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Abstract. There is a well-known correspondence due to Goursat between subgroups of a
direct product of groups, A×B, and triples of the form (A1/A2,B1/B2,σ ) where A2 /A1 ≤ A,
B2 / B1 ≤ B, and σ : A1/A2→ B1/B2 is an isomorphism. By contrast, there is a little known
correspondence due to Usenko between subgroups of a semi-direct product U oφH , where
φ : H → AutU , and triples of the form (L,R,θ), where L ≤ U , R ≤ H , and θ : R → U is
a kind of generalized derivation (crossed homomorphism). While Goursat’s theorem has
been used many times to investigate subgroups of direct products, Usenko’s theorem has
not, perhaps due to the computational complexity of finding the generalized derivations.
In our paper, we find ways of reducing the computational complexity, and show how to use
Usenko’s correspondence to determine all of the subgroups of a certain metacyclic p-group.

1. Introduction

In 1889, E. Goursat [1] established a correspondence between subgroups of a direct prod-
uct of groups, A×B, and triples of the form (A1/A2,B1/B2,σ ) where A2/A1 ≤ A, B2/B1 ≤ B,
and σ : A1/A2 → B1/B2 is an isomorphism. One hundred years later there were two at-
tempts to describe the subgroups of a semi-direct product U oφH , where H acts on U via
φ :H → AutU , in terms of information about its components. In 1988, K. Rosenbaum [3]
determined that a set S of elements in U oH is a subgroup if and only if (i) SU ∩H and
S ∩H are subgroups of UH , (ii) S ∩U is a subgroup and HS ∩U is a collection of S ∩U -
cosets in U , and (iii) there is a function φ defined for all h ∈ SU ∩H mapping (S ∩H)h
onto some coset u(S ∩U ) with u ∈ U satisfying the condition φ(h1h2) = h−1

2 φ(h1)h2φ(h2)
[2]. Three years later, V.M. Usenko [4] described subgroups Γ of U oH in a manner anal-
ogous to Goursat’s theorem by associating Γ with a triple (L,R,θ), where L ≤ U , R ≤ H ,
and θ : R→U is a generalized derivation (described in detail below).

While Goursat’s theorem has been used many times to investigate subgroups of direct
products, neither the work of Rosenbaum nor Usenko has been cited much. Usenko’s
theory is particularly promising, but computationally exhausting because his generalized
derivations are ubiquitous. In our paper, we find ways of reducing the computational
complexity of using Usenko’s correspondence.

∗ Corresponding author
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The paper is organized as follows: In Section 2 we establish notation and describe Usenko’s
correspondence between subgroups of U oH and triples of the form (L,R,θ); in Section 3
we show how to reduce the search for subgroups by reducing the number of functions θ
one must consider; in Section 4 we apply our theory to find all subgroups of a particular
metacyclic p-group; and we conclude our paper in Section 5.

2. Usenko’s Correspondence

We begin with some definitions and notation.

• Throughout the paper, G = U oφ H will be a semi-direct product of groups with
the action of H on U given by the homomorphism φ : H → AutU . We will also
write U oH when the action is clear. We will typically write elements of G in the
form (u,h), where u ∈U and h ∈H .
• For h ∈H and u ∈U , we will denote the action of h on u by uh.
• The product in G is given by

(u1,h1)(u2,h2) = (u1u
h1
2 ,h1h2),

where ui ∈U and hi ∈H .
• Let R ≤ H . A derivation δ : R→ U is a function satisfying δ(r1r2) = δ(r1)δ(r2)r1 for

all ri ∈ R. Derivations are also called crossed homomorphisms in the literature. The
set of all derivations R→U will be denoted Der(R,U ).
• Let L ≤ U . An L-reduced derivation δ : R → U satisfies the property that for all
ri ∈ R there exists λ ∈ L such that

δ(r1r2) = λδ(r1)δ(r2)r1 . (1)

The set of all L-reduced derivations R→U will be denoted DerL(R,U ).
• A normal L-reduced derivation δ : R→U further satisfies

δ(r) · lr · δ(r)−1 ∈ L (2)

for all r ∈ R and l ∈ L. The set of all normal L-reduced derivations R→ U will be
denoted NDerL(R,U ) and we will say δ is “NLR.”
• A normal L-reduced triple, or NLR triple, in U oH is (L,R,θ), where L ≤ U , R ≤ H ,

and θ : R→U is NLR.
• The fiber-product of an NLR triple (L,R,θ) is

L ./ R = {(lθ(r), r) | l ∈ L,r ∈ R}.
We will also use the notation L ./θR and L ./θφR when we need to call attention to
either the NLR θ or the action given by φ.
• We will use the dihedral group of order 12, which we denote D12, to provide

illustrations of some results in what follows. We consider D12 = U o H where
U = 〈σ〉 � Z6 and H = 〈τ〉 � Z2, with σ a rotation of order 6 and τ a reflection.
The action of H on U is given by σ τ = σ−1.

Usenko describes a correspondence between subgroups Γ ofUoH and NLR triples (L,R,θ).
The correspondence is not bijective; we will see that many NLR derivations give rise to
the same subgroup.
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On one hand, if (L,R,θ) is an NLR triple in U oH , then the fiber-product L ./ R is easily
seen to be a subgroup of U oH of order |L||R|.

On the other hand, given a subgroup Γ ≤U oH we will associate it with a triple. Let

UΓ = Γ ∩U = {u ∈U | (u,e) ∈ Γ } and

ΓH = {h ∈H | (u,h) ∈ Γ for some u ∈U }.

It is easy to prove that UΓ / Γ , and Γ /UΓ � ΓH . Let x ∈ ΓH correspond to the coset UΓ (y,x),
where y ∈ U , and define θΓ (x) = y to obtain a map θΓ : ΓH → U . If (u,x) is any other
representative of the same coset then (u,x) = (v,e)(y,x) = (vy,x) for some v ∈UΓ . Indeed,

(u,x) = (uθΓ (x)−1θΓ (x),x)

where uθΓ (x)−1 ∈UΓ .

Lemma 2.1. As defined above, θΓ : ΓH →U is a normal UΓ -reduced derivation.

Proof. Usenko proves this in his Proposition 1.3.2, but we include a proof here for com-
pleteness.

We will simply denote θΓ as θ when the association with Γ is clear. Let x1,x2 ∈ ΓH with
x1x2 = x3 ∈ ΓH . Set θ(xi) = yi ∈ U , where (yi ,xi) ∈ Γ . Since (y1,x1)(y2,x2) = (y1y

x1
2 ,x3)

we know from above that y1y
x1
2 = y1y

x1
2 θ(x3)−1θ(x3), where y1y

x1
2 θ(x3)−1 ∈ UΓ . Thus, θ

satisfies equation (1) and is a UΓ -reduced derivation.

Let r ∈ ΓH and l ∈ UΓ . Set g1 = (uθ(r), r) and g2 = (lθ(x),x), where u ∈ UΓ and x ∈ ΓH , then
gi ∈ Γ . As above, we have

g1g2 = (uθ(r)lrθ(x)rθ(rx)−1θ(rx), rx)

where uθ(r)lrθ(x)rθ(rx)−1 ∈UΓ . Now uθ(r)lrθ(x)rθ(rx)−1 = uv1v2 where v1 = θ(r)lrθ(r)−1

and v2 = θ(r)θ(x)rθ(rx)−1. We know v2 ∈ UΓ by the argument above showing that θ is
a UΓ -reduced derivation. By assumption u ∈ UΓ , hence v1 ∈ UΓ . We have shown that θ
satisfies equation (2) and is a normal UΓ -reduced derivation. �

The lemma above shows that (UΓ ,ΓH ,θΓ ) is a normal UΓ -reduced triple (or NLR triple,
where L =UΓ ).

Example 2.2. InD12, let L = 〈σ2〉, R = 〈τ〉, and define θ : R→U by θ(e) = σ2 and θ(τ) = σ .
One can check that θ ∈NDerL(R,U ). The fiber-product L ./ R will have order 6 and

L ./ R = {lθ(r), r) | l ∈ L,r ∈ R}
= {(e,e), (σ2, e), (σ4, e), (σ,τ), (σ3, τ), (σ5, τ)}
= 〈σ2,στ〉.

On the other hand, if

Γ = {(e,e), (σ3, e), (σ2, τ), (σ5, τ)} = 〈σ3,σ2τ〉,

then L =UΓ = 〈σ3〉 and R = ΓH = 〈τ〉. The element e ∈ ΓH corresponds to the cosetUΓ (e,e) =
{(e,e), (σ3, e)}, while τ ∈ ΓH corresponds to UΓ (σ2, τ) = {(σ2, τ), (σ5, τ)}. We can define θ :
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R→U in four different ways, one of which is given by θ(e) = e and θ(τ) = σ2. It is routine
to check that θ ∈NDerL(R,U ) and L ./ R = Γ .

As mentioned earlier, a particular subgroup of U oH can be associated with many dif-
ferent NLR derivations. We can see in the definition of θΓ that it does not depend on
the coset representative of x ∈ ΓH mod UΓ . We make this notion more precise in the next
proposition.

Theorem 2.3. Let L ≤ U , R ≤ H and θi : R→ U , i = 1,2, be two NLR derivations in U oH .
We have L ./θ1R = L ./θ2R if and only if Lθ1(r) = Lθ2(r) for all r ∈ R.

Proof. First assume Lθ1(r) = Lθ2(r) for all r ∈ R. Let (xθ1(r), r) ∈ L ./θ1R for some x ∈ L and
r ∈ R. There exists x1 ∈ L such that θ1(r) = x1θ2(r). Now (xθ1(r), r) = (xx1θ2(r), r) ∈ L ./θ2R.
Thus L ./θ1R ⊆ L ./θ2R. Similarly, L ./θ2R ⊆ L ./θ1R.

Next assume that L ./θ1 R = L ./θ2 R. Let r ∈ R and x ∈ L so that (xθ1(r), r) ∈ L ./θ1 R.
There exist x1 ∈ L and r1 ∈ R such that (xθ1(r), r) = (x1θ2(r1), r1). Clearly r1 = r, hence
xθ1(r) = x1θ2(r) and θ1(r) is equivalent to θ2(r) mod L. �

Example 2.4. In D12, let L = 〈σ2〉 and R = 〈τ〉. Define θ1 : R → U by θ1(e) = σ2 and
θ(τ) = σ as in Example 2.2. Define θ2 : R → U by θ2(e) = σ2 and θ(τ) = σ3. Then the
image of θ1 is equivalent to the image of θ2 mod L, and one can see that

L ./θ1R = L ./θ2R = {(e,e), (σ2, e), (σ4, e), (σ,τ), (σ3, τ), (σ5, τ)}.

On the other hand, if we define θ3 : R→U by θ3(e) = σ2 and θ(τ) = σ4 then one can show
that θ3 ∈NDerL(R,U ), but Lθ1(τ) , Lθ3(τ). Moreover,

L ./θ3R = {(e,e), (σ2, e), (σ4, e), (e,τ), (σ2, τ), (σ4, τ)} , L ./θ1R.

3. Finding NLR triples

Our main goal is to construct subgroups of U oH from information about the component
groups U and H . The three necessary ingredients are subgroups of U , subgroups of H ,
and normal reduced derivations. It is the latter item that is particularly vexing since typ-
ical group-theoretic tools are not at our disposal. If R ≤ H , we begin with |U ||R| possible
functions R→ U , although not all of them will be NLR for any L ≤ U . In this section we
aim to reduce the number of NLR’s one must consider in order to construct all subgroups
of U oH .

Our first important result is that we need only consider an NLR θ that satisfies θ(e) = e.
Before proving the result, we need a lemma.

Lemma 3.1. Let (L,R,θ) be an NLR triple in U oH , then we must have θ(e) ∈ L.

Proof. Assume θ is a normal L-reduced derivation R → U and let r ∈ R. Since θ is L-
reduced, we know there exists l ∈ L such that

θ(r) = θ(er) = lθ(e)θ(r)e.

Since e acts trivially on θ(r) we see that θ(e) = l−1 ∈ L as desired. �
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To show it suffices to assume that an NLR maps the identity to itself, we will show that a
fiber-product is precisely equal to one constructed under the condition that e 7→ e.

Theorem 3.2. Let (L,R,θ) be an NLR triple in U oH . Define θ′ : R→U by

θ′(r) =
{
e when r = e,
θ(r) when r , e.

Then θ′ is NLR and L ./θR = L ./θ
′
R.

Proof. First we will show that θ′ is an NLR derivation. Equation (1) is clearly satisfied by
θ′ when none of r1, r2, nor r1r2, where ri ∈ R, is equal to the identity. If either r1 or r2
is the identity, then it is easy to check that equation (1) holds. Now suppose r1 , e and
r2 = r−1

1 . On one hand, θ′(r1r2) = θ′(e) = e. On the other hand,

θ′(r1)θ′(r2)r1 = θ(r1)θ(r2)r1 = lθ(r1r2)

for some l ∈ L since θ is L-reduced. Further, θ(r1r2) = θ(e) = l1 for some l1 ∈ L by Lemma
3.1. Thus, θ′(r1r2) = (ll1)−1θ′(r1)θ′(r2)r1 and we see that θ′ is L-reduced.

Equation (2) is clearly satisfied by θ′ whether r = e or not. Thus θ′ is an NLR derivation.

Finally, by Theorem 2.3 we see that L ./θR = L ./θ
′
R if and only if Lθ(r) = Lθ′(r) for all

r ∈ R. When r , e the cosets are equal because θ(r) = θ′(r). When r = e the cosets are equal
because θ(e) ∈ L by Lemma 3.1. �

The upshot of the theorem above is that we need only consider functionsR→U satisfying
e 7→ e, thus reducing the number of possibilities by a factor of |U |.

It is possible to say a bit more about NLR derivations when L is invariant under the action
of R, given by φ.

Definition 3.3. In U oH , let L ≤ U and R ≤H . We say that L is “R-stable” if lr ∈ L for all
l ∈ L and r ∈ R.

If L is R-stable, it is easy to see that L oφ R is a subgroup of U oφ H . Moreover, the
subgroup is associated with the triple (L,R,1), where 1(r) = e for all r ∈ R. Of course the
trivial derivation is not necessarily the only NLR derivation for the pair (L,R), so there
can be other “diagonal” subgroups of U oH generated by L and R. The next two results
show how to narrow the search for elements of NDerL(R,U ) when L is R-stable.

Proposition 3.4. In U oH , let L /U be R-stable, where R ≤ H . If θ : R→ U is an L-reduced
derivation, then it is normal L-reduced.

Proof. Since L is invariant under the action of R and is a normal subgroup of U , it is easy
to see that equation (2) holds for all l ∈ L and r ∈ R. �

In practice, checking that a function R → U satisfies equation (1) is much easier than
checking equation (2), so Proposition 3.4 can be useful. The next result shows how to
construct new NLR derivations from existing ones.
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Proposition 3.5. Let (L,R,θ1) be an NLR triple in U oH , where L / U is R-stable. Define
θ2 : R→ U as any function satisfying Lθ1(r) = Lθ2(r) for all r ∈ R. Then θ2 is also a normal
L-reduced derivation.

Proof. By Proposition 3.4 we need only show that θ2 ∈ DerL(R,U ). Let r1, r2 ∈ R with
r3 = r1r2. There exist li ∈ L such that θ1(ri) = liθ2(ri). Checking equation (1), we have

θ2(r1r2) = l−1
3 θ1(r1r2)

= l−1
3 λθ1(r1)θ1(r2)r1 , for some λ ∈ L

= l−1
3 λl1θ2(r1)(l2θ2(r2))r1

= l−1
3 λl1θ2(r1)lr12 θ2(r2)r1

= l−1
3 λl1θ2(r1)l4θ2(r2)r1 , for some l4 ∈ L

= l−1
3 λl1l5θ2(r1)θ2(r2)r1 , for some l5 ∈ L

= λ′θ2(r1)θ2(r2)r1 , where λ′ = l−1
3 λl1l5 ∈ L.

�

Rather than using Proposition 3.5 to create additional NLR derivations, we use it to re-
duce the number of possibilities one must consider when trying to construct such func-
tions.

We conclude this section with one more result concerning subgroups of U oφ H of the
form Loφ R.

Theorem 3.6. In U oφH , let L ≤U be R-stable for some R ≤H . Any function θ : R→ L is an
NLR derivation with associated fiber-product equal to Loφ R.

Proof. As above, the function 1 : R→ U defined by 1(r) = e for all r ∈ R is clearly an NLR
derivation with corresponding fiber-product

L ./1
φR = {l1(r), r)) | l ∈ L,r ∈ R}.

As a set, L ./1R is equal to L ×R, and the product is determined by the action of R on L
given by the restriction of φ. If θ : R→ L, then it is easy to see that θ satisfies equations
(1) and (2) because all computations are inside L. Finally, by Theorem 2.3 we know

L ./θφR = L ./1
φR = Loφ R.

�

4. Subgroups of a metacyclic p-group

A group G is metacyclic if it has a cyclic normal subgroup N so that G/N is also cyclic. A
metacyclic group is split if the extension

1→N → G→ G/N → 1

splits. In this case, we can findQ ≤ G such thatG =NoQ. We will consider the metacyclic
p-group, p > 2, of the form

P =U oH
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where U = 〈x〉 � Zp2 , H = 〈y〉 � Zp, and the action of H on U is given by xy = xp+1. The
group P is extraspecial of order p3 and has presentation

P = 〈x,y |xp
2

= e,yp = e,yxy−1 = xp+1〉.

The group P is well-known and for small values of p has small order, so its subgroups
are well-known too; still, we will find all of the subgroups of P to illustrate the theory
developed in Section 3.

The only subgroups of H are {e} and 〈y〉. If R = {e} and we insist that θ(e) = e because of
Theorem 3.2, then θ = 1 is an NLR derivation for all L ≤U by Theorem 3.6, and L ./ R = L.
This gives us the following three subgroups of P : {e}, 〈xp〉, and 〈x〉.

If R = 〈y〉 then the fact that both U and H are cyclic gives us two helpful results: (i) the
only options for subgroups L of U are {e}, 〈xp〉, and 〈x〉; and (ii) the subgroups {e} and 〈x〉
are clearly R-stable, and (xp)y = xp(p+1) = xp shows that 〈xp〉 is also R-stable.

We first use equation (1) to say something about the image of θ mod L.

Proposition 4.1. In P , let L ≤ U and R = H . Let θ : R→ U be a function satisfying θ(e) = e
and θ(y) = xi for some xi ∈ U . Then θ ∈ NDerL(R,U ) if and only if both conditions below
hold.

(1) For all k = 1,2, . . . ,p, θ(yk) ∈ Lxtk , where

tk = i(1 +α +α2 + · · ·+αk−1)

with α = p+ 1.

(2) When L = {e}, i ≡ 0 mod p; and when L = 〈x〉 or 〈xp〉, there are no restrictions on i.

Proof. If θ ∈NDerL(R,U ), then we prove by induction that θ(yk) ∈ Lxtk . The result clearly
holds for k = 1. Assume the result holds for k, we will show it also holds for k + 1. Now

θ(yk+1) = θ(yyk)
= λ1θ(y)θ(yk)y , for some λ1 ∈ L
= λ1x

i(λ2x
tk )y , for some λ2 ∈ L

= λ1x
iλ
y
2(xtk )y

= λ1x
iλ3x

αtk , for some λ3 ∈ L
= λ4x

tk+1 , for some λ4 ∈ L.

Property (2) comes from the fact that yp = e, hence θ(yp) ∈ L. By property (1), we must
have xtp ∈ L. Now

1 +α +α2 + · · ·+αp−1 =
αp − 1
α − 1

.

Since α = (p + 1), we know that p2 is the highest power of p that divides αp − 1. Let
αp − 1 = qp2 where p - q, then

tp = i(1 +α +α2 + · · ·+αp−1) = i(
qp2

p
) = iqp.
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If L = 〈x〉 or 〈xp〉, then xiqp ∈ L. If L = {e}, then xiqp ∈ L if and only if iqp ≡ 0 mod p2.
Hence i ≡ 0 mod p.

On the other hand, if the function θ : R→U satisfies properties (1) and (2), then we must
show it is a normal L-reduced derivation. Since all subgroups L ≤ U are R-stable by our
comment above, by Proposition 3.4 we need only check that equation (1) holds.

Let ya, yb ∈ R for some a,b = 0,1, . . . ,p − 1 with θ(ya) = lax
ta and θ(yb) = lbx

tb for some
la, lb ∈ L. Then

θ(ya)θ(yb)y
a

= lax
ta(lbxtb)y

a

= lax
tal
ya

b (xtb)y
a

= lax
talc(xtb)y

a
, for some lc ∈ L

= ldx
ta(xtb)y

a
, for some ld ∈ L

= ldx
ta+αatb

= ldx
i(1+α+···+αa−1)+iαa(1+α+···+αb−1)

= ldx
i(1+α+···+αa+b−1)

= ldx
ta+b .

Hence θ(ya+b) = λθ(ya)θ(yb)y
a

for some λ ∈ L. �

By Theorem 2.3, we know that any two NLR derivations whose images are equivalent mod
L give rise to the same fiber-product. By Proposition 4.1, when R = 〈y〉 an NLR derivation
must satisfy θ(yk) ∈ Lxtk , so we will choose to consider only those functions θi : R→ U
satisfying θi(e) = e and θi(yk) = xtk for all k = 1,2, . . . ,p (in particular, θi(y) = yi).

Now we can find the subgroups of P from NLR triples, when R = 〈y〉.

• If L = {e} then we know from above that θi : R→ U defined by θi(yk) = xtk is in
NDerL(R,U ) if and only if i = 0,p,2p, . . . ,p(p − 1). We get the following subgroups
of P :

– When i = 0, θ0 = 1 and L ./θ0R = R = 〈y〉 �Zp.
– When i = p,

L ./θpR = {(e,e), (xp, y), (x2p, y2), . . . , (xp(p−1), yp−1)}
= 〈xpy〉 �Zp.

– When i = 2p,

L ./θ2pR = {(e,e), (x2p, y), (x4p, y2), . . . , (x2p(p−1), yp−1}
= 〈x2py〉 �Zp.

...
– When i = p(p − 1),

L ./θp(p−1)R = {(e,e), (xp(p−1), y), . . . , (xp
2(p−1)2

, yp−1)}

= 〈xp(p−1)y〉 �Zp.

Thus, when L = {e} and R = 〈y〉, we get p subgroups isomorphic to Zp.
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• If L = 〈xp〉 then θi is in NDerL(R,U ) for all i = 0,1, . . . ,p2 − 1. In this case,

L ./θiR = L ./θjR

whenever i ≡ j mod p, so we need only consider θi(y) = xi for i = 0,1, . . . ,p − 1.
Furthermore, since αj ≡ 1 mod p for all j we have tk ≡ ik mod p. Thus xtk ∈ Lxik
so we may assume θi(yk) = xik.

– When i = 0, θ0 is the trivial function and by Theorem 3.6 the corresponding
fiber-product is

L ./θ0R = LoR = L×R = 〈xp, y〉 �Zp ×Zp.

– When i = 1, we may assume θ1(yk) = xk and we get

{(lθ1(e), e) | l ∈ L} = {(e,e), (xp, e), . . . , (x(p−1)p, e)},

{(lθ1(y), y) | l ∈ L} = {(x,y), (xp+1, y), . . . , (x(p−1)p+1, y)},

{(lθ1(y2), y2) | l ∈ L} = {(x2, y2), (xp+2, y2), . . . , (x(p−1)p+2, y2)},
...

{(lθ1(yp−1), yp−1) | l ∈ L} = {(xp−1, yp−1), . . . , (x(p−1)p+p−1, y2)}.

Hence,

L ./θ1R = 〈xy〉 �Zp2 .

– When i = 2, we may assume θ2(yk) = x2k and we get

{(lθ2(e), e) | l ∈ L} = {(e,e), (xp, e), . . . , (x(p−1)p, e)},

{(lθ2(y), y) | l ∈ L} = {(x2, y), (xp+2, y), . . . , (x(p−1)p+2, y)},

{(lθ2(y2), y2) | l ∈ L} = {(x4, y2), (xp+4, y2), . . . , (x(p−1)p+4, y2)},
...

{(lθ2(yp−1), yp−1) | l ∈ L} = {(x2p−2, yp−1), (x3p−2, y2), . . . , (xp−2, y2)},

Hence,

L ./θ2R = 〈x2y〉 �Zp2 .

– Continuing in this manner, letting θi(yk) = xik for i = 3,4, . . . ,p − 1, we end up
with more subgroups of the form

L ./θiR = 〈xiy〉 �Zp2 .

Thus, when L = 〈xp〉 and R = 〈y〉, we get p − 1 subgroups isomorphic to Zp2 and
one isomorphic to Zp ×Zp.
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• If L = 〈x〉 then θi is in NDerL(R,U ) for all i = 0,1, . . . ,p2 − 1. Since the image of
every θi is in L, we can take θ0 = 1 as representative of all of them. In this case,

L ./1R =U oH = P .

Putting all the information together, we see that P has 2p+ 4 subgroups:

• {e};
• {〈xp〉,〈y〉,〈xpy〉,〈x2py〉, . . . ,〈x(p−1)py〉}, each isomorphic to Zp;

• {〈x〉,〈xy〉,〈x2y〉, . . . ,〈xp−1y〉}, each isomorphic to Zp2 ;
• 〈xp, y〉, isomorphic to Zp ×Zp; and
• P .

Moreover, instead of testing p2 functions R→ U when R = {e} and (p2)p−1 when R = 〈y〉,
we considered only 2p+ 2 different normal L-reduced derivations in total.

5. Conclusion

We can find subgroups of G = U oH by considering products MS where S ≤ H and M is
an S-invariant subgroup of U , but we will only find subgroups of G in this manner up to
isomorphism type. Indeed, in the example in Section 4, the MS construction would yield
the 5 distinct isomorphism types of subgroups of P , but not all 2p+ 4 distinct subgroups.
We need normal L-reduced derivations to determine subgroups of G precisely. A priori,
there are many functions that might turn out to be in NDerL(R,U ) given L ≤U and R ≤H ,
but we have shown how to substantially reduce the number of computations needed to
find all the subgroups of U oH .

One can say quite a bit more about subgroups of U oH when U and H are both cyclic.
More generally, the NLR derivation idea may help to determine conjugacy classes of sub-
groups of a semi-direct product. These are both good areas for further lines of research.
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