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Abstract. This paper considers dynamical systems of rational functions modulo primes
in order to compare the original orbits of a function to the reduced orbit. It is already
known what happens to the period, or the repeating iterate values, of a certain preperiodic
point when we reduce modulo a certain prime. We show that when a tail, or the values of
iterates that occur before the iterates become periodic, is reduced modulo a prime, there is
no apparent restriction on what possible tail lengths can be achieved.

1. Introduction and Main Result

A dynamical system is a function together with the set of points it acts on, such that we
can take iterations of the function on a specific point and determine how the iterates of
the point change over time. One of the main objects of study in the arithmetic of dynam-
ical systems is points with a finite forward orbit. By forward orbit we mean the collection
of values of iterates as the function is applied. Orbits will be finite when the values even-
tually repeat. Points with finite forward orbits are called preperiodic points. In Section 2
we will provide a formal definition of preperiodic.

In this paper we consider dynamical systems of rational functions modulo primes in or-
der to compare the original orbits of a function to the reduced orbit. It is already known
what happens to the period, or the repeating iterate values, of a certain preperiodic point
when we reduce modulo a certain prime [3, 10]. What remains to be shown is what hap-
pens to the tail, or the values of iterates that occur before the iterates become periodic.
That is, when we reduce a tail modulo a certain prime, what kind of reduction of the tail
can we get?

We will first state our theorem, and then provide background and relevant formal def-
initions. In our theorem statement and throughout the paper we use the notation Q̄ to
denote the reduced point Q modulo the given prime. Here is our main result.

Theorem 1.1. Let f be a rational function of degree at least 2 and let p be a prime of good
reduction. Let Q be a (m,n) minimal preperiodic point for f , where m > 0 is the length of the

∗ Corresponding author



MJUM Vol. 4 (2018-19) Page 2

tail and n is the minimal period. Then Q̄ is a (m′,n′) minimal preperiodic point, where n′ is
given in Theorem 2.14 below and 0 ≤m′ ≤m.

By Theorem 2.14 it is known that for a given point a bound on the possible minimal pe-
riods exists, depending only on primes of good reduction of the map. The ideal next step
would be to find an upper bound on possible tails without dependence on the map. Mor-
ton and Silverman conjectured in 1994 that this bound exists [6]. Then, in 2009 Faber
et. al. showed that an upper bound on the possible tails does exist [1]. Since then, some
explicit values for bounds under specific conditions have been provided. In 2011 Faber
et. al. found an explicit bound of 6 for the number of pre-images of 0 under quadratic
maps with rational coefficients [2]. In another 2011 paper Hutz et. al. found bounds on
the number of rational pre-images of any algebraic number under quadratic maps with
rational coefficients [4]. We initially hoped that our research would provide some insight
into this problem. However since our theorem does not place a restriction on what tail
lengths modulo the prime can be achieved, this does not help find a bound independent
of the map. So while our theorem successfully describes the reduction of tails modulo
primes, it does not lead to similar further applications.

In this paper, the software Sage was used for all calculations [11].

2. Background

We begin with some basic definitions concerning dynamical systems. Dynamical systems
are built from iterations of functions. In this paper we will particularly consider rational
functions.

Definition 2.1. The degree of a rational function f = p(x)
q(x) , where p(x) and q(x) are polyno-

mials, is the maximum of the degrees of p(x) and q(x).

Definition 2.2. The n-th iterate of f , denoted f n, is the composition of f with itself n
times:

f n(x) = f (f n−1(x)) = f (f (...f (x)...)) (n times).

Example 2.3. Let f (x) = x3 + 1. Then the 2nd iterate of f is

f 2 = (x3 + 1)3 + 1 = x9 + 3x6 + 3x3 + 2.

Example 2.4. Let f (x) = 2x. Then the 4th iterate of f is

f 4 = f (f (f (f (x)))) = 2(2(2(2x))) = 16x.

When we consider the iterates of a rational function f at a particular point Q, we will
often speak of the (forward) orbit ofQ, or the list of iterates of f evaluated atQ, beginning
with f 0(Q) =Q, and continuing with f 1(Q), f 2(Q), . . .. Orbits can either contain finitely or
infinitely many different values. Here we are more interested in orbits with finitely many
different values, which occur when Q is preperiodic.
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Definition 2.5. A point Q is preperiodic if there exist n and m such that m ≥ 0, n ≥ 1 and

f m+n(Q) = f m(Q).

Then, for the smallest m and n that satisfy the above equation, we call m the tail and n
the minimal period. We will call a point Q with tail m and minimal period n an (m,n)
preperiodic point.

That is, preperiodic points have finite orbits, since at some point the orbit will become
periodic. By periodic we mean a point with no tail and non-zero period. All periodic
points are preperiodic. For a preperiodic point, the tail is the non-periodic part of the
point’s orbit, that is, the iterations of the point before the values begin to repeat.

Example 2.6. Let f (x) = 2x. Then x = 0 is preperiodic with m = 0, n = 1.

Example 2.7. Let f (x) = x2 − 2. Then x = 0 is preperiodic with m = 2, n = 1. To see this,
calculate f 2(0) = f (f (0)) = f (−2) = 2 and f 3(0) = f (f (f (0))) = f (f (−2)) = f (2) = 2.

0 −2 2// //
yy

Example 2.8. Let f (x) = −x3 + 11x2 − 39x+ 47. Then x = 4 is preperiodic, since

f 4(4) = f (f (f (f (4)))) = f (f (f (3))) = f (f (2)) = f (5) = 2.

So m = 2, n = 2.

4 3 2 5// //
  

``

In order to reduce these rational functions modulo a prime and be able to compare the
dynamics of the reduced map to the original map, we must define a notion of good and
bad reduction. Bad reduction occurs when the dynamics of the original map are unrelated
to the dynamics of the reduced map. Good reduction means that reduction modulo a
prime commutes with iteration. Now we will formally define good and bad reduction.

Definition 2.9. Let f (x) = r(x)
q(x) and f̄ (x) = r(x)

q(x)(mod p) = r̄(x)
q̄(x) , for polynomials r,q ∈ Z[x].

Then a prime p is a prime of good reduction if at least one of the following is true:

(1) degree(f ) = degree(f̄ ),

(2) r̄(x) and q̄(x) have no common zeroes.

Otherwise, p is a prime of bad reduction.

Example 2.10. Let f (x) = 2x2+3. Then p = 3 is a prime of good reduction, since f̄ (x) = 2x2

has the same degree as f . However, p = 2 is a prime of bad reduction, since f̄ (x) = 1 does
not have the same degree as f . This means that for p = 2 the dynamics of f̄ are unrelated
to the dynamics of f . For instance, f̄ is a constant function and f is not.

Example 2.11. Let f (x) = 2x2+6
4x+9 . Then p = 5 is a prime of good reduction. Let r(x) = 2x2 +6

and q(x) = 4x + 9. Reduce mod 5 to get r̄(x) = 2x2 + 1 and q̄(x) = 4x + 4. Note that r̄ and q̄
do not share any zeros. However, p = 3 is a prime of bad reduction, since r̄(x) = 2x2 and
q̄(x) = x share a zero at x = 0.
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Example 2.12. One might hope to use polynomial interpolation to construct an orbit with
any possible behavior under reduction, but in most cases there will not be good reduction
at the required prime. For instance, by polynomial interpolation we can construct a poly-
nomial f over Q such that f (0) = 3, f (3) = 5, f (5) = 8, f (8) = 10, and f (10) = 5. With this
setup, we see that 0 is a (2,3) preperiodic point. If we were to reduce mod 5, we would
expect 0̄ to be a (0,2) preperiodic point. But in order for us to consider these dynamics,
we must determine whether 5 is truly a prime of good reduction. We first calculate f
explicitly:

f (x) = 3
((
x−3
−3

)(
x−5
−5

)(
x−8
−8

)(
x−10
−10

))
+ 5

((
x
3

)(
x−5
−2

)(
x−8
−5

)(
x−10
−7

))
+ 8

((
x
5

)(
x−3

2

)(
x−8
−3

)(
x−10
−5

))
+ 10

((
x
8

)(
x−3

5

)(
x−5

3

)(
x−10
−2

))
+ 5

((
x

10

)(
x−3

7

)(
x−5

5

)(
x−8

2

))
.

We can simplify this polynomial to the nicer form

f (x) =
−1
400

x4 − 1
600

x3 +
121
400

x2 − 19
120

x+ 3.

If we find a common denominator in order to rewrite f as f (x) = r(x)
q(x) , where r,q ∈ Z[x],

we see that q = 1200 (if we take the least common denominator):

f (x) =
r(x)
q(x)

=
−300x4 − 2x3 + 363x2 − 190x+ 3600

1200
.

Then q̄ ≡ 0 (mod 5). But this means that all zeroes of r̄ are zeroes of q̄, so 5 is not a prime
of good reduction, and reduction mod 5 does not commute with iteration. That is, the
dynamics of f are unrelated to the dynamics of f̄ when we reduce mod 5.

We must provide one more definition, and then we can state a theorem.

Definition 2.13. Let Q be a periodic point of a function f (x), and let Q have minimal
period n. Then the multiplier of Q, denoted λQ, is given by λQ = (f n)′(Q).

We are now ready to state a result on the effects of the reduction of a map modulo a prime
on the period of a point. We refer to this result in our theorem statement. The version of
the theorem that we state is for one dimension and is given by Silverman [10, Theorem
2.21] (see also [5, 7, 6, 8, 9, 12]). A higher dimensional version is given by Hutz [3].

Theorem 2.14 ([10]). Let f (x) : P1→ P
1 be a morphism over a number field K . Let p ∈ K be

a prime of good reduction, and let k be the residue field. Let Q be a periodic point for f . Define

n the minimal period of Q,
n′ the minimal period of Q̄,
r the multiplicative order of λQ.

Then
n = n′ or n = n′rpe

for some bounded integer e ≥ 0.



MJUM Vol. 4 (2018-19) Page 5

3. Proof of Main Result

We are now ready to prove our main result.

Proof. We proceed with two cases.

Case 1: Let f s(Q) . f t(Q) (mod p) for all s, t ∈ Z such that t , s and 0 ≤ s, t ≤ m. Then no
points in the tail collapse, so the tail remains length m. Apply Theorem 2.14 to
f m(Q) to find the reduced period n′. So Q̄ is a (m,n′) preperiodic point.

Case 2: Otherwise, there exist s, t ∈Z such that f s(Q) ≡ f t(Q) (mod p), where 0 ≤ s < m and
s < t ≤ m + n. Assume s is the smallest such integer that fulfills these conditions.
Let R = f s(Q). Then R is an (m − s,n) preperiodic point. Also, R ≡ f t−s(R) (mod
p), since f t−s(R) = f t−s(f s(Q)) = f t(Q) ≡ f s(Q) ≡ R (mod p). We claim that R̄ is a
(0,n′) preperiodic point, where n′ is given by Theorem 2.14, and thus Q̄ is a (s,n′)
preperiodic point.

Consider k = t − s ∈Z, so 1 ≤ k ≤m+n and R ≡ f k(R) (mod p). Then

f (R) ≡ f k+1(R) (mod p)

f 2(R) ≡ f k+2(R) (mod p)

...

f k(R) ≡ f 2k(R) ≡ R (mod p).

We see that the tail completely collapses and a periodic cycle is left with a period
of k or smaller. The minimal period n′ is given by Theorem 2.14. Thus R̄ is a (0,n′)
preperiodic point, so Q̄ is a (s,n′) preperiodic point as desired. Furthermore, we
observe that n′ | k since k is a period of R and n′ is the minimal period of the
reduced map.

�

Note that in Case 2 of the proof, nothing is preventing m′ = s from taking on any value
from 0 tom. It may be possible to achieve all values from 0 tom by finding an appropriate
function and starting point. By our reasoning above we have that n′ | t−s, that is, jn′ = t−s
for some j ∈ Z, j > 0. In order to have f s(Q) ≡ f jn′+s(Q) (mod p), we need a prime p
that divides T = f s(Q) − f jn′+s(Q) for some j. Since f s(Q) is strictly preperiodic, that is,
preperiodic and not periodic, this equation is not identically 0 for any j. If we put a
parameter into f , it seems reasonable to expect that for some choice of parameter T will
not be a unit, and so for this parameter choice we will have a prime dividing T . That
is, we can alter f by allowing one or more of the coefficients of f to be a variable and
search for a specific value of that variable that has the needed properties. For example,
we could consider f (x) = x2 + c and choose c such that T is not a unit, and hence divisible
by some prime. Determining which function (or family of functions) to start with in this
process remains ambiguous, but with further study we could hope to make this process
more concrete.
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4. Examples of Main Result

First we present three examples that align with different cases in the proof.

Example 4.1. (Case 1) Let

f (x) = −x3 + 11x2 − 39x+ 47

over Q. Then x = 4 is a (2,2) preperiodic point.

4 3 2 5// //
  

``

Now reduce mod 5 to get

f̄ (x) ≡ 4x3 + x2 + x+ 2 (mod 5).

Then x̄ ≡ 4 is a (2,2) preperiodic point.

4 3 2 0// //
  

``

Example 4.2. (Case 2) Let
f (x) = x2 − 1

over Q. Then x = 1 is a (1,2) preperiodic point.

1 0 −1//
  

``

Now reduce mod 2 to get
f̄ (x) ≡ x2 + 1 (mod 2).

Then x̄ ≡ 1 is a (0,2) preperiodic point.

1 0
  

``

Example 4.3. (Case 2) Let
f (x) = x2 + 1

over Q(w), where w =
√
−3
2 + i

√
3

2 . Then w is a (2,1) preperiodic point, as f (w) = w2 + 1,
f (w2 + 1) = −w2 − 1 and f (−w2 − 1) = −w2 − 1.

w w2 + 1 −w2 − 1// //
qq

Now reduce the map mod p where p = w2 +w + 1. Then w̄ is a (1,1) preperiodic point, as
f̄ (w) ≡ −w and f̄ (−w) ≡ −w.

w −w//
vv
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Now we give three examples that take (3,1) preperiodic points to (0,1), (1,1), and (2,1)
preperiodic points after reduction. Note that reducing a rational function by a prime
larger than all coordinates will result in no change in the length of the tail (as in Case
1). In this way we could take a (3,1) preperiodic point to a (3,1) preperiodic point after
reduction.

Example 4.4. Let

f (x) = x2 − 2

over Q(w), where w =
√

2. Then w is a (3,1) preperiodic point.

w 0 −2 2// // //
yy

Now reduce mod w to get

f̄ (x) ≡ x2 (mod w).

Then w̄ is a (0,1) preperiodic point.

w
ww

Example 4.5. Let

f (x) = x3 − 4
3
x2 − 5

3
x+ 1

over Q. Then x = 0 is a (3,1) preperiodic point.

0 1 −1 1
3

// // //
xx

Now reduce mod 2 to get

f̄ (x) ≡ x3 + x+ 1 (mod 2).

Then x̄ ≡ 0 is a (1,1) preperiodic point.

0 1//
yy

Example 4.6. Let

f (x) = x3 − 1
2
x2 − 5

2
x+ 1

over Q. Then x = 0 is a (3,1) preperiodic point.

0 1 −1 2// // //
yy

Now reduce mod 3 to get

f̄ (x) ≡ x3 + x2 + 2z+ 1 (mod 3).

Then x̄ ≡ 0 is a (2,1) preperiodic point.

0 1 2// //
yy
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In the last few examples we saw that it is possible to obtain every value from 0 to m for
m′, when m = 3. For an arbitrary value of m we expect to see all possible collapsing upon
passing to field extensions. Certainly, our theorem does not rule out any possibilities for
values of m′ (where 0 ≤ m′ ≤ m). Further research on this topic would include providing
a proof for this expectation. Whether it is possible to obtain all values for m′ from 0 to m
over the rationals, without passing to field extensions, is also an open question.
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