
The Minnesota Journal of Undergraduate Mathematics

Sponsored by
School of Mathematics

University of Minnesota
Minneapolis, MN 55455

Lattice patterns for the support of
Kostant’s weight multiplicity formula on

sl3(C)

Pamela E. Harris, Haley Lescinsky, and Grace Mabie

Department of Mathematics and Statistics, Williams College

The Minnesota Journal of Undergraduate Mathematics

Volume 3 (2017-18 Academic Year)



MJUM Vol. 3 (2017-18) Page 1

The Minnesota Journal of Undergraduate Mathematics

Volume 3 (2017-18 Academic Year)

Lattice patterns for the support of Kostant’s weight
multiplicity formula on sl3(C)

Pamela E. Harris, Haley Lescinsky, and Grace Mabie ∗

Department of Mathematics and Statistics, Williams College

ABSTRACT. The multiplicity of a weight in a finite-dimensional irreducible representation
of the Lie algebra sl3(C) can be computed via Kostant’s weight multiplicity formula. This
formula consists of an alternating sum over a finite group and involves a partition func-
tion. Our main result describes the terms that contribute nonzero values to this formula,
as, in practice, most terms in the sum contribute a value of zero. By taking a geometric
approach, we provide concrete visualizations of these sets for all pairs of integral weights
λ and µ of sl3(C) and show that the diagrams associated to our main result present new
and surprising symmetry.

1. INTRODUCTION

In this paper, we explore the representation theory of finite-dimensional Lie algebra g

by studying Kostant’s weight multiplicity formula, which gives the multiplicity of the
weight µ in an irreducible representation of sl3(C) with highest weight λ. Kostant’s
weight multiplicity formula is defined as [5]:

m(λ,µ) =
∑
σ∈W

(−1)`(σ )℘(σ (λ+ ρ)− (µ+ ρ)). (1)

In equation (1), σ denotes the elements of the Weyl group W , `(σ ) is the length of σ , ρ
is equal to half the sum of the positive roots, and ℘ denotes Kostant’s partition function.
The partition function is defined on weights ξ and ℘(ξ) gives the number of ways of ex-
pressing ξ as a nonnegative integral sum of positive roots [4]. We note that using KWMF
is very difficult. This occurs because of the fundamental properties of the formula, which
cause the order of W to grow factorially in the rank of the Lie algebra considered. In
addition to this, a closed formula for the partition function, ℘, is not known in general.

Our work focuses on reducing the computation, by describing the elements of the Weyl
group that contribute nontrivially to the formula when we consider the Lie algebra sl3(C).
Hence, we are interested in cases when σ (λ+ρ)−(µ+ρ) is a linear combination of the simple
roots α1 and α2 with nonnegative integer coefficients [4]. This leads to the following
definition.

∗ Corresponding author
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Definition 1.1. We define the Weyl alternation set, denotedA(λ,µ), as the set of Weyl group
elements for which ℘(σ (λ+ ρ)− (µ+ ρ)) > 0.

Let $1 and $2 be the fundamental weights of the Lie algebra sl3(C). Our main result
computes the Weyl alternation sets A(λ,µ) when λ = c1$1 + c2$2 for c1, c2 ∈ Z and µ =
nα1 +mα2 with n,m ∈Z.

Theorem 1.2. Fix µ = nα1+mα2 with n,m ∈Z. If λ = (3x+y)$1+y$2 for some x,y ∈Z, then

A(λ,µ) =



{1} x < m+1, x > −1−n
{s1} y < −2x+n, y > −2x −m− 2
{s2} y > −x −n− 2, y < −x+m
{s1s2} y > −2x −m− 2, y < −2x+n
{s2s1} y < −x+m, y > −x −n− 2
{s1s2s1} x > −n− 1, x < 1+m
{1, s1} y ≥ −2x+n, x ≤ −1−n
{s1, s2s1} y ≥ −x+m, y ≤ −2x −m− 2
{s2s1, s1s2s1} x ≤ −n− 1, y ≤ −x −n− 2
{s1s2, s1s2s1} y ≤ −2x −m− 2, x ≥ 1+m
{s2, s1s2} y ≤ −x −n− 2, y ≥ −2x+n
{1, s2} x ≥m+1, y ≥ −x+m
∅ otherwise

where 1, s1, s2, s1s2, s2s1, s1s2s1 are the Weyl group elements of the Lie algebra sl3(C).

Theorem 1.2 is a generalization of [3, Theorem 2.2.1] which only computed the Weyl al-
ternation setsA(λ,0), where λ = (3x+y)α1+yα2. In this paper we also generalize the idea
of the µ weight Weyl alternation diagram. These diagrams provide a visualization of the
Weyl alternation sets A(λ,µ) by associating all fundamental weights with lattice points
and encoding the Weyl elements in Weyl alternation sets via colored dots. Figure 1, first
appearing in [3, Figure 2.16], presents the Weyl alternation diagram of µ = 0, which de-
picts the 13 distinct Weyl alternation sets, A(λ,0) for λ = c1$1 + c2$2 with c1, c2 ∈ Z. For
example, the Weyl alternation diagram shows that A(3$1,0) = {1, s2}, which is indicated
by the red dot at the lattice point (3,0) having Weyl alternation set {1, s2}, as shown in the
key. Likewise, any weight λ = c1$1 + c2$2 (or lattice point (c1, c2)) with no colored dot
implies that A(λ,0) = ∅.

Our work presents the Weyl alternation diagrams in the case that µ = nα1 +mα2, where
n,m ∈N := {0,1,2, . . .}. The importance of these diagrams is that they state exactly which
Weyl group elements will contribute nontrivially to the multiplicity m(λ,µ), allowing us
to reduce the computation to exactly those elements. Additionally, in the case where the
diagram implies that the Weyl alternation set is empty, we know that the multiplicity
will be zero. We do remark that the only portion of the fundamental weight lattice that
encodes the irreducible representations of sl3 is the first quadrant, but we consider the
entire lattice in our analysis, as it provides surprising symmetrical patterns.
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$1-axis

$2-axis

8 = {1}
8 = {1, s1}
8 = {s1}
8 = {s1, s2s1}
8 = {s2s1}
8 = {s2s1, s1s2s1}
8 = {s1s2s1}
8 = {s1s2, s1s2s1}
8 = {s1s2}
8 = {s2, s1s2}
8 = {s2}
8 = {1, s2}

Figure 1. Weyl alternation diagram for µ = 0. Reproduced with author’s permission from [4].

This paper is organized as follows: Section 2 provides the necessary background and
definitions needed throughout the remainder of the paper. Section 3 provides the proof
of Theorem 1.2. Section 4 provides the construction of the Weyl alternation diagrams. We
end with Section 5 where we provide a few open problems in this area.

2. BACKGROUND

We begin by providing the necessary background and definitions as presented in [4].

Definition 2.1. A vector space g over a field F together with a bilinear map [·, ·] : g×g→ g

is said to be a Lie algebra if the map satisfies:

(1) [X,Y ] = −[Y ,X] for all X,Y ∈ g (skew symmetry), and

(2) [X, [Y ,Z]] + [Z, [X,Y ]] + [Y , [Z,X]] = 0 for all X,Y ,Z ∈ g (Jacobi identity).

From here on out, we specialize to the Lie algebra sl3 := sl3(C), whose elements are 3 ×
3 complex matrices with trace zero and the lie bracket is defined by the commutator
bracket, i.e. if X,Y ∈ sl3, then [X,Y ] = XY − YX. The Cartan subalgebra, h, is a subset of
sl3, consisting of matrices that have all nondiagonal entries equal to zero. Then h∗, the
dual of the Cartan, is the set of all linear functionals on h, which are maps from h to the
complex numbers. Associated to a Cartan subalgebra h and a Lie algebra g, is a set of
simple roots, which form a basis for h∗. In sl3, the simple roots are denoted by α1 and α2,
and the set of positive roots consists of α1, α2, and α1 +α2.

Another basis for h∗ are the fundamental weights, denoted by $1 and $2. The fundamen-
tal weights have the following relationship with the simple roots [4]:

$1 =
2
3
α1 +

1
3
α2, (2)

$2 =
1
3
α1 +

2
3
α2. (3)
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The fundamental weights play an important role in the representation theory of sl3. In
order to state this formally, we first present the representation theory background begin-
ning with the definition of a representation.

Definition 2.2. A representation, τ , is a map from a Lie algebra g to the set of all invertible
linear transformations from the vector space V to itself. Namely, τ : g→ gl(V ). We say the
representation τ is irreducible if the only subspaces that satisfy (τ(g))W ⊂W are V or (0).

The theorem of the highest weight proves that there is a bijection between the set of dom-
inant integral weights and the set of irreducible representations of a Lie algebra g [2, The-
orem 3.2.5]. Therefore, in our setting, each irreducible representation of sl3 corresponds
to a dominant integral weight, which is defined as

λ = c1$1 + c2$2 with c1, c2 ∈Z.

The converse is also true. That is, any dominant integral weight λ = n1$1 + n2$2 with
n1,n2 ∈N corresponds to an irreducible representation of sl3.

One can also study the structure of an irreducible representation by decomposing the
underlying vector space V (of the representation) into the direct sum of subspaces (called
weight spaces in this context) as follows:

V =
⊕
µ

Vµ,

where the decomposition is indexed by a finite set of weights µ. The dimension of each
weight space Vµ can be found from studying the associated weight rather than the overar-
ching representation theory. In fact, Kostant’s weight multiplicity formula (equation (1))
gives a way to compute the dimension of Vµ in the representation corresponding to the
dominant integral weight λ.

This naturally allows us to consider the computation involved in Kostant’s weight mul-
tiplicity formula in order to compute the dimension of the associated weight spaces. In
particular our work is motivated by determining what Weyl group elements contribute
nontrivially to Kostant’s weight multiplicity formula. To do so we first need to under-
stand the Weyl group elements and how they act on weights. This is the purpose of the
next section.

2.1. Weyl group construction. The Weyl group of the Lie algebra sl3 is isomorphic to the
symmetric group on 3 letters and hence has 6 elements. Harris in [4] provides a geometric
construction of the elements of the Weyl group of sl3 as being generated by reflections
which are perpendicular to the simple roots α1 and α2. This is depicted in Figure 2. If
we let s1 be the root reflection associated with α1, and s2 be the root reflection associated
with α2, then the remaining Weyl group elements are generated by concatenations of
s1 and s2. This can be visualized by observing that we can take any root (α1,α2,α1 +
α2,−α1,−α2,−α1 −α2) to any of the other roots by reflecting across s1 and s2.



MJUM Vol. 3 (2017-18) Page 5

α1−α1

α2

−α2

α1 +α2

−α1 −α2

s1

s2

Figure 2. Roots of sl3(C) and the root reflections s1 and s2 which generate all Weyl group elements.
Reproduced with author’s permission from [4].

The unique Weyl group elements extrapolated from this construction are 1, s1, s2, s1s2, s2s1,
and s1s2s1 and these account for all of the elements of the Weyl group. We note that as ex-
pressed, all elements are of minimal length; any other combination (such as s2s1s1s2) will
reduce to one of the elements already given (s2s1s1s2 = 1). There is much work done in
the area of minimal representations of Coxeter group elements (Weyl groups are Coxeter
groups), and we point the interested readers to [1] for further reading.

Lastly we will need to consider how the elements of the Weyl group act on the simple
roots and the fundamental weights of sl3. For 1 ≤ i, j ≤ 2

si(αj) =
{
−αj if i = j
αi +αj if i , j

and

si($j) =
{
$j −αj if i = j
$j if i , j.

In order to determine how a longer element of W acts, we use the fact that the action
of W is linear. Hence we can distribute over addition and pull out scalars. For example,
s2s1(3α1) = s2(3s1(α1)) = s2(−3α1) = −3s2(α1) = −3(α1+α2) = −3α1−3α2. The computations
will be used throughout this paper to evaluate the expression σ (λ + ρ) − (µ + ρ) which is
the input of the partition function as stated in equation (1).

3. PROOF OF MAIN RESULT

We aim to find the Weyl alternation sets A(λ,µ) for any weight λ = c1$1 + c2$2 with
c1, c2 ∈Z and µ = nα1 +mα2 with n,m ∈Z. Thus, we must compute the partition function
value on the expression σ (λ + ρ) − (µ + ρ) for all σ ∈ W . To do so we must convert the
expressions ξ = σ (λ + ρ) − (µ + ρ) into a sum of simple roots, as the Weyl alternation set
(Definition 1.1) consists of the Weyl group elements σ for which ξ can be written as a
nonnegative integral sum of positive roots. As an example, we let µ = 0 and choose σ = 1.
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In this case we have

σ (λ+ ρ)− (µ+ ρ) = 1(c1$1 + c2$2 + ρ)− (0 + ρ) = c1$1 + c2$2. (4)

Using the relationship between the fundamental weights and the simple roots (given in
equations (2)-(3)), we simplify equation (4) as:

c1$1 + c2$2 =
(2c1 + c2

3

)
α1 +

(c1 +2c2
3

)
α2. (5)

equation (5) can be evaluated for any c1, c2 ∈ Z to determine if 1 is an element of the
Weyl alternation set A(c1$1 + c2$2,0). Again, this only happens when both coefficients
are nonnegative integers, so we are interested in the cases when 2c1+c2

3 , c1+2c23 ∈ N since
these weights satisfy ℘(1(λ+ ρ)− ρ) > 0.

While equation (4) was specific to the case µ = 0, we generalize the equation to hold for
any µ = nα1 +mα2, where n,m ∈ Z. This is accomplished by simply subtracting n and m
from the coefficients of α1 and α2 in equation (5), respectively. Repeating this process for
the remaining equations arising from σ (λ+ρ)−(µ+ρ), where σ ∈ {1, s1, s2, s1s2, s2s1, s1s2s1},
yields the following equations:

1(c1$1 + c2$2 + ρ)− ρ −µ =
(2c1 + c2 − 3n

3

)
α1 +

(c1 +2c2 − 3m
3

)
α2,

s1(c1$1 + c2$2 + ρ)− ρ −µ =
(−c1 + c2 − 3n− 3

3

)
α1 +

(c1 +2c2 − 3m
3

)
α2,

s2(c1$1 + c2$2 + ρ)− ρ −µ =
(2c1 + c2 − 3n

3

)
α1 +

(c1 − c2 − 3m− 3
3

)
α2,

s1s2(c1$1 + c2$2 + ρ)− ρ −µ =
(−c1 − 2c2 − 3n− 6

3

)
α1 +

(c1 − c2 − 3m− 3
3

)
α2,

s2s1(c1$1 + c2$2 + ρ)− ρ −µ =
(−c1 + c2 − 3n− 3

3

)
α1 +

(−2c1 − c2 − 3m− 6
3

)
α2,

s1s2s1(c1$1 + c2$2 + ρ)− ρ −µ =
(−c1 − 2c2 − 3n− 6

3

)
α1 +

(−2c1 − c2 − 3m− 6
3

)
α2.

(6)

Since we are trying to determine when the coefficients of the simple roots (in the above
equations) are nonnegative integers, we first deal with the divisibility condition via a
substitution. Since the equations in (3) must have that the coefficients of the simple roots
are divisible by 3 we note that if we let c1 = 3x+ y and c2 = y where x,y ∈Z, then

λ = (3x+ y)$1 + y$2 = (2x+ y)α1 + (x+ y)α2.

In this case every increment of x and y will guarantee that the coefficients of the simple
roots in the equations in (3) are divisible by 3. This substitution allows us to eliminate the
denominator in the equations in (3). We can now prove our main result.
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Proof of Theorem 1.2. Let λ = (3x+ y)$1 + y$2 for some x,y ∈Z and let µ = nα1 +mα2 with
n,m ∈Z. By the equations in (3) we have that

1(λ+ ρ)− ρ −µ = (2x+ y −n)α1 + (x+ y −m)α2,

s1(λ+ ρ)− ρ −µ = (−x − 1−n)α1 + (x+ y −m)α2,

s2(λ+ ρ)− ρ −µ = (2x+ y −n)α1 + (x − 1−m)α2,

s1s2(λ+ ρ)− ρ −µ = (−x − y − 2−n)α1 + (x − 1−m)α2,

s2s1(λ+ ρ)− ρ −µ = (−x −n− 1)α1 + (−2x − y −m− 2)α2,
s1s2s1(λ+ ρ)− ρ −µ = (−x − y −n− 2)α1 + (−2x − y −m− 2)α2.

By Definition 1.4 and from each of the above equations we have that

1 ∈ A(λ,µ)⇔ 2x+ y −n ≥ 0 and x+ y −m ≥ 0,

s1 ∈ A(λ,µ)⇔−x − 1−n ≥ 0 and x+ y −m ≥ 0,

s2 ∈ A(λ,µ)⇔ 2x+ y −n ≥ 0 and x − 1−m ≥ 0,

s1s2 ∈ A(λ,µ)⇔−x − y − 2−n ≥ 0 and x − 1−m ≥ 0,

s2s1 ∈ A(λ,µ)⇔−x −n− 1 ≥ 0 and − 2x − y −m− 2 ≥ 0,

s1s2s1 ∈ A(λ,µ)⇔−x − y −n− 2 ≥ 0 and − 2x − y −m− 2 ≥ 0.

Intersecting these inequalities along with the selection of points on the lattices whose
coefficients of α1 and α2 are divisible by 3 yields the desired result. �

4. WEYL ALTERNATION SET DIAGRAMS

We showed in the proof of Theorem 1.2 that each element of the Weyl group belongs to the
Weyl alternation set A(λ,µ) based on the solutions to a system of inequalities. Namely,
we are finding regions of a plane on which the coefficients of the simple roots in the
expressions σ (λ+ ρ)− (µ+ ρ) are nonnegative integers.

The Weyl alternation diagrams will involve graphing the solution sets to each pair of
linear inequalities arising from the equations in (3) on the fundamental weight lattice of
sl3, which is given by Z$1 ⊕Z$2, which we superimpose on a plane defined by the R-
span of the fundamental weights $1 and $2. This plane and weight lattice is depicted
in Figure 3, where the axes of this plane correspond to the R-span of the fundamental
weights with placement of simple roots as in Figure 2, i.e. α1 = 2$1 −$2 and α2 = −$1 +
2$2.
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$1-axis

$2-axis

Figure 3. Weight lattice Z$1 ⊕Z$2.

To create the Weyl alternation diagrams we graph the inequalities (of the equations in
(3)) as we would on R

2, but rather than shading the solution set (since not all weights
can be written as a sum of simple roots using nonegative integers), we place a colored
solid circle only on the integral weights for which σ (λ + ρ) − (µ + ρ) ∈ Nα1 ⊕Nα2 since
these are the integral weights for which the solution conditions hold. Then the Weyl
alternation diagram is a multi-colored diagram on the fundamental weight lattice of sl3,
where the number of colors is given by the number of non-empty Weyl alternatiuon sets
A(λ,µ) where µ = nα1 +mα2 is fixed (with n,m ∈ N) and as we vary λ = c1$1 + c2$2
with c1, c2 ∈ Z. Once we choose the appropriate number of colors, we assign a distinct
color to each of the non-empty Weyl alternation sets. Then each integral weight with the
same non-empty Weyl alternation set gets a small solid circle of the color assigned to that
particular Weyl alternation set.

Before we present some Weyl alternation diagrams for µ = nα1 +mα2 where n,m ∈N we
provide the following definition.

Definition 4.1. An empty region on the lattice Z$1⊕Z$2 is a set of lattice points such that
every point (λ,µ) satisfies A(λ,µ) = ∅.

Hence for any pair of weights (λ,µ) in an empty region,m(λ,µ) = 0. As observed in Figure
1, the center shape of the empty region is a collection of a few lattice points such that
A(λ,µ) = ∅ located around −ρ. We will shortly observe that the center shape of the empty
region changes for varying values of µ. We now apply the above mentioned procedure to
create some Weyl alternation diagrams.

4.1. Case of µ = nα1. Figures 4a-4d depict the Weyl alternation diagrams for µ = nα1,
where n = 1, 2, 3, and 4, and Figure 4e provides the list of Weyl alternation sets, which
is a key for the Weyl alternation diagram. Observe that changing from µ = 0 (Figure
1) to µ = α1 (Figure 4a) results in a graph with an upward facing triangle as the center
shape of the empty region and increasing the coefficient of α1 in µ = nα1 from n = 1 to
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$1-axis

$2-axis

(a) µ = α1

$1-axis

$2-axis

(b) µ = 2α1

$1-axis

$2-axis

(c) µ = 3α1

$1-axis

$2-axis

(d) µ = 4α1

8 = {1} 8 = {1, s1} 8 = {s1} 8 = {s1, s2s1} 8 = {s2s1} 8 = {s2s1, s1s2s1}
8 = {s1s2s1} 8 = {s1s2, s1s2s1} 8 = {s1s2} 8 = {s2, s1s2} 8 = {s2} 8 = {1, s2}

(e) Key

Figure 4. Weyl alternation diagrams for µ = α1, 2α1, 3α1, 4α1.

n = 2, increases the size of the triangle’s base. This continues to occur when µ = nα1 as n
increases.

4.2. Case of µ =mα2. Figures 5a-5d depict the Weyl alternation diagrams for µ = nα2,
where n = 1, 2, and 3, and Figure 5e provides the list of Weyl alternation sets, which is a
key for the Weyl alternation diagram. Changing from µ = 0 to µ = α2 results in a similar
graph to the one in the µ = α1 case, except the triangle is a horizontal reflection of the one
seen in Figure 4a, i.e. the center shape of the empty region is a downwards facing triangle.
Notice that increasing the coefficient of α2 in µ = mα2 from m = 1 to m = 2 increases the
size of the triangle’s base. This continues to occur when µ =mα2 as m increases.
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$1-axis

$2-axis

(a) µ = α2

$1-axis

$2-axis

(b) µ = 2α2

$1-axis

$2-axis

(c) µ = 3α2

$1-axis

$2-axis

(d) µ = 4α2

8 = {1} 8 = {1, s1} 8 = {s1} 8 = {s1, s2s1} 8 = {s2s1} 8 = {s2s1, s1s2s1}
8 = {s1s2s1} 8 = {s1s2, s1s2s1} 8 = {s1s2} 8 = {s2, s1s2} 8 = {s2} 8 = {1, s2}

(e) Key

Figure 5. Weyl alternation diagrams for µ = α2, 2α2, 3α2, 4α2.

4.3. Case of µ = nα1 +mα2. The case µ = α1 + α2 yields a more interesting pattern (Fig-
ure 6): the two triangles arising in the cases µ = α1 and µ = α2 overlap each other to create
a star as the center shape of the empty region.

This happens because the values n = 1 and m = 1 prevent the corresponding linear in-
equalities of the equations in (3) from shading within the six triangular regions depicted
in Figure 7. Thus, the resulting Weyl alternation diagram has a center empty region that
is shaped like a six pointed star.
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$1-axis

$2-axis

(a) µ = α1 +α2

$1-axis

$2-axis

(b) µ = 2α1 +2α2

8 = {1} 8 = {1, s1} 8 = {s1} 8 = {s1, s2s1} 8 = {s2s1} 8 = {s2s1, s1s2s1}
8 = {s1s2s1} 8 = {s1s2, s1s2s1} 8 = {s1s2} 8 = {s2, s1s2} 8 = {s2} 8 = {1, s2}

(c) Key

Figure 6. Weyl alternation diagram for µ = α1 +α2 and µ = 2α1 +2α2.

c2 ≥ −12c1 +
3
2m

c2 ≤ −12c1 −
3
2n− 3

c2 ≤ c1 − 3m− 3c2 ≤ −2c1 − 3m− 6

c2 ≥ c1 +3n+3c2 ≥ −2c1 +3n

Figure 7. Set of linear inequalities for determining the boundaries of the Weyl alternation sets.

We note that the star shape in the center of the empty region happens in exactly two
scenarios. The first scenario we have already shown and is when µ = nα1 + nα2, with
n ∈ N. The second scenario occurs when µ = n$1 +m$2 < Nα1 ⊕Nα2, namely when
the coefficients of $1 and $2 do not translate into integer coefficients in the simple root
basis. For example, using the relationship defined in equations (2) and (3), we compute
that µ = $1 + 2$2 = 4

3α1 +
5
3α2 < Nα1 ⊕Nα2. In such cases the 6 boundary inequalities

are present, as depicted in Figure 7, and the center shape of the empty region is a star.
However, if µ = n$1 +m$2 = kα1 + `α2 with k,` ∈N but k , `, then the behavior of the
center shape of the empty region is a triangle whose orientation depends on max(k,`). If
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$1-axis

$2-axis

(a) µ = α1 +2α2

$1-axis

$2-axis

(b) µ = 2α1 +α2

8 = {1} 8 = {1, s1} 8 = {s1} 8 = {s1, s2s1} 8 = {s2s1} 8 = {s2s1, s1s2s1}
8 = {s1s2s1} 8 = {s1s2, s1s2s1} 8 = {s1s2} 8 = {s2, s1s2} 8 = {s2} 8 = {1, s2}

(c) Key

Figure 8. Weyl alternation diagrams for µ = α1 +2α2 and µ = 2α1 +α2.

max(k,`) = k, then the triangle faces upward, and if max(k,`) = `, then the triangle faces
downward. Figure 8 depicts this behavior when considering µ = α1+2α2 and µ = 2α1+α2.

5. OPEN PROBLEMS

Now that we have a thorough understanding of the Weyl alternation sets A(λ,µ) in the
cases where µ = nα1+mα2 is fixed with n,m ∈N and λ varies among the integral weights
of sl3 one could explore the case where λ is fixed and where µ varies. Figure 9 provides a
Weyl alternation diagram when we fix λ = 0, and let µ vary. We see a new configuration
of Weyl alternation sets, with a large region whose color represents the fact that all six
Weyl group elements are in the corresponding Weyl alternation set.

An open area of study would be to concretely characterize the Weyl alternation diagrams
in this new setting. Additionally, the process presented in this paper can also be applied
to other Lie algebras. In particular those of rank two: so5(C), sp4(C), so4(C), and the
exceptional Lie algebra of type G2. We remark that the Weyl alternation diagrams corre-
sponding to the weight µ = 0 for all rank 2 Lie algebras have appeared in [3], but the more
general case of µ = c1α1 + c2α2 or µ = d1$1 +d2$2 with c1, c2,d1,d2 ∈Z have not appeared
elsewhere in the literature.
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$1-axis

$2-axis

8 = {1, s1, s2, s2s1}
8 = {1, s2}
8 = {1, s1}
8 = {1, s1, s2, s1s2}
8 = {1, s1, s2, s1s2, s2s1, s1s2s1}
8 = {1, s1, s2}
8 = {1}

Figure 9. Weyl alternation diagram for A(0,µ) with µ ∈N$1 ⊕N$2.
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