
The Minnesota Journal of Undergraduate Mathematics

Sponsored by
School of Mathematics

University of Minnesota
Minneapolis, MN 55455

Generalizing the Abundancy of an Integer

David C. Luo

Department of Mathematics, Emory University

The Minnesota Journal of Undergraduate Mathematics

Volume 4 (2018-2019 Academic Year)



MJUM Vol. 4 (2018-2019) Page 1

The Minnesota Journal of Undergraduate Mathematics

Volume 4 (2018-2019 Academic Year)

Generalizing the Abundancy of an Integer

David C. Luo ∗

Department of Mathematics, Emory University

Abstract. The abundancy index of a positive integer is the ratio between the sum of its
divisors and itself. We generalize previous results on abundancy indices by defining a two-
variable abundancy index function as Ix : Z+ ×Z+ → Q where Ix(x,n) = σx(n)

nx . Specifically,
we extend limiting properties of the abundancy index and construct sufficient conditions
for rationals greater than one that fail to be in the image of the function Ix.

1. Introduction

The concept of perfect numbers is one of the oldest mysteries in number theory and has
been a major topic of study for over two millennia. Throughout the ages, perfect numbers
have been perceived to possess superstitious properties [5]. For example, the Pythagore-
ans related the perfect number six to marriage, health, and beauty [5]. On the other
hand, early Hebrews distinguished six as a “truly” perfect number as they believed that
God created the Earth in six days [5]. Although perfect numbers are important in ancient
belief systems and superstitions, they also play a prominent role in mathematical theory.
As Nicomachus pointed out, perfect numbers create a balance between deficient (num-
bers whose proper divisors sum to less than the number itself) and abundant (numbers
whose proper divisors sum to greater than the number itself) numbers [5]. A noteworthy
result proven by Euler characterizes even perfect numbers in a specific form [5].

Definition 1.1. A positive integer N is perfect if and only if N is equal to the sum of its
proper divisors.

Theorem 1.2 (Euler). Even perfect numbers are of the form N = 2p−1(2p − 1), where p and
(2p − 1) are primes.

Open problems related to perfect numbers include the questionable existence of an odd
perfect number and the infinitude of perfect numbers. The abundancy index of a positive
integer, the ratio between the sum of its divisors and itself, is a quantity used to further
study these questions.

∗ Corresponding author
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Definition 1.3. The abundancy I : Z+→ Q is a function defined by I(n) = σ (n)
n . The ratio

σ (n)
n is said to be the abundancy index of the positive integer n.

In particular, a positive integer is perfect if and only if it has an abundancy index of
two. By studying the abundancy index, we gain extended insight for when an odd perfect
number exists [4].

Theorem 1.4. There exists an odd perfect number if and only if there exist positive integers
p,n, and α such that p ≡ α ≡ 1(mod 4), where p is a prime not dividing n, and

I(n) =
2pα(p − 1)
pα+1 − 1

.

Theorem 1.4 asserts that if we can find a positive integer n with an abundancy index of
13
7 such that 13 does not divide n, then we know an odd perfect number exists. A ques-

tion one might ask is whether or not some positive integer meets these requirements. To
answer this, we categorize rationals greater than one that fail to be the abundancy index
of any positive integer. We call these rationals abundancy outlaws. Much progress has
been made in determining the status of rational numbers greater than one as abundancy
outlaws or indices. One notable result generates a class of abundancy outlaws of the form
σ (n)−t
n , where t is a positive integer [4].

Theorem 1.5. Letm and k be integers. If (k,m) = 1 andm < k < σ (m), then k
m is an abundancy

outlaw.

In 2007, Judy Holdener and William Stanton proved that under certain conditions, ratio-
nals of the form σ (n)+t

n are also abundancy outlaws, where t is a positive integer [4]. This
theorem proves to be extremely useful as it extends Theorem 1.5 and classifies abundancy
outlaws in a similar form.

Theorem 1.6. For a positive integer t, let σ (N )+t
N be a fraction in lowest terms, and let N =∏n

i=1p
ki
i for primes p1,p2, . . . ,pn. If there exists a positive integer j ≤ n such that pj < 1

t σ

 N
p
kj
j


and σ (p

kj
j ) has a divisor D > 1 such that at least one of the following is true:

(1) I
(
p
kj
j

)
I(D) > σ (N )+t

N and gcd(D,t) = 1; and

(2) gcd(D,Nt) = 1,

then σ (N )+t
N is an abundancy outlaw.

Additionally, Holdener and Stanton were also able to show that certain rationals a
b greater

than one falling within the range I(n) < a
b < I(pin) where n is a positive integer and pi is a

prime divisor of n are abundancy outlaws [4].

Theorem 1.7. Let rs be a fraction in lowest terms such that there exists a divisor N =
∏n
i=1p

ki
i

of s satisfying the following two conditions:
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(1) r
s < I(piN ) for all i ≤ n

(2) The product σ (N )( sN ) has a divisor M such that (M,r) = 1 and I(M) ≥
σ

(
p
kj+1

j

)
σ

(
p
kj+1

j

)
−1

for

some positive integer j ≤ n.

Then r
s is an abundancy outlaw.

In the summer of 2007, Judy Holdener and Laura Czarnecki proved the following the-
orem and corollary dealing with abundancy indices [2]. In doing so, they were able to
identify certain rationals that are the abundancy index of at least one positive integer.

Theorem 1.8. If ab is a fraction greater than one in reduced form, ab = I(N ) for some N ∈N,

and b has a divisor D =
∏n
i=1p

ki
i such that I(piD) > a

b for all 1 ≤ i ≤ n, then D
σ (D)

a
b is an

abundancy index as well.

Corollary 1.9. Letm,n,t ∈N. If σ (mn)+σ (m)t
mn is in reduced formwithm =

∏l
i=1p

ki
i and I(pim) >

σ (mn)+σ (m)t
mn for all 1 ≤ i ≤ l, then σ (n)+t

n is an abundancy index if σ (mn)+σ (m)t
mn is an abundancy

index.

Our main goal is to generalize and extend previous properties of the abundancy index,
specifically, results regarding abundancy outlaws and upper bounds. We begin by defin-
ing a two-variable abundancy index function as the xth abundancy index to consider the
ratio between the sum of the divisors of a positive integer n raised to a power x and nx.

Definition 1.10. The sum-of-divisors function of a positive integer n, σx(n), is defined by

σx (n) =
∑
d|n
dx.

Definition 1.11. The xth abundancy Ix : Z+ ×Z+ → Q is a function defined by Ix(x,n) =
σx(n)
nx . The ratio σx(n)

nx is said to be the xth abundancy index of the positive integer n.

We observe characteristics and identify which rationals greater than one lie in the image
of the xth abundancy index by generalizing Holdener, Stanton, and Czarnecki’s work.
Similarly, we call rationals greater than one that fail to be in the image of the function
Ix x

th abundancy outlaws. The four theorems to follow generalize Theorems 1.5, 1.6, 1.7,
and 1.8 respectively. The proofs and greater explanations will be demonstrated in later
sections.

Theorem 1.12. Let m and k be positive integers. If (k,mx) = 1, and mx < k ≤ σx(m), then k
mx

is an xth abundancy outlaw.

Theorem 1.13. For a positive integer t, let σx(n)+t
nx be a fraction such that (σx(n) + t,nx) = 1, and

let nx =
∏s
i=1p

xki
i . Suppose that there exists a positive integer 1 ≤ j ≤ s such that pxj <

1
t σx

 n

p
kj
j


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and suppose further that σx
(
p
kj
j

)
has a divisor dx greater than one such that at least one of the

following is true:

(1) Ix
(
x,p

kj
j

)
Ix(x,d) > σx(n)+t

nx and (dx, t) = 1; or

(2) (dx,nxt) = 1.

Then σx(n)+t
nx is an xth abundancy outlaw.

Theorem 1.14. Let k
lmx be a fraction greater than one such that (k, lmx) = 1. If there exists a

divisor nx =
∏s
i=1p

xki
i of lmx such that

(1) k
lmx < Ix (x,pin) for all 1 ≤ i ≤ s, and

(2) σx(n)l
(
m
n

)x
has a divisor dx such that (dx, k) = 1 and Ix(x,d) ≥

σx

(
p
kj+1

j

)
σx

(
p
kj+1

j

)
−1

for some

positive integer 1 ≤ j ≤ s,

then k
lmx is an x

th abundancy outlaw.

Theorem 1.15. Suppose that a
cbx is a fraction greater than one in simplest terms, a

cbx = Ix(x,n)

for some positive integer n, and cbx has a divisor dx =
∏s
i=1p

xki
i such that Ix(x,pid) > a

cbx for
all 1 ≤ i ≤ s. Then dx

σx(d)
a
cbx is an x

th abundancy index as well.

In addition, we build off results we use to locate xth abundancy outlaws and extend prop-
erties relating to limiting values and upper bounds of the abundancy index. Two well
known properties bound the abundancy index in relation to prime powers [6].

Property 1.16. For any prime power pr , the following inequality holds

σ (pr)
pr

<
p

p − 1
.

Property 1.17. For any integer n > 1 and prime p that divides n,

σ (n)
n

<
∏
p|n

p

p − 1
=

∏
p|n

(
1 +

1
p − 1

)
.

The examination we consider categorizes positive integers of the form nmk, where n,m
are positive integers and k is a nonnegative integer. By applying this categorization, we
can find lim

k→∞
Ix

(
x,nmk

)
for any n and m. This enables us to know the limiting value for

any combination of positive integers, rather than prime powers alone. The main result
we obtain is listed in the following proposition.
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Proposition 1.18. Let n andm be positive integers and k a nonnegative integer withm having
the prime factorization m = ps11 p

s2
2 · · ·p

st
t . If n = ab, where a is the largest divisor of n such that

(a,m) = 1, then

lim
k→∞

Ix
(
x,nmk

)
= Ix (x,a)

t∏
i=1

pxi
pxi − 1

.

2. Preliminaries

In this section, we present additional definitions and notations we use. From our previous
introduction of the abundancy index, we attain the idea of abundancy outlaws, rationals
greater than one that fail to be in the image of the function I . We generalize this concept
to the xth abundancy index by introducing the notion of an xth abundancy outlaw.

Definition 2.1. A rational number greater than one is an xth abundancy outlaw if it fails
to be the xth abundancy index of any positive integer.

Note that in this paper, we refer to the abundancy index and abundancy outlaw as the
xth abundancy index and xth abundancy outlaw respectively, when x = 1. Next we take a
look at multiplicative properties of the xth abundancy index. Let (a,b) denote the greatest
common divisor of a and b. Since σx is multiplicative, Ix is also multiplicative; that is, if
(a,b) = 1, then by [5],

Ix (x,ab) = Ix (x,a) Ix (x,b) .

It is known that for any positive integers a and b, ab = (a,b) · lcm(a,b) where lcm(a,b) de-
notes the least common multiple of a and b [1]. We apply this property to the xth abundancy
index.

Proposition 2.2. For any positive integers a and b,

Ix(x,a)Ix(x,b) = Ix (x, (a,b)) Ix (x, lcm(a,b)) .

Proof. Let a and b be positive integers having the following prime factorizations

a = pr11 p
r2
2 · · ·p

rm
m

b = ps11 p
s2
2 · · ·p

sm
m

where ri and si are nonnegative integers for all 1 ≤ i ≤ m. Since Ix is multiplicative, we
have that

Ix (x,a) Ix (x,b) = Ix
(
x,pr11 p

r2
2 · · ·p

rm
m

)
Ix

(
x,ps11 p

s2
2 · · ·p

sm
m

)
= Ix

(
x,pr11

)
Ix

(
x,pr22

)
· · · Ix

(
x,prmm

)
Ix

(
x,ps11

)
Ix

(
x,ps22

)
· · · Ix

(
x,psmm

)
= Ix

(
x,pr11

)
Ix

(
x,ps11

)
Ix

(
x,pr22

)
Ix

(
x,ps22

)
· · · Ix

(
x,prmm

)
Ix

(
x,psmm

)
.

We know that
(a,b) = p∧(r1,s1)

1 p
∧(r2,s2)
2 · · ·p∧(rt ,st)

t (1)

lcm(a,b) = p∨(r1,s1)
1 p

∨(r2,s2)
2 · · ·p∨(rt ,st)

t
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where ∧(ri , si) and ∨(ri , si) denote the minimum and maximum of ri and si respectively.
Using this fact, we can rewrite the equation as

Ix

(
x,p
∧(r1,s1)
1

)
Ix

(
x,p
∨(r1,s1)
1

)
Ix

(
x,p
∧(r2,s2)
2

)
Ix

(
x,p
∨(r2,s2)
2

)
· · · Ix

(
x,p
∧(rm,sm)
m

)
Ix

(
x,p
∨(rm,sm)
m

)
= Ix

(
x,p
∧(r1,s1)
1 p

∧(r2,s2)
1 · · ·p∧(rm,sm)

m

)
Ix

(
x,p
∨(r1,s1)
1 p

∨(r2,s2)
1 · · ·p∨(rm,sm)

m

)
.

From equation (1),
Ix (x,a) Ix (x,b) = Ix (x, (a,b)) Ix (x, lcm(a,b)) .

�

3. Limiting Properties and Bounds on the xth Abundancy Index

Here we analyze limiting properties and upper bounds on the function Ix and improve
previously known results. The following proposition is a generalized version of a theorem
used in [3]. We will make great use of the result when identifying xth abundancy outlaws.

Proposition 3.1. Let n and k be positive integers. If k > 1, then Ix (x,kn) > Ix (x,n).

Proof. Let n and k be positive integers. If 1, a0, a1, a2, . . . , as,n are the divisors of n, then
1, k,ka0, ka1, ka2, . . . , kas, kn is a set of divisors of kn. We can bound Ix (x,kn) by

Ix (x,kn) >
1 + (k)x + (ka0)x + (ka1)x + (ka2)x + · · ·+ (kas)x + (kn)x

(kn)x

>
1

(kn)x
+

kx
(
1 + ax0 + ax1 + ax2 + · · ·+ axs +nx

)
(kn)x


>

1
(kn)x

+ Ix (x,n) > Ix (x,n) .

Therefore, Ix (x,kn) > Ix (x,n). �

From Proposition 3.1, we see that the xth abundancy index of any multiple of a positive
integer increases. Our next goal is to extend upper bound properties regarding prime
powers. We improve Property 1.16 and Property 1.17 by categorizing positive integers
of the form nmk, where n, m are positive integers and k a nonnegative integer. By doing
so, we can find lim

k→∞
Ix

(
x,nmk

)
for any n and m. We first observe cases where (n,m) = 1.

Building off limiting values and bounds on the xth abundancy index, we take note of ratio
properties using the nmk categorization.

Proposition 3.2. Let n1, n2,m, k be positive integers and j a nonnegative integer. If (n1,m) = 1
and (n2,m) = 1, then

Ix
(
x,n1m

k
)

Ix
(
x,n1mj

) =
Ix

(
x,n2m

k
)

Ix
(
x,n2mj

) .
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Proof. Let n1, n2, m, k be positive integers and j a nonnegative integer. Since Ix multi-
plicative, we have

Ix
(
x,n1m

k
)

Ix
(
x,n1mj

) =
Ix

(
x,mk

)
Ix

(
x,mj

) =
Ix

(
x,n2m

k
)

Ix
(
x,n2mj

) .
�

From Proposition 3.2, we notice that ratios of the xth abundancy index remain constant
when m is fixed. Next we take a look at the limiting value for any positive integer power.

Proposition 3.3. If m is a positive integer and k a nonnegative integer with m having the
prime factorization m = ps11 p

s2
2 · · ·p

st
t , then

lim
k→∞

Ix
(
x,mk

)
=

t∏
i=1

pxi
pxi − 1

.

Proof. Let m be a positive integer and k a nonnegative integer with m having the prime
factorization m = ps11 p

s2
2 · · ·p

st
t . Since Ix multiplicative,

lim
k→∞

Ix
(
x,mk

)
= lim
k→∞

Ix

(
x,

(
ps11 p

s2
2 · · ·p

st
t

)k)
= lim
k→∞

Ix
(
x,pks11

)
· · · Ix

(
x,pkstt

)
.

By the definition of Ix,

lim
k→∞

Ix
(
x,pksii

)
= lim
k→∞

∑ksi
j=0p

xj
i

pxksii

= lim
k→∞

ksi∑
j=0

(
1
pi

)x(ksi−j)

where 1 ≤ i ≤ t. Using a geometric sum, we can rewrite the equation as

lim
k→∞

ksi∑
j=0

(
1
pi

)x(ksi−j)
= lim
k→∞

ksi∑
j=0

(
1
pi

)xj

=
∞∑
j=0

(
1
pxi

)j

=

 1

1− 1
pxi

 =
pxi

pxi − 1
.

Therefore,

lim
k→∞

Ix
(
x,mk

)
=

t∏
i=1

pxi
pxi − 1

.

�

Using the previous two propositions, we look at cases where n and m are not coprime. In
these cases, limiting values and ratios of the xth abundancy index become more intricate.
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Proposition 3.4. Let n1, n2, m, k be positive integers and j a nonnegative integer. If n1 = a1b
and n2 = a2b where a1 and a2 are the largest divisors of n1 and n2, respectively, such that
(a1,m) = 1 and (a2,m) = 1, then

Ix
(
x,n1m

k
)

Ix
(
x,n1mj

) =
Ix

(
x,n2m

k
)

Ix
(
x,n2mj

) .
Proof. Let n1, n2, m, k be positive integers and j a nonnegative integer. We can substitute
a1b for n1 to get

Ix
(
x,n1m

k
)

Ix
(
x,n1mj

) =
Ix

(
x,a1bm

k
)

Ix
(
x,a1bmj

) .
Since Ix is multiplicative,

Ix
(
x,a1bm

k
)

Ix
(
x,a1bmj

) =
Ix

(
x,bmk

)
Ix

(
x,bmj

) =
Ix

(
x,a2bm

k
)

Ix
(
x,a2bmj

) =
Ix

(
x,n2m

k
)

Ix
(
x,n2mj

) .
�

Proposition 1.18. Let n andm be positive integers and k a nonnegative integer withm having
the prime factorization m = ps11 p

s2
2 · · ·p

st
t . If n = ab, where a is the largest divisor of n such that

(a,m) = 1, then

lim
k→∞

Ix
(
x,nmk

)
= Ix (x,a)

t∏
i=1

pxi
pxi − 1

.

Proof. Let n and m be positive integers and k a nonnegative integer with m having the
prime factorization m = ps11 p

s2
2 · · ·p

st
t and n = ab, where a is the largest divisor of n such

that (a,m) = 1. We begin by substituting ab for n and using the multiplicative properties
of Ix to obtain

lim
k→∞

Ix
(
x,nmk

)
= lim
k→∞

Ix
(
x,abmk

)
= Ix (x,a) lim

k→∞
Ix

(
x,bmk

)
.

By the definition of b, we know bmust have the prime factorization b = pc11 p
c2
2 · · ·p

ct
t , where

ci is nonnegative and ci ≤ si for all 1 ≤ i ≤ t. This gives us

Ix (x,a) lim
k→∞

Ix
(
x,b

(
pks11 pks22 · · ·p

kst
t

))
= Ix (x,a) lim

k→∞
Ix

(
x,

(
pc11 p

c2
2 · · ·p

ct
t

)(
pks11 pks22 · · ·p

kst
t

))
= Ix (x,a) lim

k→∞
Ix

(
x,pks1+c1

1

)
Ix

(
x,pks2+c2

2

)
· · · Ix

(
x,pkst+ctt

)
.

We have that as k approaches infinity, ksi + ci approaches infinity for all 1 ≤ i ≤ t. From
Proposition 3.3,

lim
k→∞

Ix
(
x,nmk

)
= Ix (x,a)

t∏
i=1

pxi
pxi − 1

.

�
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Proposition 1.18 gives the limiting value for any combination of positive integers under
the xth abundancy index. Returning to Theorem 1.2, we know that even perfect numbers
are of the form N = 2p−1(2p −1), where p and (2p −1) are primes. Using Proposition 1.18,
we obtain the following proposition dealing with positive integers that share the same
form with even perfect numbers.

Proposition 3.5. Let p1,p2, . . . ,pk be the sequence of prime numbers in increasing order. Con-
sider the sequence of numbers denoted byN1,N2, . . . ,Nk, whereNi = 2pi−1(2pi −1) for 1 ≤ i ≤ k.
Then

lim
k→∞

Ix (x,Nk) =
2x

2x − 1
.

Proof. We begin by substituting 2pk−1 (2pk − 1) for Nk,

lim
k→∞

Ix (x,Nk) = lim
k→∞

Ix
(
x,2pk−1 (2pk − 1)

)
= lim
k→∞

Ix
(
x,2pk−1

)
Ix (x,2pk − 1) .

Proposition 1.18 gives us

lim
k→∞

Ix
(
x,2pk−1

)
=

2x

2x − 1
.

Since 2pk − 1 is a prime number,

lim
k→∞

Ix (x,2pk − 1) = lim
k→∞

(2pk − 1)x + 1
(2pk − 1)x

= 1.

Collecting the pieces,

lim
k→∞

Ix (x,Nk) =
2x

2x − 1
.

�

Proposition 3.5 proves to be an interesting result in that we can think of 2x
2x−1 as a perfec-

tion mark for positive integers under the xth abundancy index. Knowing this fact, we can
predict the limiting value of even perfect numbers under the xth abundancy index as they
grow larger, if infinitely many do exist.

4. xth Abundancy Outlaws

We now focus on generalizing properties of abundancy outlaws as xth abundancy outlaws.
Our goal is to determine which rationals greater than one fail to be in the image of the
function Ix. The following properties will be extremely useful in doing so [4].

Property 4.1. Let n, m, and k be positive integers. If Ix(x,n) = k
m with (k,m) = 1, then m

divides nx.

Property 4.2. Let n, m, and x be positive integers. Then mx divides nx if and only if m divides
n.

Proof. This follows directly from the Fundamental Theorem of Arithmetic. �

Using these two properties and Proposition 3.1, we move on to our main results.
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Theorem 1.12. Let m and k be positive integers. If (k,mx) = 1, and mx < k ≤ σx(m), then k
mx

is an xth abundancy outlaw.

Proof. Let m and k be positive integers. For sake of contradiction, suppose k
mx is an

xth abundancy index. It follows that Ix (x,n) = k
mx for some positive integer n and

mxσx(n) = knx.

By Properties 4.1 and 4.2, m divides n. From Proposition 3.1, Ix (x,n) > Ix (x,m), hence,

σx(m)
mx

<
σx(n)
nx

=
k
mx
.

Therefore, we have a contradiciton as σx(m) < k, making k
mx an xth abundancy outlaw. �

Theorem 1.12 generates a class of xth abundancy outlaws of the form σx(n)−t
nx , where t is a

positive integer. Next we generalize Holdener’s and Stanton’s work [4]. We first extend
Theorem 1.12 by locating xth abundancy outlaws of a similar form σx(n)+t

nx , where t is a
positive integer. The following lemma gives an important inequality we use when finding
these xth abundancy outlaws.

Lemma 4.3. Let n be a positive integer with n =
∏s
i=1p

ki
i for primes p1,p2, . . . ,ps. For a given

pj where 1 ≤ j ≤ s and a positive integer t,

σx(n) + t
nx

< Ix(x,pjn) if and only if pxj <
1
t
σx

 npkjj
 .

Proof. Let n be a positive integer with n =
∏s
i=1p

ki
i for primes p1,p2, . . . ,ps. For a given pj

where 1 ≤ j ≤ s and a positive integer t, suppose

σx(n) + t
nx

< Ix(x,pjn).

This implies

pxj σx(n) + pxj t < σx(pjn).

Examining the left hand side of the inequality,

pxj σx(n) + pxj t = pxj σx
(
p
kj
j

)
σx

 npkjj
+ pxj t =

(
σx

(
p
kj+1
j

)
− 1

)
σx

 npkjj
+ pxj t.

From here we have that

pxj <
1
t
σx

 npkjj
 .
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Conversely, suppose pxj <
1
t σx

 n

p
kj
j

. Using the same argument, we show that σx(n)+t
nx <

Ix(x,pjn). Therefore,

σx(n) + t
nx

< Ix(x,pjn) if and only if pxj <
1
t
σx

 npkjj
 .

�

Theorem 1.13. For a positive integer t, let σx(n)+t
nx be a fraction such that (σx(n) + t,nx) = 1, and

let nx =
∏s
i=1p

xki
i . Suppose that there exists a positive integer 1 ≤ j ≤ s such that pxj <

1
t σx

 n

p
kj
j


and suppose further that σx

(
p
kj
j

)
has a divisor dx greater than one such that at least one of the

following is true:

(1) Ix
(
x,p

kj
j

)
Ix(x,d) > σx(n)+t

nx and (dx, t) = 1; or

(2) (dx,nxt) = 1.

Then σx(n)+t
nx is an xth abundancy outlaw.

Proof. Case 1: For a positive integer t, let σx(n)+t
nx be a fraction such that (σx(n) + t,nx) = 1,

and let nx =
∏s
i=1p

xki
i . Suppose that there exists a positive integer 1 ≤ j ≤ s such that

pxj <
1
t σx

 n

p
kj
j

 and suppose further that σx
(
p
kj
j

)
has a divisor dx greater than one such that

Ix

(
x,p

kj
j

)
Ix(x,d) > σx(n)+t

nx and (dx, t) = 1. For sake of contradiction, suppose that Ix(x,a) =
σx(n)+t
nx for some positive integer a. Using Properties 4.1 and 4.2, n divides a, which gives

us a =mn for some integer m. From our initial assumption, pxj <
1
t σx

 n

p
kj
j

. By Lemma 4.3,

Ix(x,a) =
σx(n) + t
nx

< Ix(x,pjn),

and hence p
kj+1
j does not divide a, meaning pj does not dividem. We can rewrite Ix(x,mn)

as Ix

x,pkjj · mn
p
kj
j

 and because Ix is multiplicative,

Ix(x,a) = Ix
(
x,p

kj
j

)
Ix

x, mnpkjj
 =

σx(n) + t
nx

,
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this implies

σx

(
p
kj
j

)
σx

mnpkjj
 = (σx(n) + t)mx.

Combining our initial assumption that (dx, t) = 1 and dx divides σx
(
p
kj
j

)
, this implies

(dx,σx(n) + t) = 1. Hence, dx divides (σx(n) + t)mx implies dx divides mx. By Property 4.2,

d divides m, giving d divides

mn
p
kj
j

. Using Proposition 3.1,

Ix

(
x,p

kj
j

)
Ix(x,d) < Ix

(
x,p

kj
j

)
Ix

x, mnpkjj
 = Ix(x,a) =

σx(n) + t
nx

which implies

Ix

(
x,p

kj
j

)
Ix(x,d) ≤ σx(n) + t

nx
.

Therefore, we have a contradiction and σx(n)+t
nx is an xth abundancy outlaw.

Case 2: For a positive integer t, let σx(n)+t
nx be a fraction such that (σx(n) + t,nx) = 1, and let

nx =
∏s
i=1p

xki
i . Suppose that there exists a positive integer 1 ≤ j ≤ s such that pxj <

1
t σx

 n

p
kj
j


and suppose further that σx

(
p
kj
j

)
has a divisor dx greater than one such that (dx,nxt) = 1.

For sake of contradiction, suppose that Ix(x,a) = σx(n)+t
nx for some positive integer a. From

Properties 4.1 and 4.2, n divides a, which gives us a = mn for some integer m. Using
Lemma 4.3,

Ix(x,a) =
σx(n) + t
nx

< Ix(x,pjn)

implying pj does not divide m. Since Ix is multiplicative,

Ix(x,a) = Ix

x,pkjj ·m n

p
kj
j


= Ix

(
x,p

kj
j

)
Ix

x,m n

p
kj
j

 .
Let

m, n
p
kj
j

 =
∏r
i=1p

qi
i , we can set m0 as

m0 =
m∏r
i=1p

qi
i
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where (m0,
m∏r
i=1 p

qi
i

) = 1. Since Ix is multiplicative,

Ix(x,a) = Ix
(
x,p

kj
j

)
Ix (x,m0) Ix

x, npkjj
r∏
i=1

p
qi
i

 =
σx(n) + t
nx

.

We can rewrite the equation as

σx

(
p
kj
j

)
σx (m0)σx

 npkjj
r∏
i=1

p
qi
i

 = (σx(n) + t)mx0

r∏
i=1

p
xqi
i . (2)

Because dx divides σx(p
ki
i ) and σx(p

ki
i ) divides σx(n), dx divides σx(n). Combining this

with our initial assumption (dx,nxt) = 1, this implies (dx, t) = 1, hence, dx does not divide
σx(n)+t. From (2), dx dividesmx0

∏r
i=1p

xqi
i . Returning to the fact that (dx,nxt) = 1, we know

that (dx,nx) = 1, implying no prime power factor pi of n divides dx. Thus, dx divides mx0.
By Property 4.2 and Proposition 3.1, Ix(x,m0) > Ix(x,d). From our initial assumption,

pxj <
1
t σx

 n

p
kj
j

, this implies

pxj σx

(
p
kj
j

)
<

1
t
σx(n)

and

1

pxj σx

(
p
kj
j

) > t
σx(n)

.

Since dx divides σx
(
p
kj
j

)
, dx < pxj σx

(
p
kj
j

)
, this gives us 1

dx >
1

pxj σx

(
p
kj
j

) . We can rewrite the

inequality Ix(x,m0) > Ix(x,d) as

Ix(x,m0) > 1 +
1
dx

> 1 +
1

pxj σx

(
p
kj
j

)
> 1 +

t
σx(n)

=
σx(n) + t
σx(n)

=
σx(n) + t

Ix

(
x,p

kj
j

)
Ix

x, n
p
kj
j

nx
≥ σx(n) + t

Ix

(
x,p

kj
j

)
Ix

x, n
p
kj
j

∏r
i=1p

qi
i

nx .
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From our previous assumption,

Ix(x,a) = Ix
(
x,p

kj
j

)
Ix (x,m0) Ix

x, npkjj
r∏
i=1

p
qi
i

 .
Substituting our previous inequality,

Ix(x,a) >
σx(n) + t
nx

.

Therefore, we have a contradiction and σx(n)+t
nx is an xth abundancy outlaw. �

Theorem 1.13 produces a class of xth abundancy outlaws of the form σx(n)+t
nx where t is a

positive integer. Our next goal is to find xth abundancy outlaws lying within a certain
range. We note how much the xth abundancy index of a positive integer n =

∏s
i=1p

ki
i

increases by multiplying n by one of its prime power factors pkii , where 1 ≤ i ≤ s. We
then present a theorem determining xth abundancy outlaws a

b falling within the range
Ix(x,n) < a

b < Ix(x,pjn) where n is a positive integer and pj a prime power factor of n.

Lemma 4.4. Let n be a positive integer with n =
∏s
i=1p

ki
i for primes p1,p2, . . . ,ps. Then

Ix
(
x,pjn

)
Ix (x,n)

=
σx

(
p
kj+1
j

)
σx

(
p
kj+1
j

)
− 1

for all 1 ≤ j ≤ s.

Proof. Let n be a positive integer with n =
∏s
i=1p

ki
i for primes p1,p2, . . . ,ps. Then

Ix
(
x,pjn

)
Ix (x,n)

=
σx(pjn)

pxj σx(n)
=

σx

(
p
kj+1
j

)
σx

 n

p
kj
j


pxj σx

(
p
kj
j

)
σx

 n

p
kj
j

 =
σx

(
p
kj+1
j

)
pxj σx

(
p
kj
j

) =
σx

(
p
kj+1
j

)
σx

(
p
kj+1
j

)
− 1

.

Therefore,
Ix(x,pjn)
Ix(x,n) =

σx

(
p
kj+1

j

)
σx

(
p
kj+1

j

)
−1

for all 1 ≤ j ≤ s. �

Theorem 1.14. Let k
lmx be a fraction greater than one such that (k, lmx) = 1. If there exists a

divisor nx =
∏s
i=1p

xki
i of lmx such that

(1) k
lmx < Ix (x,pin) for all 1 ≤ i ≤ s, and

(2) σx(n)l
(
m
n

)x
has a divisor dx such that (dx, k) = 1 and Ix(x,d) ≥

σx

(
p
kj+1

j

)
σx

(
p
kj+1

j

)
−1

for some

positive integer 1 ≤ j ≤ s,
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then k
lmx is an x

th abundancy outlaw.

Proof. Let k
lmx be a fraction greater than one such that (k, lmx) = 1. Suppose there exists a

divisor nx =
∏s
i=1p

xki
i of lmx such that

(1) k
lmx < Ix (x,pin) for all 1 ≤ i ≤ s; and

(2) σx(n)l
(
m
n

)x
has a divisor dx such that (dx, k) = 1 and Ix(x,d) ≥

σx

(
p
kj+1

j

)
σx

(
p
kj+1

j

)
−1

for some

positive integer 1 ≤ j ≤ s.

For sake of contradiction, suppose k
lmx is an xth abundancy index. This implies Ix (x,a) =

k
lmx for some integer a and

lmxσx(a) = kax.
From our initial assumption and Property 4.1, nx divides lmx, which gives us that nx

divides ax. Using Property 4.2, n divides a, hence, a = bn for some integer b. We also have
that k

lmx < Ix (x,pin) for all 1 ≤ i ≤ s, which implies

k
lmx

= Ix(x,a) <
σx(pin)
(pin)x

and

(pin)xσx(a) < a
xσx(pin),

which gives us px(ki+1) does not divide ax for all 1 ≤ i ≤ s. By Property 4.2, pki+1 does not
divide a for all 1 ≤ i ≤ s, this implies (b,n) = 1. Since Ix is multiplicative,

Ix (x,a) = Ix (x,bn) = Ix (x,b) Ix (x,n) =
k
lmx

.

It follows that
σx(b)σx(n)l

(m
n

)x
= kbx.

We know that there exists a positive integer dx such that dx divides σx(n)
(
m
n

)x
and (dx, k) =

1. By Properties 4.1 and 4.2, d divides b. From Proposition 3.1 and Lemma 4.4,

Ix(x,b)Ix(x,n) > Ix(x,d)Ix(x,n),

implying

Ix(x,d) ≥
σx

(
p
kj+1
j

)
σx

(
p
kj+1
j

)
− 1

=
σx(pjn)

pxj σx(n)

for some positive integer 1 ≤ j ≤ s. Hence,

Ix(x,a) =
k
lmx

> Ix(x,d)Ix(x,n) ≥
σx(pjn)

pxj σx(n)

(σx(n)
nx

)
=
σx(pjn)

(pjn)x
= Ix(x,pjn).

Therefore, we have a contradiction and k
lmx is an xth abundancy outlaw. �
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Through these theorems, we have located certain rationals greater than one that fail to be
in the image of the function Ix. The next question we consider is when rationals greater
than one are the abundancy index of at least one positive integer.

5. xth Abundancy Indices

In this section, we observe rationals greater than one that fall into the image of the func-
tion Ix. Our first proposition looks at abundancy outlaws that are xth abundancy indices.

Proposition 5.1. If p is prime and x > 1, then Ix(x,p) is an abundancy outlaw.

Remark. In particular, Ix(x,p) is an abundancy outlaw but is an xth abundancy index when
p is prime.

Proof. Let p be prime and x > 1, then

Ix(x,p) =
σx(p)
px

=
1 + px

px
.

We note that

px < 1 + px < σ (px) =
x∑
i=0

pi .

From Theorem 1.12, Ix(x,p) is an abundancy outlaw. Therefore, the abundancy outlaw
Ix(x,p) is in the image of the function Ix when x > 1. �

The next theorem and corollary are generalizations of Holdener’s and Czarnecki’s work
[2]. They allow us to determine whether certain rationals (greater than one) are the
xth abundancy index of at least one positive integer.

Theorem 1.15. Suppose that a
cbx is a fraction greater than one in simplest terms, a

cbx = Ix(x,n)

for some positive integer n, and cbx has a divisor dx =
∏s
i=1p

xki
i such that Ix(x,pid) > a

cbx for
all 1 ≤ i ≤ s. Then dx

σx(d)
a
cbx is an x

th abundancy index as well.

Proof. Let a
cbx be a fraction greater than one in simplest terms. Suppose a

cbx = Ix(x,n) for

some positive integer n and cbx has a divisor dx =
∏s
i=1p

xki
i such that Ix(x,pid) > a

cbx for all
1 ≤ i ≤ s. Suppose further that Ix(x,n) = a

cbx for some positive integer n, then

cbxσx(n) = anx.

From Property 4.1 and our initial assumption, dx divides nx. Using Property 4.2, d divides
n, hence, n = md for some integer m. We return to our initial assumption, Ix(x,pid) > a

cbx

for all 1 ≤ i ≤ s, which implies

a
cbx

= Ix(x,n) <
σx(pin)
(pin)x

and
(pin)xσx(n) < nxσx(pin).
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This gives us px(ki+1) does not divide nx for all 1 ≤ i ≤ s. Using Property 4.2, pki+1 does not
divide n for all 1 ≤ i ≤ s, it follows that (m,d) = 1. Since Ix is multiplicative,

Ix (x,n) = Ix (x,md) = Ix (x,m) Ix (x,d) =
a
cbx

.

This implies
σx(m)
mx

σx(d)
dx

=
a
cbx

and
σx(m)
mx

=
dx

σx(d)
a
cbx

,

giving us Ix(x,m) = dx

σx(d)
a
cbx . Therefore, dx

σx(d)
a
cbx is an xth abundancy index. �

Corollary 5.2. Let m,n,t be positive integers. If σx(mn)+σx(m)t
(mn)x is a fraction in simplest terms

withmx =
∏s
i=1p

xki
i and Ix(x,pim) > σx(mn)+σx(m)t

(mn)x for all 1 ≤ i ≤ s, then σx(n)+t
nx is an xth abundancy

index if σx(mn)+σx(m)t
(mn)x is an xth abundancy index.

Proof. Let m,n,t be positive integers. Suppose σx(mn)+σx(m)t
(mn)x is a fraction in simplest terms

with mx =
∏s
i=1p

xki
i and Ix(x,pim) > σx(mn)+σx(m)t

(mn)x for all 1 ≤ i ≤ s. Suppose further that

Ix(x,a) = σx(mn)+σx(m)t
(mn)x for some positive integer a, then

(mn)xσx(a) = axσx(mn) + σx(m)t.

Using Properties 4.1 and 4.2, mn divides a, which gives us a = bmn for some integer b.
From our initial assumption, mx =

∏s
i=1p

xki
i and Ix(x,pim) > σx(mn)+σx(m)t

(mn)x for all 1 ≤ i ≤ s,
it follows that (m,n) = 1. Hence

Ix (x,a) = Ix (x,bmn) = Ix (x,m) Ix (x,bn) =
σx(mn) + σx(m)t

(mn)x
.

Since σx is multiplicative, can rewrite the equation as

σx(mn) + σx(m)t
(mn)x

=
σx(m)σx(n) + σx(m)t

(mn)x

=
σx(m)(σx(n) + t)

(mn)x

= Ix(x,m)
σx(n) + t
nx

.

We now have

Ix (x,m) Ix (x,bn) = Ix (x,m)
σx(n) + t
nx

which implies

Ix (x,bn) =
σx(n) + t
nx

.

Therefore, σx(n)+t
nx is an xth abundancy index. �



MJUM Vol. 4 (2018-2019) Page 18

6. Acknowledgements

The author dedicates this paper to Dr. Paul Bruno, his friend and first research mentor
at Emory University. Next, he would like to thank Dr. Mark Norfleet, Jelisa Tan, and
the anonymous reviewer for research and writing advice. Finally, he would like to thank
the Emory Department of Mathematics and Dr. David Zureick-Brown for sponsoring his
research. This paper was inspired by [4].

References

[1] Niels Ferguson and Bruce Schneier. Practical Cryptography. John Wiley and Sons, Inc., New York, NY,
USA, 1st edition, 2003.

[2] J. A. Holdener and L. Czarnecki. The Abundancy Index: Tracking Down Outlaws. A joint research project
at Kenyon College, Gambier, OH, 2007.

[3] Richard Laatsch. Measuring the Abundancy of Integers. Mathematics Magazine, 59(2):84–92, 1986.
[4] William G. Stanton and Judy A. Holdener. Abundancy “Outlaws” of the Form σ (N )+t

N . J. Integer Seq.,
10(9):Article 07.9.6, 2007.

[5] John Voight. Perfect Numbers: An Elementary Introduction, 1998. https://math.dartmouth.edu/
˜jvoight/notes/perfelem.pdf.

[6] Paul A. Weiner. The Abundancy Ratio, a Measure of Perfection. Math. Mag., 73(4):307–310, 2000.

https://math.dartmouth.edu/~jvoight/notes/perfelem.pdf
https://math.dartmouth.edu/~jvoight/notes/perfelem.pdf


MJUM Vol. 4 (2018-2019) Page 19

Student biographies

David C. Luo: (Corresponding author: david.luo@emory.edu) David Luo is a third-year
student at Emory University majoring in mathematics and minoring in computer sci-
ence. Apart from mathematics, he enjoys spending time with family and playing sports
with friends. Following college, he plans on pursuing graduate school to receive his PhD
in pure mathematics.

mailto:david.luo@emory.edu

	1. Introduction
	2. Preliminaries
	3. Limiting Properties and Bounds on the xth Abundancy Index
	4. xth Abundancy Outlaws
	5. xth Abundancy Indices
	6. Acknowledgements
	References
	Student biographies

