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Abstract. We continue the study of U-factorization and τ-factorization by exploring fur-
ther possible definitions of irreducible elements and associate relations. We are primarily
interested in strongly associate rings where relationships between these definitions are
more well behaved. We also show that all these definitions coincide for présimplifiable
rings, such as any domain or quasi-local ring.

1. Introduction and Background

Anderson and Frazier introduced a concept called τ-factorization, in [2] in 2011. This
provided a general theory of factorization which consolidated much of the existing liter-
ature on factorization theory in integral domains into a single overarching framework of
factorization theory. Recently, the first author has looked at several different methods to
extend this τ-factorization to commutative rings with zero-divisors, see [18, 19, 20, 21,
22].
The relation τn, in particular, has garnered considerable attention in the integers, for
example, see [13, 14], where factorizations are only allowed if each factor is congruent
modulo (n). A. Mahlum and the first author began the process of studying these τn-
factorization properties in Z/mZ in [16]. Unfortunately, there were issues which arose
primarily due to the presence of idempotent elements in Z/mZ when there were multiple
prime divisors of m. These idempotent elements seemed to be the only thing preventing
the rings from satisfying the nicer τn-finite factorization properties. The standard way
to resolve factorization issues coming about from idempotent elements is the method of
U-factorization. This method was introduced by Fletcher in [11] and has been studied by
many authors since then as an improved way of studying factorization in commutative
rings with zero-divisors. In particular, we expand on the work done in τ-U-factorization
in [6, 20] by exploring several other possible definitions for the irreducible elements and
looking at several associate relations. Because we were primarily interested in exploring
τn-factorizations in Z/mZ, we devote most of our attention to strongly associate rings.
We see that in strongly associate rings several diverging definitions will converge and
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nice relationships can be demonstrated between the various irreducible elements.
In Section 2, we present many definitions and background results which will be used
throughout the paper to study relationships between the irreducible elements. In Sec-
tion 3, we study the relationships between factorization properties of individual elements
which were defined in Section 2. Finally, we show that in a présimplifiable ring, in par-
ticular, any integral domain or quasi-local ring, all of the definitions coincide. This is
clearly what we desire as a generalization of τ-factorization from integral domains.

2. Preliminaries

We carry over much of the notation from [16]. We assume R is a commutative ring with
1 , 0. Let R∗ = R− {0}, U (R) be the set of units of R, and R# = R∗ −U (R) be the non-zero,
non-units of R.

Definition 2.1.

(1) Let a ∼ b if (a) = (b) where (a) = {ra | r ∈ R}, the principal ideal generated by a. In
this case, a and b are said to be associates.

(2) Let a ≈ b if there exists λ ∈ U (R) such that a = λb. In this case, a and b are said to
be strong associates.

(3) Let a � b if (1) a ∼ b and (2) a = b = 0 or if a = rb for some r ∈ R then r ∈ U (R). In
this case, a and b are said to be very strong associates.

Definition 2.2. A ring R is said to be a strongly associate ring if for any a,b ∈ R, a ∼ b
implies a ≈ b.

See [1] for further discussion of this property.

Definition 2.3. A ring R is said to be a very strongly associate (equivalently, présimplifiable
as it is often called as below)) ring if for any a,b ∈ R, a ∼ b implies a � b.

As in [7, 8, 9, 10], R is présimplifiable means for any x,y ∈ R, we have x = yx implies
x = 0 or y ∈U (R). Examples of présimplifiable rings include integral domains and quasi-
local rings which are rings with a unique maximal ideal, but not necessarily Noetherian.
We briefly observe that the présimplifiable property is equivalent to what we have been
calling a very strongly associate ring.

Proposition 2.4. R is présimplifiable if and only if R is a very strongly associate ring.

Proof. (⇒) Let R be présimplifiable. Suppose a ∼ b, then we must show a � b. If a = 0,
then b = 0 also since (a) = (b). Thus, we have a � b as desired. If b = 0, the argument is
symmetric. If neither a nor b is 0, then suppose a = rb for some r ∈ R. Since (a) = (b), we
have b = sa for some s ∈ R. Thus a = rsa, and we can use présimplifiable to conclude that
rs ∈U (R). This means r ∈U (R) which shows that a � b.
(⇐) Let R be a very strongly associate ring. Suppose x = yx for some x,y,∈ R. We must
show that x = 0 or y ∈U (R). Certainly (x) = (x) so x ∼ x. Since R is very strongly associate,
it follows that x � x. If x , 0 and we have x = yx for some y ∈ R, then y must be a unit as
desired. �
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It follows from definitions that very strong associates are strong associates and strong
associates are associates. Both ∼ and ≈ are equivalence relations, while � fails only to be
reflexive. Therefore, in a strongly associate ring, ∼ and ≈ coincide and in a very strongly
associate ring, ∼, ≈ and � all coincide. We direct the reader to [3] where these relations
are explored much more thoroughly and many examples are provided to show that they
are distinct in rings with zero-divisors.
All very strongly associate rings are therefore strongly associate rings. We pause to give
a few examples to show that these kinds of rings are not terribly exotic, but in fact quite
common. We highly recommend [1] for the interested reader where these questions are
studied specifically.

Example 2.5. • Every integral domain is very strongly associate, which includes the
integers Z, polynomial rings over an integral domain (Z[X], Q[X], R[X], C[X],
etc), among many others.
• Quasi-local rings are very strongly associate.
• The modular integers Z/mZ are strongly associate.
• Direct products of strongly associate rings are strongly associate, which means

direct products of any of the above would generate strongly associate rings which
are not very strongly associate.
• Principal ideal rings (rings in which every ideal is principal) or Artinian rings

(rings in which every descending chain of ideals is finite) are strongly associate.
• Semi-quasilocal rings (rings with a finite number of maximal ideals) are strongly

associate, but need not be very strongly associate.
• Idealization provides another technique for constructing strongly associate rings

which are not very strongly associate.

Let τ be a symmetric relation on R#, that is, τ ⊆ R# × R# and if (a,b) ∈ τ , then (b,a) ∈ τ
and we will write aτb. For non-units a,ai ∈ R, and λ ∈ U (R), a = λa1 · · ·an is said to be a
τ-factorization if aiτaj for all i , j. If n = 1, then this is said to be a trivial τ-factorization.
Given the above τ-factorization, we would say that ai is a τ-factor of a or write ai |τ a. We
note that 0 cannot appear as a τ-factor, except in the trivial factorization 0 = λ0 for some
λ ∈U (R).
We pause to provide some standard examples of τ-relations which have been of interest
in the literature.

Example 2.6. Let R be a commutative ring with 1 , 0.

(1) τd = R# × R#. This yields the usual factorizations in R and |τd is the same as the
usual divides.

(2) τ = ∅. This is the other extreme, where for every a ∈ R#, there are only trivial
factorizations and a | τb⇔ a = λb for λ ∈U (R)⇔ a ≈ b.

(3) Let I be an ideal in R. Set aτIb if and only if a− b ∈ I .

(a) Let R = Z. Let I = (n). Then this is τn which was studied extensively in
[13, 14].
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(b) In [16], we were especially interested in R = Z/mZ and I = (n) (Z/mZ is a
principal ideal ring so all ideals are principal).

(4) We obtain the co-maximal factorizations studied in [17] by aτb if and only if
(a,b) = R. Furthermore, for any ?-operation, we obtain ?-co-maximal factoriza-
tions studied in [15] by aτ?b if and only if (a,b)? = R.

Recall that in an integral domain (commutative ring with unity and no non-zero, zero-
divisors), a non-unit element p is prime if p | ab implies p | a or p | b and p is irreducible
if a ∼ bc implies a ∼ b or a ∼ c. These definitions are often used as the standard way to
extend these concepts from integral domains into rings with zero-divisors. We will inves-
tigate more completely later, but pause to introduce an example which highlights one of
many problems with factorization in rings with zero-divisors to motivate the technique
of U-factorization.

Example 2.7. Let R = Z/6Z and consider the element 3. Now 3 is prime and therefore
irreducible, yet we have 3 = 3 ·3, which means 3 is a non-trivial idempotent element. This

problem is further compounded by the fact that 3 = 3
i

for all i ≥ 1 yielding arbitrarily
long prime and irreducible factorizations of 3 in Z/6Z. The idea is then that these addi-
tional copies of the idempotent element, 3 are not contributing anything to the principal
ideal we are trying to factor, (3). In some sense, these additional factors are no different
than factoring 6 in the integers as 6 = 1 · 1 · 1 · · ·1 · 2 · 3 and claiming the factorizations are
no longer unique.

This is the motivation behind the use of what is called U-factorization which we define
formally below. We use the same definitions for τ-U-factorization and τ-U -factorization
from [4, 5, 6, 20].

Definition 2.8. Let a ∈ R be a non-unit. If a = a1a2 · · ·amb1b2 · · ·bn, where ai ,bj ∈ R are
non-units, then a = a1a2 · · ·amdb1b2 · · ·bne is a U-factorization of a if

(1) ai(b1b2 · · ·bn) = (b1b2 · · ·bn) for 1 ≤ i ≤m, and

(2) bj(b1 · · · b̂j · · ·bn) , (b1b2 · · · b̂j · · ·bn) for 1 ≤ j ≤ n,

where b̂j means the element is omitted from the product and the ceiling symbols are used
as part of the definition to separate essential divisors from inessential divisors.
We call the bj ’s the essential divisors of this particular U-factorization of a, and the ai ’s are
the inessential divisors of this particular U-factorization of a.

Definition 2.9. Let a be a non-unit, ai ,bj ∈ R#, and λ ∈U (R). Then a = a1a2 · · ·amdb1b2 · · ·bne
is said to be a τ-U-factorization if a = a1a2 · · ·amdb1b2 · · ·bne is aU -factorization and the fac-
torization a = λa1 · · ·amb1 · · ·bn is a τ-factorization. If n = 1, then this is said to be a trivial
τ-U-factorization.

Definition 2.10. Let a be a non-unit, ai ,bj ∈ R# and λ ∈ U (R). Then we say that the
factorization a = λa1a2 · · ·amdb1b2 · · ·bne is a τ-U-factorization if a = a1a2 · · ·amdb1b2 · · ·bne
is a U -factorization and biτbj for all i , j. If n = 1, then this is said to be a trivial τ-U-
factorization.
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Now, equipped with our U-factorization definitions, we can look at the factorizations that
were giving us trouble before in the following example.

Example 2.11. We continue to look at the ring R = Z/6Z and factorizations of 3. Because

(3
2
) = (3), we have 3 = 3

i
= 3

i−1 ⌈
3
⌉
. Thus we see that these arbitrarily long factorizations

of 3 actually all have the same essential divisor, a single 3. The extra inessential factors
of 3 are not contributing anything to the principal ideal. This type of factorization was
introduced and studied extensively in [11, 12], where it is shown that in fact using U-
factorization, Z/nZ is actually a U-unique factorization ring (in the sense of Fletcher) for
any n ∈N.

The next hurdle is all the different possible definitions of irreducible element that abound
in rings with zero-divisors. We include those defined in [3] since those were the starting
point of our research. Let a ∈ R be a non-unit. Then a is said to be prime if a | bc implies
a | b or a | c. We say a is said to be irreducible if a = bc implies we have a ∼ b or a ∼ c.
We say a is strongly irreducibleif a = bc implies we have a ≈ b or a ≈ c. We say that a is
m-irreducible if (a) is maximal among principal ideals. We say a is very strongly irreducible
if a = bc implies a � b or a � c.
We provide some of these examples from [3] below to give the reader a sense of how these
definitions may differ in a ring with zero-divisors even in the traditional factorization
setting (when τ = R# ×R#).

Example 2.12.

• An element which is prime and irreducible, but not strongly irreducible.
Let R = F[X,Y ,Z]/(X −XYZ) where F is a field. We let x,y, and z represent the
image of X,Y , and Z in R and note that x = xyz so (x) = (xy), x ∼ xy; however
x 0 xy. Thus x is prime and therefore irreducible, but not strongly irreducible
since x = (xy)z, but x 0 xy and x 0 z.

• An element which is strongly irreducible, but not m-irreducible.
Let R = Z × Z. Then (0,1) is strongly irreducible, but not m-irreducible since
((0,1)) ( ((2,1)) ( R.

• An element which is m-irreducible, but not very strongly irreducible.
Let R = Z/2Z×Z/2Z and consider the element (1,0). The ideal ((1,0)) is maximal
and therefore certainly maximal among principal ideals.

We now summarize several definitions given in [19] and [21] which extended the above
definitions to use τ-factorization. Let a ∈ R be a non-unit. Then a is said to be τ-irreducible
or τ-atomic if for any τ-factorization a = λa1 · · ·an, we have a ∼ ai for some i. We say a is
τ-strongly irreducible or τ-strongly atomic if for any τ-factorization a = λa1 · · ·an, we have
a ≈ ai for some i. We say that a is τ-m-irreducible or τ-m-atomic if for any τ-factorization
a = λa1 · · ·an, we have a ∼ ai for all i. Note: the m is for “maximal” since such an a is
maximal among principal ideals generated by elements which occur as τ-factors of a. As
in [21], a ∈ R is said to be a τ-unrefinably irreducible or τ-unrefinably atomic if a admits
only trivial τ-factorizations. We say that a is τ-very strongly irreducible or τ-very strongly
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atomic if a � a and a has no non-trivial τ-factorizations. We refer the reader to [19] and
[21] for a further discussion and more equivalent definitions of these various forms of
τ-irreducibility.
We have the following relationship between the various types of τ-irreducibles which is
proved in [19, Theorem 3.9] as well as [21].

Theorem 2.13. The following diagram illustrates the relationship between the various types of
τ-irreducibles a might satisfy where ≈ represents R being a strongly associate ring.

prime +3 irreducible

��
τ-v.s. irred. +3 τ-unrefinably irred.

%-

+3 τ-s. irred. +3 τ-irred.

τ-m-irred.

≈

KS 3;

Since our rings will be strongly associate rings, we have the following simplified relation-
ship between irreducibles: τ-very strongly irreducible ⇒ τ-unrefinably irreducible ⇒
τ-m-irreducible ⇒ τ-strongly irreducible ⇒ τ-irreducible. Furthermore, examples are
provided in [19, 21] which show that no further implications will hold in general. Here
we introduce the definitions of τ-U-irreducible and τ-U -irreducible in [6].

Definition 2.14. An element a ∈ R −U (R) is said to be τ-U-irreducible if whenever the
factorization a = a1a2 · · ·amdb1b2 · · ·bne is a τ-U-factorization, a ∼ bi for some i. An element
a ∈ R −U (R) is said to be τ-U-irreducible if whenever a = a1a2 · · ·amdb1b2 · · ·bne is a τ-U -
factorization, a ∼ bi for some i.

We now can naturally extend these definitions to use the other associate relations and
types of irreducible.

Definition 2.15. Let a ∈ R−U (R).

(1) We say that a is τ-U-strongly irreducible (resp. τ-U -strongly irreducible) if whenever
a = a1a2 · · ·amdb1b2 · · ·bne is a τ-U-factorization (resp. τ-U-factorization), a ≈ bi for
some i.

(2) We say that a ∈ R−U (R) is τ-U-m-irreducible (resp. τ-U -m-irreducible) if whenever
a = a1a2 · · ·amdb1b2 · · ·bne is a τ-U-factorization (resp. τ-U-factorization), a ∼ bi for
all i.

(3) We say that a ∈ R−U (R) is τ-U-unrefinably irreducible (resp. τ-U -unrefinably irre-
ducible) if a admits only trivial τ-U-factorizations (resp. τ-U-factorizations).

(4) We say that a ∈ R−U (R) is τ-U-very strongly irreducible (resp. τ-U -very strongly irre-
ducible) if a � a and a has only trivial τ-U-factorizations (resp. τ-U-factorizations).



MJUM Vol. 4 (2018-2019) Page 7

3. Results about elements in a strongly associate ring.

In this section, we begin by studying relationships between the various irreducible ele-
ments defined above within a strongly associate ring.

In [6], M. Axtell and C. Mooney proved that in any strongly associate ring R, if we let
a ∈ R−U (R) and for any τ a symmetric relation on R#, the following are equivalent.

(1) a is τ-irreducible.

(2) a is τ-U-irreducible.

(3) a is τ-U-irreducible.

We will look to expand upon these types of results for the other types of irreducible ele-
ments defined in Section 2. To do so, we will find the following lemma quite useful. Many
of these facts are clear from definitions and were proved in [6], but we prove (3) because
it helps to demonstrate to the reader why R being strongly associate is so important for
our purposes.

Lemma 3.1. Let R be a commutative ring with identity and τ be a symmetric relation on R#.

(1) Any τ-U-factorization is a τ-U-factorization.

(2) Any τ-U-factorization is a τ-factorization.

(3) If R is strongly associate, then any non-trivial τ-U-factorization can be transformed
into a non-trivial τ-U-factorization with the same essential divisors.

(4) Any τ-factorization can be rearranged into a factorization which is a τ-U-factorization,
hence also a τ-U-factorization.

(5) All τ-factorizations, τ-U-factorizations, and τ-U-factorizations are factorizations in
the usual sense.

Proof. As discussed above, we prove only (3) as the rest is immediate or proved in [6]. Let
R be a strongly associate ring and let a = λa1a2 · · ·amdb1b2 · · ·bne be a τ-U-factorization.
Then by definition of U-factorization, (a) = (b1 · · ·bn) and therefore since R is strongly
associate, a ≈ b1 · · ·bn, say a = µb1 · · ·bn for some unit µ. But then a = µdb1 · · ·bne is a τ-U-
factorization because each of the bi was essential and therefore is still essential. Thus we
have found a τ-U-factorization with the same essential divisors. �

We see the relationship between various irreducible elements which use the strongly as-
sociate relation. When the ring is strongly associate, we see that these actually coincide
with the τ-irreducible, τ-U-irreducible, and τ-U-irreducible elements from [6].

Theorem 3.2. Let R be a commutative and strongly associate ring with identity, let τ be a
symmetric relation on R#, and let a ∈ R−U (R). Then the following statements are equivalent.

(1) a is τ-strongly irreducible.

(2) a is τ-U-strongly irreducible.
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(3) a is τ-U-strongly irreducible.

(4) a is τ-irreducible.

(5) a is τ-U-irreducible.

(6) a is τ-U-irreducible.

Proof. (2) ⇒ (1) Let a be τ-U-strongly irreducible and suppose that a = λa1 · · ·an is a
τ-factorization. Then by Lemma 3.1, this factorization can be rearranged into a τ-U-
factorization. Since a is τ-U-strongly irreducible, a is strongly associate to one of the
essential divisors in this τ-U-factorization, which is a τ-factor. Thus, we have shown that
a is τ-strongly irreducible.
(3) ⇒ (2) Let a be τ-U-strongly irreducible and suppose that a = λa1a2 · · ·amdb1b2 · · ·bne
is a τ-U-factorization. Then by Lemma 3.1, this is also a τ-U-factorization. Since a is
τ-U-strongly irreducible, a ≈ bi for some i. Thus, a is τ-U-strongly irreducible.
(1) ⇒ (3) Let a be τ-strongly irreducible and suppose that a = λa1a2 · · ·amdb1b2 · · ·bne is
a τ-U-factorization. Then we can get (a) = (b1 · · ·bn). In a strongly associate ring, it
implies that a = µb1 · · ·bn for some µ ∈ U (R). And we have biτbj for any i , j since
a = λa1a2 · · ·amdb1b2 · · ·bne is a τ-U-factorization. So a = µb1 · · ·bn is a τ-factorization. And
hence, a is τ-strongly irreducible implies that a ≈ bi for some i, proving a is τ-U-strongly
irreducible as desired.
(1)⇔ (4) through (6) It suffices to show that (1)⇔ (4) since (4) through (6) were shown
to be equivalent in [6]. In a strongly associate ring ∼ and ≈ coincide, so if a = λa1 · · ·an is
a τ-factorization, then a ∼ ai if and only if a ≈ ai . �

The relations between m-irreducible elements are a bit different. We summarize these
relations in the following theorem.

Theorem 3.3. Let R be a commutative and strongly associate ring with identity, let τ be a
symmetric relation on R#, and let a ∈ R−U (R). Then we consider the following statements.

(1) a is τ-m-irreducible.

(2) a is τ-U-m-irreducible.

(3) a is τ-U-m-irreducible.

Then (1)⇒ (2) and (2)⇔ (3).

Proof. (1)⇒ (2) Let a be τ-m-irreducible and a = λa1a2 · · ·amdb1b2 · · ·bne a τ-U-factorization.
Then we have a ∼ b1 · · ·bn since (a) = (b1 · · ·bn). In a strongly associate ring, it implies that
a = µb1 · · ·bn for some µ ∈U (R). We have biτbj for any i , j since a = λa1a2 · · ·amdb1b2 · · ·bne
is a τ-U-factorization. So a = µb1 · · ·bn is a τ-factorization. And hence, a is τ-m-irreducible
implies that a ∼ bi for all i, proving a is τ-U-m-irreducible.
(2)⇒ (3) Let a be τ-U-m-irreducible. Let a = λa1a2 · · ·amdb1b2 · · ·bne be a τ-U-factorization.
Then we can get (a) = (b1 · · ·bn). In a strongly associate ring, it implies that a = µb1 · · ·bn for
some µ ∈ U (R). And we have biτbj for any i , j since a = λa1a2 · · ·amdb1b2 · · ·bne is a τ-U-
factorization. So a = µdb1 · · ·bne is a τ-U-factorization. And hence, a is τ-U-m-irreducible
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implies that a ∼ bi for all i, proving a is τ-U-m-irreducible as desired.
(3)⇒ (2) Let a be τ-U-m-irreducible. Let a = λa1a2 · · ·amdb1b2 · · ·bne be a τ-U-factorization.
Then by Lemma 3.1, this is also a τ-U-factorization. Since a is τ-U-m-irreducible, a ∼ bi
for all i. Thus, a is τ-U-m-irreducible. �

We pause to provide an example which shows that (1) and (2) from above are not equiv-
alent. That is τ-m-irreducible is stronger than τ-U-m-irreducible (equivalently τ-U-m-
irreducible).

Example 3.4. Let R = Z×Z. Let τ = {[(1,0), (2,0)], [(2,0), (1,0)]}. The element we consider
is (2,0). The only non-trivial τ-factorization of (2,0) is (2,0) = (1,0)(2,0). But (2,0) is not
associate to (1,0), so it is not τ-m-irreducible. On the other hand, (1,0) will never be an
essential divisor in any τ-U-factorization (the only nontrivial one is above (1,0)(2,0) and
(1,0) is inessential). Thus, the only essential divisor in τ-U-factorizations must be (2,0)
(or unit multiples of (2,0) from the trivial τ-U-factorizations). And hence, (2,0) is τ-U-
m-irreducible and τ-U-m-irreducible but not τ-m-irreducible.

We see that the unrefinably irreducible elements behave similarly to m-irreducible ele-
ments. We summarize these results formally in the following theorem.

Theorem 3.5. Let R be a commutative and strongly associate ring with identity, let τ be a
symmetric relation on R#, and let a ∈ R−U (R). Then we consider the following statements.

(1) a is τ-unrefinably irreducible.

(2) a is τ-U-unrefinably irreducible.

(3) a is τ-U-unrefinably irreducible.

Then (1)⇒ (2) and (2)⇔ (3).

Proof. (1)⇒ (2) Let a be τ-unrefinably irreducible, so a admits only trivial τ-factorization.
We can prove that a is τ-U-unrefinably irreducible as well by contradiction. Suppose a
is not τ-U-unrefinably irreducible and that there exists a non-trivial τ-U-factorization,
say a = λa1a2 · · ·amdb1b2 · · ·bne for n > 1. By Lemma 3.1, a = λa1 · · ·amb1 · · ·bn is a τ-
factorization. Since n > 1, it is a non-trivial τ-U-factorization, which contradicts that
a is τ-unrefinably irreducible.
(2)⇒ (3) Let a be τ-U-unrefinably irreducible, so a admits only trivial τ-U-factorizations.
By Lemma 3.1, there is no non-trivial τ-U-factorization, or it can be transformed into a
non-trivial τ-U-factorization. Thus, a admits only trivial τ-U-factorization, and hence, a
is τ-U-unrefinably irreducible as desired.
(3)⇒ (2) Let a be τ-U-unrefinably irreducible, so a admits only trivial τ-U-factorizations.
If there exists a non-trivial τ-U-factorization of a with more than one essential factor,
then by Lemma 3.1, it is a τ-U-factorization as well. Having more than one essential
factor contradicts our assumption, thus a admits only trivial τ-U-factorization and is τ-
U-unrefinably irreducible as desired. �
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We again show that (1) and (2) are not equivalent by providing an example which shows
that τ-unrefinably irreducible is strictly stronger than τ-U-unrefinably irreducible (equiv-
alently τ-U-unrefinably irreducible).

Example 3.6. We let R = Z×Z and τ = {[(1,0), (1,0)]}. We consider the element (1,0). This
element is not τ-unrefinably irreducible, since the factorization (1,0) = (1,0)(1,0) · · · (1,0)
is a non-trivial τ-factorization. Furthermore, all of the τ-U-factorizations have the form
(1,0) = λ(1,0) · · · (1,0)d(1,0)e, where λ ∈ U (R). Thus, the element (1,0) admits only trivial
τ-U-factorizations and hence it is τ-U-unrefinably irreducible and τ-U-unrefinably irre-
ducible but not τ-unrefinably irreducible.

We now see that very strongly irreducible elements are quite nicely behaved in a strongly
associate ring. These results are presented in the following Theorem.

Theorem 3.7. Let R be a commutative and strongly associate ring with identity, let τ be a
symmetric relation on R#, and let a ∈ R−U (R). Then the following statements are equivalent.

(1) a is τ-very strongly irreducible.

(2) a is τ-U-very strongly irreducible.

(3) a is τ-U-very strongly irreducible.

Proof. (2) ⇒ (1) Let a be τ-U-very strongly irreducible. Then we have a � a. Suppose
that a = λa1 · · ·an is a τ-factorization. Then by Lemma 3.1, this factorization can be rear-
ranged into a τ-U-factorization. We claim that there can be no inessential divisors which
are non-units. Suppose that after rearrangement if necessary a = λa1 · · ·asdas+1 · · ·ane
with s > 1 is a τ-U-factorization. Then (a) = (as+1 · · ·an) which implies ra = as+1 · · ·an.
But then a = λa1 · · ·asra with a � a which implies that λa1 · · ·asr ∈ U (R) and so we have
a1, a2, . . . , as ∈ U (R). This means a = λda1 · · ·ane is a τ-U-factorization since every non-unit
factor must be essential as above. Since a is τ-U-very strongly irreducible, a admits only
trivial τ-U-factorizations. So in fact n = 1 and we have a = λa1. Thus, we have shown that
any τ-factorization of a is trivial, and hence, a is τ-very strongly irreducible as desired.
(3) ⇒ (2) Let a be τ-U-very strongly irreducible, so that a � a. Suppose that we have
a τ-U-factorization a = λa1a2 · · ·amdb1b2 · · ·bne. Then by Lemma 3.1, this is also a τ-
U-factorization. Since a is τ-U-very strongly irreducible, a admits no non-trivial τ-U-
factorizations. So n = 1. Thus, any τ-U-factorization of a is trivial, and hence, a is τ-U-
very strongly irreducible.
(1)⇒ (3) Let a be τ-very strongly irreducible, so that a � a. Suppose that we have a τ-U-
factorization a = λa1a2 · · ·amdb1b2 · · ·bne. Then we can get (a) = (b1 · · ·bn). In a strongly as-
sociate ring, it implies that a = µb1 · · ·bn for some µ ∈U (R). And we have biτbj for any i , j
since a = λa1a2 · · ·amdb1b2 · · ·bne is a τ-U-factorization. So a = µb1 · · ·bn is a τ-factorization.
a is τ-very strongly irreducible implies that a admits only trivial τ-factorization, which
means that n = 1. Hence, any τ-U-factorization of a is trivial, and therefore, a is τ-U-very
strongly irreducible. �
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Now that we have seen the relationship within each level of irreducible between τ , τ-U ,
and τ-U factorizations, we study the relationship between the various levels of irre-
ducible in hopes of generalizing the diagram in Theorem 2.13. The following Theorem
collects these relationships.

Theorem 3.8. Let R be a commutative and strongly associate ring with identity, let τ be a
symmetric relation on R#, and let a ∈ R−U (R). Then we consider the following statements.

(1) a is τ-U-very strongly irreducible.

(2) a is τ-U-unrefinably irreducible.

(3) a is τ-U-m-irreducible.

(4) a is τ-U-strongly irreducible.

(5) a is τ-U-irreducible.

Then (1)⇒ (2)⇒ (3)⇒ (4)⇔ (5).

Proof. (1) ⇒ (2) By our previous proof, τ-U-very strongly irreducible is equivalent to
τ-very strongly irreducible, and τ-unrefinably irreducible yields τ-U-unrefinably irre-
ducible. Combined with Theorem 2.13, we have a is τ-U-very strongly irreducible is
equivalent to it is τ-very strongly irreducible, which implies that it is τ-unrefinably irre-
ducible, which yields that it is τ-U-unrefinably irreducible.
(2) ⇒ (3) Let a be τ-U-unrefinably irreducible, so that a admits no non-trivial τ-U-
factorizations. The form of the τ-U-factorizations of a must be a = λa1a2 · · ·amdb1e. So
(a) = (b1), which means a ∼ b1. Since b1 is the only essential τ-U-factor of a trival τ-U-
factorization, we know a is τ-U-m-irreducible.
(3) ⇒ (4) Let a be τ-U-m-irreducible. That is, if a = λa1a2 · · ·amdb1b2 · · ·bne is a τ-U-
factorization, we have a ∼ bi for all i. So we have a ∼ b1, which implies a ≈ b1 since
the ring R is strongly associate. Hence, we get that a is τ-U-strongly irreducible.
(4)⇔ (5) Combined our previous results and Theorem 2.13, in a strongly associate ring,
we have that τ-strongly irreducible and τ-U-strongly irreducible are equivalent; that τ-
irreducible and τ-U-irreducible are equivalent; and that τ-irreducible is equivalent to
τ-strongly irreducible. Thus, all these four are equivalent.

�

We now collect all of the previous results from this section into a single diagram which
should help the reader to visualize the relationships between the various types of irre-
ducible elements defined throughout the paper.
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If R is a strongly associate ring, then for a non-unit a ∈ R we have the following relation-
ship between irreducible elements.

τ-very strongly irred. ks +3

��

τ-U-very strongly irred. ks +3

��

τ-U-very strongly irred.

��
τ-unrefinably irred. +3

��

τ-U-unrefinably irred. ks +3

��

τ-U-unrefinably irred.

��
τ-m-irred. +3

��

τ-U-m-irred. ks +3

��

τ-U-m-irred.

��
τ-strongly irred.

KS

��

ks +3 τ-U-strongly irred.
KS

��

ks +3 τ-U-strongly irred.
KS

��
τ-irred. ks +3 τ-U-irred. ks +3 τ −U-irred.

We have set out to extend the notion of τ-irreducible elements in integral domains from
[2]. Thus we would like these generalizations to still coincide to the original definitions
when we are working in an integral domain. We see that, for non-zero elements, this is
indeed the case, and in fact they all coincide in a more general class of well behaved rings
with zero-divisors called présimplifiable rings. Of course, in an integral domain there
are no zero-divisors, so there are only trivial factorizations of 0 anyway, so some of the
definitions diverging on 0 is not terribly problematic.

Corollary 3.9. Let R be a présimplifiable (equivalently very strongly associate) ring and let
τ be a symmetric relation on R#. Let a ∈ R be a non-zero, non-unit. Then the following are
equivalent

(1) a is τ-very strongly irreducible.

(2) a is τ-U-very strongly irreducible.

(3) a is τ-U-very strongly irreducible.

(4) a is τ-unrefinably irreducible

(5) a is τ-U-unrefinably irreducible.

(6) a is τ-U-unrefinably irreducible.

(7) a is τ-m-irreducible.

(8) a is τ-U-m-irreducible.

(9) a is τ-U-m-irreducible.

(10) a is τ-strongly irreducible.

(11) a is τ-U-strongly irreducible.

(12) a is τ-U-strongly irreducible.
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(13) a is τ-irreducible.

(14) a is τ-U-irreducible.

(15) a is τ-U-irreducible.

Proof. By the above diagram, it suffices to show that when R is présimplifiable or equiv-
alently when R is a very strongly associate ring, τ-U-irreducible implies τ-very strongly
irreducible. The first thing to observe is that in a présimplifiable ring, every inessen-
tial divisor must be a unit. Let a = λa1a2 · · ·amdb1b2 · · ·bne be a U-factorization. Since
(a) = (b1 · · ·bn), we have ra = b1 · · ·bn. This means a = λa1 · · ·amb1 · · ·bn = (λa1 · · ·amr)a
but since R is présimplifiable a = 0 or λa1 · · ·amr ∈ U (R). Since a is non-zero, we have
λa1 · · ·amr ∈U (R) and therefore ai ∈U (R) for all 1 ≤ i ≤m.
With this in mind, let a be a τ-U-irreducible element. Certainly (a) = (a), so a ∼ a which
implies a � a since R is very strongly associate by hypothesis. Let a = λc1 · · ·cs be a τ-
factorization. Then a = λdc1 · · ·cse is a τ-U-factorization itself since the only inessen-
tial divisors are units by our above observation. Thus, since a is τ-irreducible, a ∼ ci
for some i. Since R is very strongly associate, this means a � ci for some i. But then
a = (λc1 · · ·ci−1ci+1 · · ·cs)ci which means λc1 · · ·ci−1ci+1 · · ·cs ∈U (R), proving a has only triv-
ial τ-factorizations since every other factor was actually a unit and therefore is τ-very
strongly irreducible as desired. �

We now have developed an understanding of the relationship between various irreducible
properties in strongly associate rings. While they are still fairly complicated, especially
in comparison with présimplifiable rings, we see that they are significantly more well
behaved with this assumption to make studying factorization manageable. In the fu-
ture, we would like to turn our attention to studying various generalizations of unique
factorization properties such as half factorial rings, weak finite factorization rings, finite
factorization rings, bounded factorization rings, etc. using these types of irreducible ele-
ments in strongly associate rings. This could potentially be useful to help to extend the
work done in [16] and [20].
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