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Abstract. We investigate the homotopy classes of closed knight’s tours on cylinders and
tori. Specifically, we characterize the dimensions of cylindrical chessboards that admit
closed knight’s tours realizing the identity of the fundamental group and those that admit
closed tours realizing a generator of the fundamental group. We also produce analogous
results for toroidal chessboards.

1. Introduction

The knight’s tour problem is a mainstay of recreational mathematics and a classical prob-
lem in graph theory. One source of the problem’s intrigue comes from its namesake chess
piece, the knight, which moves two squares either vertically or horizontally followed by
one square in a perpendicular direction, in an “L” shaped pattern. A knight’s tour is a
sequence of moves in which a knight visits each square on a chessboard exactly once. A
tour is closed if the knight can, in a single move, return to the starting square from the
ending square; otherwise the tour is open. The traditional knight’s tour problem is to find
a closed knight’s tour on a standard 8× 8 chessboard.

Solutions to the traditional knight’s tour problem have been known for centuries. Cull
and Decurtains generalized the problem to boards with dimensions m×n where m,n ≥ 5.
Specifically, they proved that each such board supports an open tour and characterized
which boards of this class support a closed tour [3]. In 1991, Schwenk completed this
characterization, determining for each rectangular board whether or not the board admits
a closed tour [11]. Since that time there has been significant investigation of a variety of
generalizations of the closed tour problem. Watkins studied closed tours on cylinders
and, together with Hoenigman, investigated closed tours on tori [12], [13]. Miller and
Farnsworth recently extended this study by investigating closed knight’s tours on both
cylinders and tori with one square removed [9].

Many researchers have investigated the knight’s tour problem on higher dimensional ob-
jects, most notably rectangular prisms, but also objects of dimension greater than 3 [4],
[5], [6], [7], [14]. There have also been investigations of generalized knight moves in
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which a knight moves in an a by b “L” shape instead of the standard 1 by 2 “L” shape [2],
[14].

In this work, we explore knight’s tours on surfaces, specificallym×n cylindersC, cylinders
of length m and circumference n, and m× n tori T , tori with latitudinal circumference m
and longitudinal circumference n. For each of these boards we construct a graph where
there is a vertex for each square on the board and one edge between a pair of vertices for
each possible move that takes the knight from one of those squares to the other. While
this construction typically makes a graph, for some surfaces with small dimensions this
can result in a pseudograph or a multigraph. For example, the multigraph associated to
the 2× 1 cylinder consists of 2 vertices which are connected by 2 edges.

These graphs map naturally to the m × n cylinder and m × n torus. After choosing the
image of a vertex in each surface to act as the base point, c and t in C and T respectively,
directed closed tours in the graphs determine elements of π1(C,c) and π1(T ,t). In this
work, for each of the following four conditions, we characterize the values of m and n
that satisfy the condition.

• There exists a tour that realizes the identity of π1(C,c).
• There exists a tour that realizes a generator of π1(C,c).
• There exists a tour that realizes the identity of π1(T ,t).
• There exists a tour that realizes the homotopy class of a longitude in π1(T ,t).

These characterizations are given in Theorems 4.1, 5.1, 4.2, and 6.1 respectively. These
topological questions can, in part, be answered by work on open tours on regular rectan-
gular boards. Specifically, open tours where the tour ends at a square from which, if the
top and bottom of the board were identified, the knight could move to the starting square
of the tour realize a generator of π1(C,c) and realize the homotopy class of a longitude in
π1(T ,t). Significant work has been completed studying open tours on regular boards. In
particular, Cannon and Dolan showed that on rectangular chessboards where the prod-
uct of m and n is even and both m and n are greater than or equal to six, given any pair
of opposite-colored squares there exists an open tour starting at one of the squares and
ending at the other [1]. Ralston showed that all boards where m and n are both odd with
m ≥ 7 and n ≥ 5 are “odd-tourable”, meaning that for every pair of squares with the same
color as the corner squares there is a knight’s tour that begins on one square of the pair
and ends on the other [10].

This paper is organized as follows. Sections 2 and 3 present the required background
information in Graph Theory and Algebraic Topology respectively. We characterize the
values ofm and n for which them×n cylinder andm×n torus admit tours that realize the
identities of their respective fundamental groups in Section 4. Section 5 characterizes the
dimensions of cylinders that admit a tour that realizes a generator of the fundamental
group, while Section 6 characterizes the dimensions of tori that admit a tour that realizes
the homotopy class of a longitude. In Section 7, we discuss potential future work.
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2. Graph Theory Background

In this section, we review relevant theorems of Schwenk and Watkins. We also set our
notation beginning with regular m × n boards which are rectangular boards with m ver-
tical columns and n horizontal rows. Specifically, we label each square by an ordered
pair of integers (a,b) where 0 ≤ a ≤ m − 1 and 0 ≤ b ≤ n − 1. A knight pair is an ordered
pair of integers (x,y) so that |x| = 2 and |y| = 1 or vice versa. A regular jump is a knight
pair (x,y) together with a position on the board (a,b) such that (a+ x,b + y) is also a posi-
tion on the board. Two regular jumps (x1, y1), (a1,b1) and (x2, y2), (a2,b2) are equivalent if
(x1, y1) = (−x2,−y2) and (a1 + x1,b1 + y1) = (a2,b2). Equivalence classes of regular jumps
are called regular moves, and more directly there is a regular move incident to (a1,b1) and
(a2,b2) if (a1 − a2,b1 − b2) is a knight pair. The graph with a vertex for each position on an
m×n regular board and an edge for each regular move is denoted Rm,n.

We will usually specify an edge by listing the two vertices to which the edge is incident.
On Rm,n this causes no ambiguity. However, we will abuse notation slightly and use
this convention for the multigraphs modeling the cylinder and torus. This is typically
sufficient but when there is more than one edge incident to a pair of vertices and that
choice of edge is relevant to our discussion, we will specify the edge by giving a vertex
and a knight pair.

Our work focuses on closed knight’s tours, which, for the remainder of this paper, we
simply refer to as knight’s tours. Extending the work of Cull and Decurtins, Schwenk
characterized which regular m×n boards admit knight’s tours.

Theorem 2.1 (Schwenk [11]). The graphRm,n, withm ≥ n and at least one ofm and n greater
than 1, admits a Hamiltonian tour if and only if

• m and n are not simultaneously odd,
• n = 1, 2, or 4, or
• n = 3 while m = 4, 6, or 8.

Note thatRm,n supports a Hamiltonian tour if and only ifRn,m also supports a Hamilton-
ian tour. For this reason, we will also apply Theorem 2.1 when discussingRm,n for boards
with n ≥m.

We primarily discuss knight’s tours on surfaces. One surface that we focus on is the m×n
cylinder. We construct an m × n cylinder by identifying the top and bottom borders of
a regular m × n board. This identification adds knight moves that cross the identified
border. More specifically, a cylindrical jump is a knight pair (x,y) together with a position
on the regular board (a,b) such that (a+ x, (b + y) mod n) is a position on the board. Two
cylindrical jumps (x1, y1), (a1,b1) and (x2, y2), (a2,b2) are equivalent if (x1, y1) = (−x2,−y2)
and (a1 + x1, (b1 + y1) mod n) = (a2,b2). Equivalence classes of cylindrical jumps that are
not regular moves are called cylindrical moves. The multigraph with a vertex for each
position on a regular m × n board and an edge for each regular or cylindrical move is
denoted Cm,n. Note that Rm,n is a canonical subgraph of Cm,n.
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(a) (b)

Figure 1. (A) Subset of S3 (B) Subset of P

Most research conducted on knight’s tours on cylinders has focused on the quotient graph
of Cm,n given by identifying all edges incident to the same pair of vertices. We apply
these results to Cm,n since, with one exception, there exists a Hamiltonian cycle on Cm,n
if and only if such a cycle exists on the quotient. The only exception occurs when m = 2
and n = 1, when there is a Hamiltonian cycle on C2,1 but no such cycle on the quotient.
Watkins characterized the values ofm and n for which the quotient admits a Hamiltonian
cycle, and we adapt this result to Cm,n.

Theorem 2.2 (Watkins [12]; pg 71). The multigraph Cm,n admits a Hamiltonian cycle unless
m = 1 and n > 1, or m = 2 or 4 and n is even.

In addition to studying knight’s tours on cylinders, we will also investigate tours on tori.
We construct anm×n torus by identifying the sides of them×n cylinder, which adds new
possible knight moves. More specifically, a toroidal jump is a knight pair (x,y) together
with a position on the regular board (a,b) such that ((a + x) modm, (b + y) mod n) is
also a position. Toroidal jumps (x1, y1), (a1,b1) and (x2, y2), (a2,b2) are equivalent when
(x1, y1) = (−x2,−y2) and ((a1 +x1) modm, (b1 +y1) mod n) = (a2,b2). Equivalence classes
of toroidal jumps that are not regular moves are called toroidal moves. The multigraph
with a vertex for each position on a regular m × n board and an edge for each regular or
toroidal move is denoted Tm,n. For some small values of m and n, this construction gives
a pseudograph. For example, T1,1 is a single vertex together with 4 edges. Note that Cm,n
is a canonical submultigraph of Tm,n.

We make significant use of covering space theory in our study of knight’s tours on cylin-
ders and tori. To that end, we define covering graphs Sm and P respectively for Cm,n
and Tm,n. These covering graphs model the infinite strip of width m and the plane, the
respective universal covers of the cylinder and torus.
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(a) (b) (c) (d)

Figure 2. (A) Tour in C5,2 (B) Lift of tour in Frame (A) to S5 (C) Tour in T4,4
(D) Lift of tour in Frame (C) to P

The graph Sm has a vertex for each ordered pair of integers (a,b) where 0 ≤ a ≤m− 1 and
an edge between (a1,b1) and (a2,b2) if (a1−a2,b1−b2) is a knight pair. The vertex labeling
makes Sl a subgraph of Sm when l < m. Note that there is a combinatorial map from
φc : Sm→Cm,n given by mapping the vertex (a,b) to (a,b mod n) and the edge (x,y), (a,b)
to (x,y), (a,b mod n). A subset of S3 is shown in Frame (A) of Figure 1.

The plane is the universal cover of the torus, and to model the plane we build the graph
P with a vertex for each ordered pair of integers and an edge between (a1,b1) and (a2,b2)
if (a1 − a2,b1 − b2) is a knight pair. There exists a combinatorial map φt : P → Tm,n given
by mapping vertex (a,b) to (a modm,b mod n) and edge (x,y), (a,b) to (x,y), (a modm,b
mod n). A subset of P is shown in Frame (B) of Figure 1.

Note that φc : Sm→ Cm,n and φt : P → Tm,n are both covering maps. One important con-
sequence of this is that edge cycles in Cm,n and Tm,n lift to edge paths in Sm and P . More
specifically, let f : I → Cm,n and g : I → Tm,n be edge cycles, where I is the closed unit
interval, and let u and v be lifts of f (0) and g(0). Then there exist unique lifts f̃ : I →Sm
and g̃ : I →P so that f̃ (0) = u and g̃(0) = v.

Frame (A) of Figure 2 shows a loop in C5,2 where the dotted lines denote cylindrical
moves, while Frame (B) is a lift of the loop in Frame (A) to S5. Similarly, Frame (C) of
Figure 2 shows a loop in T4,4 where the dotted lines denote toroidal moves, while Frame
(D) is a lift of the loop in Frame (C) to P .

Our figures throughout this work show tours on Cm,n, Tm,n, Sm, and P . In these figures,
we denote the base point (0,0) with a dot. In Cm,n and Tm,n, this is always the bottom left
square in the figure. We tile Sm and P by fundamental domains, and show these domains
by darkened lines. We choose the bottom leftmost square in one of these domains to
be our base point (0,0). In each figure we coordinatize each board to correspond with
standard cartesian coordinates.

3. Covering Graphs Background

In this section, we apply covering space theory to knight’s tours. To do this, we will
define standard maps from Cm,n to a cylinder C with length m and circumference n and
from Tm,n to a torus T with latitudinal circumference m and longitudinal circumference
n. We largely treat Cm,n and Tm,n as subsets of C and T respectively, and, after base point
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(a) (b)

Figure 3. (A) Image of C3,3 in the 3× 3 cylinder (B) Image of T4,4 in the 4× 4 torus

vertices c and t are chosen, Hamiltonian cycles in Cm,n and Tm,n determine elements of
π1(C,c) and π1(T ,t) respectively.

To define our maps Cm,n → C and Tm,n → T , we will use the universal covers of C and
T . To that end, let P be the cartesian plane and S ⊂ P be the closed infinite strip of
width m bounded by the vertical lines x = 0 and x = m. We define the map ic : Sm → S
where ic maps the vertex (a,b) to (a+ .5,b+ .5) and maps each edge to the unique geodesic
line segment between the images of the vertices to which it is incident. We define the
cylinder C as the quotient of S given by identifying all pairs (a,b) and (a,b′) where b and
b′ are equivalent mod n. We can label the points in C by their unique representative
in [0,m] × [0,n). With this labeling, the covering map pc : S → C is given by pc(a,b) =
(a,b mod n). Lastly, there exists a map jc : Cm,n → C that makes the following diagram
commute.

Sm
ic //

φc
��

S

pc
��

Cm,n jc
// C

For a vertex (a,b) ∈ Cm,n, let jc(a,b) = (a+ .5, (b + .5) mod n). Given an edge (x,y), (a,b) of
Cm,n, the image of the edge under jc is not uniquely defined by the image of the vertices
to which it is incident. However, the preimage under φc consists of all of the edges of
the form (x,y)(a,b′) where b′ mod n = b, and under the composition pc ◦ ic these edges
map to a unique path between jc(a,b) and jc(a + x, (b + y) mod n). More specifically, jc
maps (x,y)(a,b) to the image of the path f : I → C where the path is given by f (t) =
(a+ .5+xt, (b+ .5+yt) mod n). Note that jc is well-defined as (−x,−y)(a+x, (b+y) mod n)
gives the same path. Frame (A) of Figure 3 shows jc(C3,3) in C, where the white dots are
the images of the vertices of C3,3.

Let it : P → P be the map that sends the vertex (a,b) to (a+ .5,b + .5) and maps each edge
to the unique geodesic line segment between the images of the vertices to which it is
incident. We define the torus T as the quotient of P given by identifying all pairs (a,b)
and (a′,b′) where a and a′ are equivalent mod m and b and b′ are equivalent mod n. We
can label the points in T by their unique representative in [0,m)×[0,n). With this labeling,
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the covering map pt : P → T is given by pt(a,b) = (a modm,b mod n). Lastly, there exists
a map jt : Tm,n→ T that makes the following diagram commute.

P
it //

φt
��

P

pt
��

Tm,n jt
// T

For vertex (a,b) of Tm,n, let jt(a,b) = ((a + .5) modm, (b + .5) mod n). Given an edge
(x,y), (a,b) of Tm,n, its image under jt is not uniquely defined by the image of the vertices
to which it is incident. However, the preimage of under φt consists of all edges of the
form (x,y)(a′,b′) where a′ mod m = a and b′ mod n = b. Under the composition of func-
tions pt ◦ it these edges map to a unique path between jt(a,b) and jt((a+x) modm, (b+ y)
mod n). More specifically, jt maps (x,y)(a,b) to the image of the path f : I → T given by
f (t) = ((a+.5+xt) modm, (b+.5+yt) mod n). Note that jt is well-defined as (−x,−y)((a+x)
modm, (b + y) mod n) maps to the same path. Frame (B) of Figure 3 shows jc(T4,4) in T ,
where the white dots are the images of the vertices of T4,4.

We are now in a position to apply covering space theory to knight’s tours on cylinders
and tori. Recall the following classical theorem:

Theorem 3.1. Let X̃ be the universal cover of X where p : X̃ → X, and x ∈ X is the covering
map and x̃ ∈ p−1(x). Let f ,g : (I,0)→ (X,x) be two loops with lifts f̃ , g̃ : (I,0)→ (X̃, x̃) where
I is the closed unit interval. Then f and g are path homotopic if and only if f̃ (1) = g̃(1).

In our context, Theorem 3.1 has important consequences. Let f : (I,0)→ (Cm,n, (0,0)) be a
Hamiltonian tour, and consider its image jc ◦ f . The homotopy class of jc ◦ f defines an
element of π1(C,c) where c = jc(0,0). Similarly, Hamiltonian tours in Tm,n define elements
of π1(T ,t) where t = jt(0,0).

There are two particular curves inC and T that we will study. Specifically, let gen : (I,0)→
(C,c) be given by gen(t) = (.5, (.5 +nt) mod n) and gen′ be gen traveled in the opposite di-
rection. Note that the homotopy classes of gen and gen′ are the generators of π1(C,c).
Also, let lon : (I,0)→ (T ,t) given by lon(t) = (.5, (.5 + nt) mod n) and lon′ be lon traveled
in the opposite direction. The loops lon and lon′ are the longitudinal loops of T . We are
particularly interested in Hamiltonian tours in Cm,n whose images in C are homotopic to
gen or gen′ and Hamiltonian tours in Tm,n whose images in T are homotopic to lon or lon′.

Definition 3.2. Let f : (I,0) → (Cm,n, (0,0)) and g : (I,0) → (Tm,n, (0,0)) be Hamiltonian
tours. Then f is nullhomotopic if the homotopy class of jc ◦ f is the identity in π1(C,c),
and f realizes a generator if jc ◦ f is homotopic to gen or gen′. Further, g is nullhomotopic if
the homotopy class of jt ◦ g is the identity in π1(T ,t), and g realizes the longitude if jt ◦ g is
homotopic to lon or lon′.
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Note that f lifts to a path f̃ in Sm, and by Theorem 3.1 we can see that the endpoint of
this path determines the homotopy class of jc ◦ f . This argument is made precise for both
cylinders and tori in the corollary below.

Corollary 3.3. Let f : (I,0)→ (Cm,n, (0,0)) and g : (I,0)→ (Tm,n, (0,0)) be Hamiltonian tours
with lifts f̃ : I → Sm and g̃ : I → P with given initial points f̃ (0) = (0,0) and g̃(0) = (0,0).
Then:

(1) The loop f is nullhomotopic if and only if f̃ (1) = (0,0).

(2) The loop f realizes a generator of π1(C,c) if and only if either f̃ (1) = (0,n) or f̃ (1) =
(0,−n).

(3) The loop g is nullhomotopic if and only if g̃(1) = (0,0).

(4) The loop g realizes a longitude if and only if either g̃(1) = (0,n) or g̃(1) = (0,−n).

Proof. Note that ic ◦ f̃ is a lift of jc ◦ f with ic ◦ f̃ (0) = (.5, .5).

Consider statement (1). The constant map with image c lifts to a constant map with
image (.5, .5) and jc ◦ f is nullhomotopic if and only if ic ◦ f̃ is homotopic to this lift of
the constant map. Hence, by Theorem 3.1, the map jc ◦ f is nullhomotopic if and only
if ic ◦ f̃ (1) = (.5, .5) which is equivalent to f̃ (1) = (0,0). An analogous argument proves
statement (3).

Consider statement (2). An argument analogous to the previous paragraph’s discussion
that uses gen and gen′ in place of the constant map establishes statement (2). Using this
argument with lon and lon′ proves statement (4). �

Important two colorings on Sm and P are given by coloring the vertex (a,b) red if a+ b is
even and blue if a + b is odd. The graphs Sm and P are indeed bipartite as the parity of
the sum changes when any edge is traversed.

Proposition 3.4. Let n be odd. If m is odd and at least one of m and n is larger than 1, then
there is no nullhomotopic tour on Cm,n nor on Tm,n. If m is even, then there is no tour on Cm,n
that realizes a generator and no tour on Tm,n that realizes a longitude.

Proof. Let m be odd and assume to the contrary that f : (I,0)→ (Cm,n, (0,0)) is a nullho-
motopic tour with lift f̃ . Then, by Corollary 3.3, f̃ is an edge cycle that traverses an odd
number of edges in a bipartite graph, which cannot exist. An analogous argument proves
this statement for Tm,n.

Let m be even, and for the sake of contradiction, suppose the loop f : (I,0)→ (Cm,n, (0,0))
realizes a generator and has lift f̃ . Note that, by Corollary 3.3, the starting and ending
vertices of f̃ have opposite colors. Then f̃ is an edge path in a bipartite graph that tra-
verses an even number of edges but has oppositely colored starting and ending vertices,
which cannot exist. An analogous argument proves that there is no tour on Tm,n that
realizes the longitude. �
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4. Nullhomotopic Tours on Cylinders

In this section, we characterize the values of m and n for which Cm,n and Tm,n support
nullhomotopic knight’s tours. More specifically, for Cm,n we prove:

Theorem 4.1. The multigraph Cm,n supports a nullhomotopic tour if and only if none of the
following hold:

• m and n are simultaneously odd and at least one of m and n is greater than 1,
• m = 1 and n > 1,
• m = 2, or
• m = 4 and n is even.

One consequence of Theorem 4.1 is that when m and n are both greater than or equal to
5, Cm,n admits a nullhomotopic tour if and only if Rm,n admits a closed tour. This is not
true for smaller boards; there are many cases when at least one of m or n is less than 5 for
which Cm,n admits a nullhomotopic tour but Rm,n does not admit a closed tour.

We take a case by case approach to prove Theorem 4.1. When m,n ≥ 5, if at least one of
m or n is even, Theorem 2.1 states that there exists a tour on a regular m × n board and
thus there exists a nullhomotopic tour on a cylinder. When both m and n are odd, the
m × n cylinder does not support a nullhomotopic tour by Proposition 3.4. We are left to
consider Cm,n when at least one of m or n is less than 5. For many board sizes, we will
exhibit a nullhomotopic tour by using statement (1) of Corollary 3.3 and producing a
closed edge path in Sm that maps to the desired nullhomotopic tour. See Figures 4 to 7
for examples.

m × 1. Note that C1,1 is a vertex with no edges, and thus supports a nullhomotopic tour.
The multigraph C2,1 consists of two vertices connected by two edges, and the tour pro-
duced by these edges is not nullhomotopic. By Proposition 3.4, cylinders where m is odd
and m > 1 cannot support a nullhomotopic tour.

The only remaining case is when m is even with m ≥ 4, and we use induction to produce
nullhomotopic tours on these boards. Consider as our base case the edge path in S4
shown in Frame (A) of Figure 4. Suppose that we have a path in Sm using edge (m −
2,−m2 + 1) − (m − 1,−m2 + 3) and whose image in Cm,1 is a nullhomotopic tour. Taking this
cycle in Sm+2 and replacing (m− 2,−m2 + 1)− (m− 1,−m2 + 3) with the edge path consisting
of (m − 2,−m2 + 1) − (m,−m2 ) − (m + 1,−m2 + 2) − (m − 1,−m2 + 3) creates a path in Sm+2 that
uses the edge (m,−m2 )− (m+ 1,−m2 + 2) and whose image in Cm+2,1 is a nullhomotopic tour,
completing the induction. The result of applying this process to our base case tour is
shown in Frame (B) of Figure 4. Visually, our induction step adds a

√
5 ×
√

5 square to a
growing rectangle.

1×n. By Theorem 2.2, C1,n does not support a tour when n > 1. For the remainder of the
section, we assume that m and n are greater than 1.
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(a) (b)

Figure 4. Lifts of nullhomotopic tours in Cm,1 for m = 4 and 6

(a) (b) (c) (d)

Figure 5. Lifts of nullhomotopic tours in Cm,2 for m = 3,5,6, and 8

m × 2. By Theorem 2.2, C2,2 and C4,2 cannot support tours. We produce nullhomotopic
tours on Cm,2 for all values of m ≥ 3 other than 4 by induction, taking the paths shown
in Frames (A) and (C) of Figure 5 as our base cases. Suppose there is a cycle in Sm that
includes the edges (m−1, −p2 + 5

2 )−(m−2, −p2 + 9
2 ) and (m−1, p2−

3
2 )−(m−2, p2−

7
2 ) where p =m−1

if m is even and p = m if m is odd, whose image in Cm,2 is a nullhomotopic tour. Since
Sm ⊂ Sm+2, this constitutes a cycle in Sm+2. We can replace the edges listed above with
two paths consisting of 3 edges each: (m−1, −p2 + 5

2 )−(m+1, −p2 + 3
2 )−(m, −p2 + 7

2 )−(m−2, −p2 + 9
2 )

and (m − 1, p2 −
3
2 ) − (m + 1, p2 −

1
2 ) − (m, p2 −

5
2 ) − (m − 2, p2 −

7
2 ). Note that this newly formed

path in Sm+2 includes the edges (m+1, −p2 + 3
2 )−(m, −p2 + 7

2 ) and (m+1, p2 −
1
2 )−(m, p2 −

5
2 ), and

the image of this path in Cm+2,2 is a nullhomotopic tour. This completes our induction.
Frames (B) and (D) of Figure 5 show the results of applying this argument to Frames (A)
and (C) respectively. Visually, this has the effect of adding two parallelograms to the path
in S.

2×n. The multigraph C2,n cannot support a tour because there are no simple edge cycles
in S2. For the remainder of this section, we assume that m and n are greater than 2.

m × 3. By Proposition 3.4, Cm,3 does not support a nullhomotopic tour for odd m. In
Frames (A), (B), and (C) of Figure 6, we have paths in S4, S6, and S8 whose respective
images in C4,3, C6,3, and C8,3 are nullhomotopic tours. By Theorem 2.1, Cm,3 supports a
nullhomotopic tour for even m when m ≥ 10.

3×n. By Proposition 3.4, C3,n does not support a nullhomotopic tour for odd values of n.
By Frames (D), (E), and (F) of Figure 6, we have paths in S3 whose respective images in
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(a) (b) (c) (d) (e) (f)

Figure 6. (A-C) Lifts of nullhomotopic tours in Cm,3 form = 4,6, and 8 (D-F)
Lifts of nullhomotopic tours in C3,n for n = 4,6, and 8

C3,4, C3,6, and C3,8 are nullhomotopic tours. By Theorem 2.1, C3,n supports a nullhomo-
topic tour for even values of n where n ≥ 10. For the rest of this section, we will assume
that m and n are greater than 3.

m×4. By Theorem 2.2, the graph C4,4 cannot support a nullhomotopic tour. For all other
values of m > 3, we use induction to construct a nullhomotopic tour in Cm,4. We take the
paths in S3, S5, and S7 shown in Frame (D) of Figure 6, and Frames (A) and (C) of Figure 7
as our base cases. Assume there exists a path in Sm that includes the edge (m−2,−1)−(m−
1,−3) and whose image in Cm,4 is a nullhomotopic tour. Taking our path to be in Sm+3, we
translate the path shown in Frame (D) of Figure 6 with the edge (0,0)− (1,−2) removed m
units to the right. We concatenate the translated path with our original by replacing edge
(m− 2,−1)− (m− 1,−3) with the edges (m− 2,−1) − (m, 0) and (m− 1, −3) − (m+ 1, −2).
Note that this new path in Sm+3 includes the edge (m + 1,−1) − (m + 2,−3) and that its
image in Cm+3,4 is nullhomotopic, completing the induction. So there exists a path in Sm
for all m , 1,2,4 whose image in Cm,4 is a nullhomotopic tour. An example of this process
is shown in Frame (B) of Figure 7.

4×n. By Theorem 2.2, when n is even, C4,n does not support a nullhomotopic tour. When
n is odd, we construct nullhomotopic tours on C4,n by induction. We take the path in S4
shown in Frame (D) of Figure 7 as our base case. Suppose there is a path in S4 that uses
the edges (0,−n+1)− (2,−n+2), (1,−n+1)− (3,−n+2), (0,n−1)− (2,n), and (1,n−1)− (3,n),
and whose image in C4,n is a nullhomotopic tour. We replace these edges as follows:

• insert the path (0,−n + 1) − (1,−n − 1) − (3,−n) − (2,−n + 2) and delete (0,−n + 1) −
(2,−n+ 2),
• insert the path (1,−n + 1) − (0,−n − 1) − (2,−n) − (3,−n + 2) and delete (1,−n + 1) −

(3,−n+ 2),
• insert the path (0,n−1)− (1,n+ 1)− (3,n+ 2)− (2,n) and delete (0,n−1)− (2,n), and
• insert the path (1,n− 1)− (0,n+ 1)− (2,n+ 2)− (3,n) and delete (1,n− 1)− (3,n).
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(a) (b) (c) (d) (e)

Figure 7. (A-C) Lifts of nullhomotopic tours in Cm,4 form = 5,6, and 7 (D-E)
Lifts of nullhomotopic tours in C4,n for n = 5 and 7

This path in S4 includes the edges (0,−n−1)−(2,−n), (1,−n−1)−(3,−n), (0,n+1)−(2,n+2),
and (1,n+ 1)− (3,n+ 2), and the image of this path in C4,n+2 is a nullhomotopic tour. This
completes our induction. An example of this process is shown in Frame (E) of Figure 7.
Visually, this has the effect of adding two squares and two parallelograms, one of each at
the top and one of each at the bottom, to our tour.

Shifting now to consider Tm,n, other than for a few cases of small boards, the parites of m
and n completely determine if it is possible to construct a nullhomotopic tour.

Theorem 4.2. Whenm+n > 3, the multigraph Tm,n supports a nullhomotopic tour if and only
if at least one of m or n is even.

Proof. Corolloary 3.4 establishes the forward direction. For the backward direction, note
that Tm,n contains Cm,n and Cn,m as sub-multigraphs. If Cm,n or Cn,m support a nullhomo-
topic tour, then Tm,n must as well.

Combining these observations with Theorem 4.1, it suffices to construct nullhomotopic
tours on T2,2, T4,2 and T4,4. We apply statement (3) of Corollary 3.3, and produce edge
cycles in P in Frames (A), (B), and (C) of Figure 8 whose respective images in T2,2, T4,2
and T4,4 are nullhomotopic tours. �

For small boards, T1,1 consists of a vertex and eight edges, and so the constant path is
a nullhomotopic tour. The pseudographs T1,2 and T2,1 are isomorphic and do not admit
tours because there are no bigons in P .

5. Generating Tours on Cylinders

In this section, we characterize the values of m and n so that Cm,n supports a tour that
realizes a generator. More specifically, we prove:
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(a) (b) (c)

Figure 8. Lifts of nullhomotopic tours in T2,2, T4,2, and T4,4

Theorem 5.1. The graph Cm,n supports a tour that realizes a generator if and only if none of
the following hold:

• m = 1,2,4, or
• m is even and n is odd.

As shown by Corollary 3.3, one way to construct a tour on Cm,n that realizes a genera-
tor is to construct a tour that uses exactly one cylindrical move. Such tours on cylinders
correspond to open tours on regular boards where the starting and ending squares are
connected in Cm,n by a cylindrical move. Significant work has been completed studying
open tours on Rm,n, and we use two particular results from that area in the proof of The-
orem 5.1.

Theorem 5.2 (Cannon, Dolan [1]). The graph Rm,n supports an open knight’s tour between
any two squares of opposite colors if and only if the product mn is even and m and n are both
at least 6.

For regular m × n boards in which mn is odd, it is reasonable to expect there to be open
knight’s tours beginning and ending at squares that have the same color as the corner
squares.

Theorem 5.3 (Ralston [10]). If m and n are both odd, both at least 5 with one not equal to 5,
then for any pair of squares on the regular m × n board with same color as the corners, there
exists an open knight’s tour on Rm,n with those as the starting and ending squares.

In our context, Theorems 5.2 and 5.3 combine to demonstrate that:

Corollary 5.4. Ifm and n are both odd, and greater than or equal to 5 with at least one greater
than 5, or m and n are both at least 6 and n is even, then there is a knight’s tour on Cm,n that
realizes a generator.

Together, Corollary 5.4 and Proposition 3.4 establish Theorem 5.1 for all Cm,n wherem ≥ 6
and n ≥ 5. So, we consider Cm,n wherem < 6 or n < 5 and proceed by cases. Our arguments
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(a) (b) (c) (d) (e)

Figure 9. (A-B) Lifts of tours in Cm,1 realizing a generator for m = 3 and 5
(C-E) Lifts of tours in Cm,2 realizing a generator for m = 3,5, and 6

often apply statement (2) from Corollary 3.3. Specifically, we will produce paths in Sm
starting at (0,0) and ending at (0,n) or (0,−n) whose image in Cm,n is a tour.

m × 1. Because C1,1 is a vertex with no edges, it does not support a tour realizing a gen-
erator. By Proposition 3.4, Cm,1 does not support a generating tour for even values of
m. For odd values of m, we use induction to produce a tour that realizes a generator on
Cm,1. Consider the edge path in S3 shown in Frame (A) of Figure 9 as our base case. Sup-
pose that there exists a path in Sm whose image in Cm,1 is a tour that realizes a generator
and that uses the edge (m − 1, −m+3

2 ) − (m − 2, −m−1
2 ). Consider this as a path Sm+2. We

create a new path in Sm+2 by replacing (m − 1, −m+3
2 ) − (m − 2, −m−1

2 ) with the edge path
(m − 1, −m+3

2 ) − (m + 1, −m+1
2 ) − (m, −m−3

2 ) − (m − 2, −m−1
2 ). This new path includes the edge

(m + 1, −m+1
2 ) − (m, −m−3

2 ) and its image in Cm+2,1 is a tour that realizes a generator. This
completes our induction. An example of this process is shown in Frame (B) of Figure 9.
Visually, we are adding a

√
5×
√

5 square to our path.

1×n. When n > 1, Theorem 2.2 shows that C1,n does not support a tour. For the remainder
of this section, we assume that m and n are greater than 1.

m×2. By Theorem 2.2, Cm,2 does not support a tour when m = 2 or 4. For all other values
of m, we use induction to construct a tour on Cm,2 that realizes a generator. Consider the
edge paths in S3 shown in Frames (C) and (E) of Figure 9 as our base cases. Suppose that
there is a path in Sm that includes the edges (m−1,2)− (m−2,0) and (m−1,1)− (m−2,−1)
whose image in Cm,2 is a tour that realizes a generator. Taking this as a path in Sm+2, we
replace the edge (m−1,2)− (m−2,0) with the path (m−1,2)− (m+1,1)− (m,−1)− (m−2,0).
Additionally, we replace (m−1, 1) − (m−2, −1) with (m−1,1)−(m+1,2)−(m,0)−(m−2,−1).
Note that this new path in Sm+2 includes the edges (m+1,2)− (m,0) and (m+1,1)− (m,−1)
and that the image of this path in Cm+2,2 is a tour that realizes a generator, completing
our induction. An example of this process is shown in Frame (D) of Figure 9. Visually we
have added a square and a parallelogram to our path.

2×n. By Proposition 3.4, C2,n cannot realize a generator for odd values of n. By Theorem
2.2, C2,n cannot support a tour when n is even. For the rest of this section, we assume m
and n are greater than 2.
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(a) (b) (c) (d)

Figure 10. (A-C) Lifts of tours in Cm,3 realizing a generator form = 3,5, and
7 (D) Path on R4,3 used in the induction step of the m× 3 case

m × 3. By Proposition 3.4, Cm,3 does not support a tour that realizes a generator when
m is even. When m is odd and greater than 3, we inductively show that Cm,3 supports
a tour that realizes a generator using the paths in S3 and S5 shown in Frames (A) and
(B) of Figure 10 as our base cases. Assume there exists a path in Sm that uses the edge
(m − 1,1) − (m − 2,3) and whose image in Cm,3 realizes a generator. Considering this as
a path in Sm+4 we add the path shown in Frame (D) of Figure 10 by placing this 4 × 3
board on the rectangle given by corners (m,1), (m,3), (m + 3,3), and (m + 3,1). Deleting
(m − 1,1) − (m − 2,3) and adding edges (m − 1,1) − (m,3) and (m − 2,3) − (m,2) produces a
path in Sm+4. This path includes the edge (m+ 3,1) − (m+ 2,3) and its image in Cm+4,3 is
a tour that realizes a generator, completing our induction. An example of this process is
shown in Frame (C) of Figure 10.

3×n. Paths in S3 whose images in C3,5 and C3,6 realize a generator are shown in Frames (B)
and (C) of Figure 11 respectively. For all values of n except 5 and 6, we will inductively
construct a tour in C3,n that realizes a generator. Consider the paths in S3 in Frames
(A), (D), (E), and (F) of Figure 11 whose respective images in C3,4, C3,7, C3,9, and C3,10 are
tours that realize a generator as our base cases. Suppose there exists a path in S3 that
begins at (0,0), ends at (0,−n), whose image in C3,n is a tour that realizes a generator,
and whose image in C3,n+4 is not incident to non-base point vertices (a,b) for b ≤ 3. We
concatenate this path with the result of translating the path shown in Frame (A) of Figure
11 downward by n. The result is a path in S3 that begins at (0,0), ends at (0,−n − 4),
whose image in C3,n+4 is a tour that realizes a generator, and whose image in C3,n+8 is not
incident to non-base point vertices (a,b) for b ≤ 3. This completes our induction. Frame
(G) of Figure 11 shows the result of applying this process to Frame (D).

m × 4. By Theorem 2.2, C4,4 cannot support a tour realizing a generator. Frames (A)
through (C) of Figure 12 show paths in S5, S6, and S7 whose respective images in C5,4,
C6,4, and C7,4 are tours that each realize a generator. For each m ≥ 5, we use induction to
construct tours on Cm,4 taking the paths on C5,4, C6,4, and C7,4 as our base cases. Assume
there is a path in Sm that uses the edges (m−1,0)−(m−2,2) and (m−2,0)−(m−1,2) whose
image in Cm,4 realizes a generator. Taking our path to be in Sm+3, we place the 3×4 board
shown in Frame (E) of Figure 12 on the rectangle given by the corners (m,0), (m,3), (m +
2,3), and (m+2,0). Deleting edges (m−1,0)−(m−2,2) and (m−2,0)−(m−1,2) and adding
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(a) (b) (c) (d) (e) (f) (g)

Figure 11. Lifts of tours in C3,n realizing a generator for n = 4,5,6,7,9,10, and 11

(a) (b) (c) (d) (e)

Figure 12. (A-D) Lifts of tours in Cm,4 realizing a generator for m = 5,6,7,
and 9 (E) Path used in induction step of m× 4 case

the new edges (m−2,0)−(m,1), (m−1,0)−(m+1,1), (m−2,2)−(m,3), and (m−1,2)−(m+1,3)
produces a path that includes edges (m+2,0)−(m+1,2) and (m+1,0)−(m+2,2) and whose
image in Cm+3,4 is a tour that realizes a generator, completing the induction. The result of
applying this process to Frame (B) of Figure 12 is shown in Frame (D).

4×n. C4,n does not support a tour for odd nor even n by Proposition 3.4 and Theorem 2.2
respectively.

5×n. Frame (A) of Figure 13 shows that there exists a tour on C5,5 that realizes a generator.
For all odd values of n with n ≥ 7, there exists a tour that realizes a generator on C5,n by
Corollary 5.4. For all even values of n with n ≥ 6 we will inductively show that C5,n
supports a tour that realizes a generator. We use the paths in S5 shown in Frame (A) of
Figure 12 and Frame (B) of Figure 13 as our base cases. Suppose we have a path in S5
that begins at (0,0), ends at (0,−n), whose image in C5,n realizes a generator, and whose
image in C5,n+4 is not incident to non-base point vertices (a,b) with b ≤ 3. Concatenating
this path with the result of translating Frame (A) of Figure 12 downward by n gives a new
path that ends at (0,−n− 4). The image of this path in C5,n+4 realizes a generator, and the
image in C5,n+8 is not incident to non-base point vertices (a,b) with b ≤ 3. The result of
applying this process to Frame (A) of Figure 12 is shown in Frame (C) of Figure 13.
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(a) (b) (c)

Figure 13. Lifts of tours in C5,n realizing a generator for n = 5,6, and 8

(a) (b) (c) (d) (e)

Figure 14. (A-C) Lifts of tours realizing a generator in T1,n for n = 2,3, and
4 (D-E) Lifts of tours realizing a generator in T2,n for n = 2 and 4

6. Generating Tours on Tori

The main result of this section is Theorem 6.1 which extends Theorem 5.1. Specifically,
we characterize all m and n so that Tm,n admits a tour that realizes a longitude.

Theorem 6.1. When m and n are not both 1, Tm,n supports a tour that realizes a longitude if
and only if m is odd or n is even.

Note that if Cm,n admits a tour that realizes a generator, then Tm,n admits a tour that
realizes a longitude. By Theorem 5.1, it suffices to show that Tm,n admits a tour that
realizes a longitude in the following cases: (i) m = 1 and n > 1, (ii) m = 2 and n is even,
and (iii) m = 4 and n is even. We apply statement (4) of Corollary 3.3 in these arguments.
That is, we construct a tour in Tm,n that realizes a longitude by constructing a path in P
that begins at (0,0) and ends at (0,n) or (0,−n) whose image in Tm,n is a tour.

1 × n. We use induction to show that T1,n supports a tour realizing a longitude for all
values of n > 1 using the boards in Frames (A) and (B) of Figure 14 as our base cases.
Suppose there is a path beginning at (0,0), ending at (0,n) in P , whose image in T1,n
realizes a longitude, and whose image in T1,n+2 is not incident to any (a,b) with b ≥ n+ 1.



MJUM Vol. 4 (2018-19) Page 18

(a) (b) (c) (d)

Figure 15. Lifts of tours realizing a generator in T4,n for n = 2,4,6, and 8

Concatenating this path with (0,n) − (2,n + 1) − (0,n + 2) gives a path in P beginning at
(0,0), ending at (0,n+ 2), whose image in T1,n+2 realizes a longitude, and whose image in
T1,n+4 is not incident to any (a,b) with b ≥ n+ 3. Frame (C) of Figure 14 shows the result
of applying this process to Frame (A).

2×n. We use induction to show that T2,n supports a tour that realizes a longitude when n
is even, using the tour on T2,2 shown in Frame (D) of Figure 14 as our base case. Suppose
we have a path in P that begins at (0,0), ends at (0,−n), whose image in T2,n realizes a lon-
gitude, and whose image in T2,n+2 is not incident to (0,1), (1,3), and (1,4). Concatenating
this path in P with (0,−n)−(1,−n+2)−(3,−n+1)−(2,−n−1)− (0, −n − 2) yields a path that
begins at (0,0), ends at (0,−n− 2), whose image in T2,n+2 realizes a longitude, and whose
image in T2,n+4 is never incident to (0,1), (1,3), and (1,4). Frame (E) of Figure 14 shows
the result of applying this process to Frame (D).

4 × n. The multigraph T4,2 supports a tour realizing a longitude as shown by the path
in P in Frame (A) of Figure 15. For all even values of n ≥ 4, we use induction to show
that T4,n supports a tour that realizes a longitude with Frames (B) and (C) as our base
cases. Suppose we have a path in P that begins at (0,0), ends at (0,−n), whose image in
T4,n realizes a longitude, and whose image in T4,n+4 is never incident to non-base point
vertices (a,b) where b ≤ 3. We concatenate the path in P with the image of Frame (B) of
Figure 15 under downward translation by n. This yields a path in P that begins at (0,0),
ends at (0,−n−4), whose image in T4,n+4 realizes a longitude, and whose image in T4,n+8 is
never incident to non-base point vertices (a,b) where b ≤ 3. Frame (D) of Figure 15 shows
the result of applying this process to Frame (B).

7. Future Work

This work constitutes the first step in understanding the topology of knight’s tours on
surfaces. We are interested in the following general question: given a surface S with di-
mensions m × n and an element λ ∈ π1(S), is there a knight’s tour on S that realizes λ?
Theorems 4.1, 4.2, 5.1, and 6.1 settle some of the simplest cases of this question, specif-
ically when S is a cylinder or torus and λ is the identity, a generator of the fundamental
group the cylinder, or the homotopy class of a longitude in a torus.



MJUM Vol. 4 (2018-19) Page 19

One can extend this work by considering other surfaces. The topology of knight’s tours
on the Möbius strip, the Klein bottle, and the real projective plane have not been studied.
Another avenue of extension is to characterize, for a fixed surface S, which elements of
π1(S) can be realized by knight’s tours. Little work has been done on the topology of
knight’s tours; it is a topic with many open and interesting questions.
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