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Abstract. A right tetrahedron, also known as trirectangular tetrahedron, is a tetrahedron
with three right angled triangles and a base triangle. By studying Pythagorean triples and
quadruples, we deduce the existence of different types of right tetrahedra. Three cases of
right tetrahedra are the focus of this paper: (i) Right tetrahedra with all integer edges (ii)
Right tetrahedra with integer face areas, and (iii) Right tetrahedra with integer face areas
and integer principal edges. Case (iii) constitutes the original work of this paper. The
constructive method we use for this case allow us to classify existence of such tetrahedra
as well as provide an algorithm to find those integer values from a given set of Pythagorean
quadruple.

1. Introduction: Right Tetrahedra

Definition 1.1. A tetrahedron is a polyhedron that has four triangular faces.

Definition 1.2. A right tetrahedron, also known as a trirectangular tetrahedron, is a tetra-
hedron with three faces which are right-angled triangles or, equivalently, all three face
angles at one vertex are right angles and a fourth triangular base face.

The base triangle (i.e. the base face) of the right tetrahedron is the opposite of the ver-
tex where the right angles meet. In this paper, we will observe different kinds of right
tetrahedra, but our primary focus is on right tetrahedra whose edges, principal edges,
or face areas are integer. Before exploring different kinds of right tetrahedra, here is the
definition of principal edges.

Definition 1.3. Principal edges are the edges of a right tetrahedron which are connected
to each other by a same vertex and form a right angle on the vertex.

Here are the kinds of right tetrahedra that will be discussed.

I) Right tetrahedra with all integer edges (see Section 2.2). The existence of such right
tetrahedron has already been covered in [1].

II) Right tetrahedra with integer face areas (see Section 2.3). The existence of such right
tetrahedron is essentially covered by De Gua’s Theorem and Pythagorean quadru-
ples.

∗ Corresponding author
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III) Right tetrahedra with integer face areas and integer principal edges (see Section 3).
This case constitutes the original work of this paper. The constructive method we
use also allow us to classify all such tetrahedra.

Before we proceed with the contents of the paper, here’s an interesting fact about a tetra-
hedron. There exists a tetrahedron whose edges, areas of the faces, and volumes are all
natural numbers (see [1, Section 15.24]). This tetrahedron has two edges 896, 990, and
the remaining four edges are 1073 each. Two faces of this tetrahedron have areas equal to
436800, the other two have 47120 and the volume is 62092800. But a right tetrahedron
with all integer edges and areas is yet to be determined.

2. Background

The contents under this section are not part of the original proof but are essential in
deducing that a right tetrahedron with integer edges and integer area for the faces exists.

2.1. Pythagorean Triples and Quadruples. We start by reviewing Pythagorean triples
and quadruples.

2.1.1. Pythagorean Triples. Pythagorean triples are set of three integers (x,y,z) such that
x2 + y2 = z2. From [1, Chapter 2].

Definition 2.1. A given Pythagorean triple is said to be primitive if x, y and z have no
common divisor.

Theorem 2.2. A triple of positive integers x, y, and z, is a solution for the equation x2+y2 = z2,
if the following equations can be satisfied:

x = u2 − v2

y = 2uv

z = u2 + v2

where u and v are some positive integers such that u > v > 0. Moreover x,y,z is a primitive
triple if and only if gcd(u,v) = 1 and z is odd, that is to say u and v are not both odd nor both
even, so one is even and the other is odd.

There exist infinitely many primitive Pythagorean triples. Also, it is not possible to get
the same primitive root from different pairs (u,v) that satisfy the restrictions.

2.1.2. Pythagorean Quadruples. The classification of Pythagorean quadruples depends on
four parameters. More precisely, we have the following Theorem

Theorem 2.3. A quadruple (x,y,z,m) of positive integers, where z is odd and gcd(x,y,z) = 1,
is a solution of the Diophantine equation

x2 + y2 + z2 =m2

if, as stated in [2], we can write:

x = 2(uw − vt),
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y = 2(ut + vw),

z = (u2 + v2 −w2 − t2),

m = (u2 + v2 +w2 + t2).

Conditions for the above integer solution (x,y,z,m) to be unique are (see [4]):

• uw > vt

• u2 + v2 > w2 + t2

• (1) u ≥ 1,v ≥ 0 (2) w ≥ 1, t ≥ 0 (3) t + v ≥ 1

• u + v + w + 1 ≡ 1(mod 2)

• (u2 + v2,w2 + t2,ut + vw) = 1

• t = 0→ u ≤ v,v = 0→ w ≤ t

Proof. Since the result for Pythagorean quadruples is less known than that of Pythagorean

triples, we sketch the proof given in [3]. Assume x1 =
1
2
x and y1 =

1
2
y. Using the given

Pythagorean equation x2 + y2 + z2 =m2 , we have:

(2x1)2 + (2y1)2 + z2 = m2

(2x1)2 + (2y1)2 = m2 − z2

(2x1)2 + (2y1)2 = (m− z)(m+ z)

x1
2 + y1

2 =
(m− z)(m+ z)

4

x1
2 + y1

2 =
(m− z)

2
(m+ z)

2

Let us set f = gcd(x1, y1), f1 = gcd(f ,
1
2

(m+ z)) and f2 = (f ,
1
2

(m− z)). Since, by hypothesis

x,y, and z are relatively prime, we have that

gcd(f1, f2) = 1, and f = f1 · f2. (1)

Now set x2 =
x1

f
, y2 =

y1

f
, z1 =

(m+ z)

2f1
2 and z2 =

(m− z)
2f2

2 . Then, from equation (1), we get

x2
2 + y2

2 = z1 · z2 where gcd(x2, y2) = 1 and z1 and z2 are not necessarily relatively prime.
Here, let

x2 + iy2 =
n∏
j=1

(πj)

be a factorization into gaussian primes where x2 + iy2 cannot be divided by a rational
prime p since gcd(x2, y2) = 1. Also, none of πj is a rational prime congruent to 3 (mod 4)
as it contradicts (x2, y2) = 1.
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Now, x2 − iy2 =
n∏
j=1

(πj) and

z1 · z2 =
n∏
j=1

(πjπj), z1 =
m∏
j=1

(πjπj), z2 =
n∏

j=m+1

(πjπj).

Set

u1 + iv2 =
m∏
j=1

(πj), w1 + il1 =
n∏

j=m+1

(πj).

Then

z1 = (u1 + iv2)(u1 − iv2),
z2 = (w1 + il2)(w1 − il2),

x2 + iy2 = (u1 + iv2)(w1 + il2)

where u1 + iv2 = gcd(z1,x2 + iy2) and w1 + il2 = gcd(z2,x2 + iy2).

Now, setting u = f1u1, v = f1v1, w = f2w1, and t = f2t1, we obtain the Pythagorean quadru-
ple equation’s integer solutions. �

2.2. Right Tetrahedra with All Integer Edges. The existence of a right tetrahedron with
all integer edges has already been covered in [1] using Pythagorean triples. The following
theorem obtained from [1, Section 15.17] shows that a right tetrahedron can have all
integer edges.

Theorem 2.4. Let (x,y,z) be a Pythagorean triple. Let a = x|4y2−z2|, b = y|4x2−z2|, c = 4xyz.
Then a right tetrahedron having a,b, and c as length of its principal edges, has all integer edges.

Proof. Let (x,y,z) be a Pythagorean triple and take: a = x|4y2−z2|, b = y|4x2−z2|, c = 4xyz .
Using x2 +y2 = z2 and the expressions of a,b, and c, we can obtain the following identities:

a2 + b2 = (z3)
2

a2 + c2 = x2(4y2 + z2)
2

b2 + c2 = y2(4x2 + z2)
2

For the absolute value expressions, we assessed the square of absolute value expression
(e.g. |4y2 − z2|2) as only the square of the expression (e.g. (4y2 − z2)2). This assessment
was done since the absolute value of a given expression is always either positive (e.g.
(4y2 − z2)) or negative (e.g. −(4y2 − z2)) value so square of those values are the same (e.g.
(4y2 − z2)2 = (−(4y2 − z2))2 ).

As we can see, the sum of squares of any two principal edges’ length gives a perfect
square solution which determines that the length of the remaining edge is integer as well.
Therefore, we can associate a right tetrahedron with all integer edges to any Pythagorean
triple. �
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Since we know that there exists infinitely many primitive Pythagorean triples from Sec-
tion 2.1.1, we can also say that there exists infinitely many right tetrahedra with all inte-
ger edges.

2.3. Right Tetrahedra with Integer Areas for the Faces. We will also summarize the
prior results of De Gua that address the case of when a tetrahedron has faces with all
integer areas. With reference to Figure 1, A,B,C are the areas of respective labeled right
triangle faces of a right tetrahedron andD is the area of the respective labeled base face of
the tetrahedron. In this section we will determine under what circumstances areasA,B,C,
and D are all integers. In order to do so, we apply the De Gua’s Theorem which provides
an algebraic relation among A,B,C, and D. For reader’s sake, we provide a detailed proof
to the De Gua’s Theorem which is based on the De Gua’s Theorem’s original proof.

Figure 1.

Theorem 2.5. LetA,B,C,D be the face areas of a right tetrahedron whereA,B andC represents
the areas of right angled triangle faces meeting at vertex o and D is the area of the base face.
Then

A2 +B2 +C2 =D2. (2)

Proof. Here, let A,B,C,D be the face areas of a right tetrahedron and a,b,c be the length
of its principal edges. With reference to Figure 1, we have:

A =
bc
2
, B =

ac
2
, C =

ab
2
, r =

√
b2 + c2, D =

PH · r
2

,
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where PH is the height of the face with area D and PH =

√
a2 +OH

2
=

√
a2 +

b2c2

b2 + c2 . So
we get:

PH =

√
a2b2 + a2c2 + b2c2

b2 + c2 ,

P H
2

=
a2b2 + a2c2 + b2c2

r2 ,

P H
2
r2 = a2b2 + a2c2 + b2c2,

P H
2
r2

4
=

a2b2

22 +
a2c2

22 +
c2b2

22 .

The last equation is exactly:
D2 = A2 +B2 +C2.

�

An integer solution of equation (2) is a Pythagorean quadruple. However, so far, we did
not provide a complete proof of the existence of a right tetrahedron with all integer faces.
This will be done in the next section, where we will construct explicit examples.

3. Right Tetrahedra with Integer Faces and Integer Principal Edges

In this section, we present the original result of this paper. We establish the existence
of right tetrahedra with integer faces and integer edges. We also provide a constructive
algorithm to determine the principal edges of such tetrahedra.

Theorem 3.1. Let A,B,C and D be a Pythagorean quadruple, then there exists a right tetrahe-
dron with areas kA,kB,kC and kD and integer principal edges for some positive integer k.

Proof. Let A,B,C,D be a Pythagorean quadruple where A,B and C represents areas of
right angled triangles and D is an area of a triangle. Then, we have a,b,c such that:

a =

√
2BC
A

, b =

√
2AC
B

, c =

√
2AB
C

. (3)

Here, we chose a,b,c such that for right triangle with area A, b and c are it’s base and
height and A = bc

2 , for right triangle with area B, a and c are it’s base and height and
B = ac

2 and for right triangle with area C, b and a are it’s base and height and C = ba
2 .

Without loss of generality, we may assume the Pythagorean quadruple (A,B,C,D) is prim-
itive, i.e. gcd(A,B,C) = 1 and we have:

A =
bc
2
, B =

ac
2
, C =

ab
2
.

Hence, a,b,c are side lengths for right triangles with areas A,B,C.

As we know, (A,B,C,D) is a primitive Pythagorean quadruple. Therefore, for every pos-
itive integer k, (kA,kB,kC,kD) is still a Pythagorean quadruple. We replace our (A,B,C)
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with (kA,kB,kC) respectively in equation (3) to get the following new edges for new tri-
angles with area (kA,kB,kC):

a2 =

√
2kBkC
kA

, b2 =

√
2kAkC
kB

, c2 =

√
2kAkB
kC

.

a2 =

√
2kBC
A

, b2 =

√
2kAC
B

, c2 =

√
2kAB
C

. (4)

Our goal is to determine k such that the argument of each square root is a perfect square.
Initially, we factor each A,B,C such that

A = FASA, B = FBSB, C = FCSC ,

where SA,SB,SC are the maximal perfect squares dividing A,B, and C respectively, and
FA,FB,FC are the remaining square free divisors. Notice that such factorization is unique.

We now focus on the remaining factors FA,FB,FC in order to determine k so that we get a
rational perfect square output. We claim that, if k = 2FAFBFC , then a2,b2, c2 are integers.
As a matter of fact, by substituting k = 2FAFBFC in equation (4), we get:

a2 = 2FBFC

√
SBSC
SA

, b2 = 2FAFC

√
SASC
SB

, c2 = 2FAFB

√
SASB
SC

.

Note that we have perfect square rational values for a2,b2, and c2 in our above equation,
so in order to achieve integer values for a2,b2, and c2, we can find a new k by multiplying
our k = 2FAFBFC with a suitable integer.

Now we form a right tetrahedron with right angled triangle faces, whose areas are integer
values kA,kB and kC, meeting at vertex o and integer principal edges a2,b2 and c2 similar
to Figure. 1. We have constructed a tetrahedron where kA, kB, and kC are the areas of its
right triangle faces. Thus by Theorem 2.5, the area of the 4th face is√

(kA)2 + (kB)2 + (kC)2 =
√
k2(A2 +B2 +C2) =

√
(kD)2 = kD.

Therefore, for every primitive Pythagorean quadruple (A,B,C,D), there exists a positive
integer k such that there is a right tetrahedron with faces areas kA,kB,kC,kD and integer
principal edges. �

Remark. In Theorem 3.1, along with the proof, we have constructed a map from the set
of primitive Pythagorean quadruples to the set of right tetrahedra with integer faces and
principal edges by choosing the minimal k . The existence of a minimal element is guar-
anteed by the Well Ordering Principle. With this, we characterized all possible right
tetrahedra with integer faces and principal edges.

In the following table, we provide some examples of k values associated to a Pythagorean
quadruple along with values for principal edges and areas of the triangle faces of the new
right tetrahedron. We determine Pythagorean quadruples by using Theorem 2.3.
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A B C D k a b c kA kB kC kD
7 4 4 9 14 8 14 14 98 56 56 126
4 8 1 9 4 4 2 16 16 32 4 36
7 6 6 11 504 84 84 72 3024 3024 3528 5544

31 8 8 33 248 124 124 32 1984 1984 7688 8184
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