1] = orderedLis t . f r o n t () ;

191

// simply c r e a t e a new array from the old array of one s i z e smaller to remove
the f i r s t element

193 i n t * nl = new i n t [n−1] ;
fo r (i n t i =0; i <n−1; i ++) {

195 nl [i] = ordering [i + 1] ;
}

197

d e l e t e [] ordering ;
199 d e l e t e [] tuple ;

201 return nl ;

203

}
205

207 /* *
* This method i s used by each thread to begin c a l c u l a t i o n .

209 * INPUT :
* − args : a pointer which i s c a s t in to a Thread Param pointer , used to

a c c es s parameters intended for the method .
211 OUTPUT:

− the number of c o n s t r u c t i v e order ings in the range for the thread , c a s t
in to a void pointer

213 */
void * threadProcessorFunc (void * args) {

215 // c a s t args in to a Thread Param s t r u c t
Thread Param * params = (Thread Param *) (args) ;

217

// e x t r a c t the members of the params s t r u c t
219 i n t n = params−>n ;

largeNum p a r t i t i o n S i z e = params−>p a r t i t i o n S i z e ;
221 i n t * currentOrdering = params−> f i r s t O r d e r i n g ;

// construct iveOrder ings holds the count of how many c o n s t r u c t i v e order ings
are in the range of the thread

223 largeNum construct iveOrder ings = 0 ;

225 do { // i t e r a t e through each permutation in range and v e r i f y each of them .

MJUM Vol. 4 (2018-2019) Page 18

construct iveOrder ings+=veri fyOrdering (currentOrdering , n) ;
227 p a r t i t i o n S i z e −−;

i f (p a r t i t i o n S i z e ==0) {
229 break ;

}
231 }while (std : : next permutation (currentOrdering , currentOrdering +(n−1))) ;

233 // clean up a l l o c a t e d memory and return construct iveOrder ings
d e l e t e params ;

235 return (void *) (construct iveOrder ings) ;

237

}
239

/* *
241 This method determines i f a given ordering i s a c o n s t r u c t i v e ordering .

INPUT :
243 − ordering : an i n t e g e r array of s i z e n−1 represent ing a p o t e n t i a l

c o n s t r u c t i v e ordering .
− n : the s i z e of the group

245 OUTPUT:
re turns 1 i f ordering i s a c o n s t r u c t i v e ordering , and 0 otherwise .

247 */
i n t ver i fyOrdering (i n t * ordering , i n t n) {

249

i n t t o t a l = 0 ; // the running t o t a l sum
251 bool * elementsSeen = new bool [n] () ; // an array to keep track of whether

each index has been seen previous ly
fo r (i n t i =0; i <n−1; i ++) {

253 t o t a l += ordering [i] ;
t o t a l %= n ;

255 i f (t o t a l ==0 | | elementsSeen [t o t a l]== true | | (t o t a l==n/2 && i !=n−2)) { // i f
the running t o t a l i s 0 or t h i s t o t a l has been seen before or the t o t a l i s
n/2 and i s not the f i n a l t o t a l , return 0 (f a l s e)

d e l e t e [] elementsSeen ;
257 return 0 ;

}
259 e l s e { // otherwise i n d i c a t e that we have seen t h i s t o t a l f or future passes

elementsSeen [t o t a l] = true ;
261 }

}
263

// i f no t o t a l i s seen twice , and the other condi t ions are met , t h i s i s a
c o n s t r u c t i v e ordering

265 d e l e t e [] elementsSeen ;
return 1 ;

267 }

constructiveOrderingsMultithread.cpp

	1. Introduction
	2. Properties of constructive orderings
	2.1. The natural order
	2.2. Results on constructive orderings
	2.3. Examples

	3. Calculating Constructive Orderings
	3.1. Number of Constructive Orderings
	3.2. Algorithm Discussion

	Acknowledgements
	References
	Student biographies

