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Abstract. Birman and Kofman define the twisted torus links as the closure of a certain
braid. We show that we can find another braid representation of some twisted torus links,
which we call the general braid. Using the general braid, we are able to determine the
number of components of some twisted torus links as well as classify the link type of
several twisted torus links.

1. Introduction

A mathematical knot is a nonintersecting closed curve in the three dimensional sphere
S3; a disjoint union of knots is called a link. The mathematical study of knots and links is
an important and well studied area of topology, with many applications to other areas of
mathematics and science. There are many lenses through which to study knots and links,
but one unfortunate barrier is the fact that there does not exist a group structure, or even
a binary operation, to place on the category of links in S3. One solution to this obstacle is
to study braids, which are closely related to links. We can define a braid in several ways;
the most straightforward is that an n-strand braid, for n an integer greater than 1, is a
collection of n disjoint, descending strands in a cylinder D2×I . The closure of an n-strand
braid is a link, a collection of disjoint knots in 3-space, which is formed by attaching the
bottom of the cylinder to the top. Conversely, every knot and link can be represented as
the closure of a braid. Figure 1 depicts a three strand braid and its closure, which is a
knot.

One way in which braids differ from links is that the set of all n-strand braids form a
group called the braid group, denoted Bn. The group operation on Bn is concatenation,
which means to stack one braid on top of another. There are n−1 generators for the braid
group Bn, the set {σi}n−1

i=1 , where σi is a single crossing of the i + 1st strand over the ith

strand. The survey article [1] provides a thorough introduction to braids and the braid
group.

∗ Corresponding author
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Figure 1. A three strand braid and its closure.

Torus knots are knots that can be drawn on the torus S1 × S1. A torus knot is typically
denoted by T (p,q), where p and q are relatively prime integers; this notation reflects the
fact that the (p,q) torus knot is the closure of the p-strand braid (σ1σ2 . . .σp−1)q realized by
passing the leftmost strand under the other p − 1 strands (an action we will call a single
positive twist) q times. The restriction that gcd(p,q) = 1 guarantees that the closure of this
braid will be a knot; relaxing this requirement yields a torus link.

The work of this paper is to study a generalization of torus links, called the twisted torus
link, which was definted by Birman and Kofman’s [2] as the closure of the braid

(σ1σ2 · · ·σr1−1)s1(σ1σ2 · · ·σr2−1)s2 · · · (σ1σ2 · · ·σrk−1)sk

where 2 ≤ r1 ≤ r2 ≤ . . . ≤ rk, and 0 < si for i = 1,2, . . . , k. A twisted torus link can be thought
of as a generalization of the more often explored twisted torus knot ([3, 4, 5, 6, 7, 8, 9, 10],
just to name a few). Using our notation, twisted torus knots are the subset of twisted torus
links with k = 2, gcd(r2, s2) = 1 and s1 = nr1 for some nonzero integer n. In this work, we
focus on the case k = 2 and we allow for negative twisting as well as positive twisting, i.e.
s2 may be positive or negative. Following notation of Birman and Kofman [2], we denote
the closure of (σ1σ2 · · ·σr1−1)s1(σ1σ2 · · ·σr2−1)s2 by T ((r1, s1), (r2, s2)).

The existing literature focuses on characterizing certain families of twisted torus knots
as cable knots [5], composite knots in [8], or fibered [4]. The Alexander polynomial of
some twisted torus knots is calculated in [10]. However, these results cannot be easily
generalized to twisted torus links because of a fundamental problem: given the param-
eters r1, s1, r2, and s2, it is not easy to discern the number of components in the resulting
link T ((r1, s1), (r2, s2)).

One of our goals is to find a formula for the component number of a twisted torus link.
In any braid, the number of components in the braid closure is determined by the way
the strands in the braid are permuted; if we number the strands, 1 to n, from left to right
at the top of the braid, the position of the strands at the bottom of the braid gives a per-
mutation in the symmetric group Sn. The number of disjoint cycles in this permutation
tells us the number of components in the closure of the braid. In the case of twisted torus
links, we can write a program to directly compute the twisted torus link’s corresponding
permutation. However, we have yet to find a simple formula that describes the result in
general. This work is a step in that direction.
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x1

x2

y1 strings︷  ︸︸  ︷

y2 strings
︸︷︷︸
z

Figure 2. GB(x1, y1,x2, y2, z)

Our approach is to introduce a new braid presentation that we call the general braid,
GB(x1, y1,x2, y2, z), which is defined in Section 2. In Corollary 2.6 , we describe precisely
which twisted torus links have general braid presentations. Our main result, Theorem 3.3
relates the number of components in the closure of a general braid to the greatest common
divisor of the parameters, x1, y1,x2, y2. As a corollary, the results in Section 3 completely
determine the component number of all twisted torus links which correspond to general
braids of the form GB(±x1, y1,∓x2, y2, z) with z ∈ {0,1,2}. In Section 4, we use our results
to determine the link type of some twisted torus links.

2. The General Braid

We define a single positive twist on r strands to be obtained by pulling the leftmost strand
behind the remaining r − 1 strands and a single negative twist to be obtained by pulling
the leftmost strand in front of the remaining r − 1 strands. In Bn, with n ≥ r, a single
positive twist is represented by the braid element σ1σ2 · · ·σr−1 and a single negative twist
is represented by the braid element σ−1

1 σ−1
2 · · ·σ

−1
r−1. Note that, with this definition of a

negative twist, a single positive twist followed by a single negative twist on the same r
strands does not result in cancellation. However, a full positive twist, (σ1σ2 · · ·σr−1)r , is
the inverse of a full negative twist, (σ−1

1 σ−1
2 · · ·σ

−1
r−1)r .

Before introducing the general braid, we prove the following lemma regarding positive
and negative twists.

Lemma 2.1. A full twist (positive or negative) on s strings is equivalent to its reverse. In other
words, (σ1...σs−1)s has the same closure as (σs−1...σ1)s and (σ−1

1 ...σ−1
s−1)s has the same closure as

(σ−1
s−1...σ

−1
1 )s

Proof. We know that a full positive twist and a full negative twist are inverses. Thus,
(σ1...σs−1)−s = (σ−1

1 ...σ−1
s−1)s. In general, (σ1...σs−1)−1 = σ−1

s−1...σ
−1
1 . It follows that (σ−1

1 ...σ−1
s−1)s =

(σ1...σs−1)−s = (σ−1
s−1...σ

−1
1 )s. This means (σ−1

1 ...σ−1
s−1)s and (σ−1

s−1...σ
−1
1 )s have the same closure.

The proof that (σ1...σs−1)s has the same closure as (σs−1...σ1)s is analogous. �
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Definition 2.2 (General Braid). Let x1, y1,x2, y2, z ∈Z with y1, y2 ≥ 2 and 0 ≤ z ≤min(y1, y2).
We define the general braid with parameters x1, y1,x2, y2, and z, denotedGB(x1, y1,x2, y2, z),
as the braid on y1 +y2−z strings consisting of x1 twists on the leftmost y1 strings followed
by x2 twists on the rightmost y2 strings. This is shown in Figure 2.

Theorem 2.3. Let r1, r2, s1, s2 ∈N with r2 ≥ r1 ≥ s1 + s2. If r1 mod (s1 + s2) is not between s1
and s2, then T ((r1, s1), (r2,−s2)) is isotopic to the closure of GB(x1, y1,x2, y2, z) with parameters:

x1 =

(r1 − r2)− s2b
r1

s1+s2
c − (r1 mod (s1 + s2)) if r1 mod (s1 + s2) ≤min(s1, s2)

(r1 − r2)− s2b
r1

s1+s2
c+ (r1 mod (s1 + s2))− s1 − 2s2 if r1 mod (s1 + s2) ≥max(s1, s2)

y1 = s2

x2 =

s1b r1
s1+s2
c+ (r1 mod (s1 + s2)) if r1 mod (s1 + s2) ≤min(s1, s2)

s1b
r1

s1+s2
c+ (r1 mod (s1 + s2))− s2 if r1 mod (s1 + s2) ≥max(s1, s2)

y2 = s1

z =
{
r1 mod (s1 + s2) if r1 mod (s1 + s2) ≤min(s1, s2)
s1 + s2 − (r1 mod (s1 + s2)) if r1 mod (s1 + s2) ≥max(s1, s2)

Proof. Let r1, r2, s1, s2 ∈ N such that r2 ≥ r1 ≥ s1 + s2. We begin with the standard braid
representation of T ((r1, s1), (r2,−s2)), show in Figure 3. From here, we can see the s1 pos-
itive twists on the first r1 strands as a full twist on the first s1 strands followed by the s1
strands passing behind the next r1 − s1 strands. We can also view the s2 negative twists
on all r2 strands as a full twist on the first s2 strands followed by the s2 strands passing
in front of the next r2 − s2 strands. After isotopy to simplify the the braid, we obtain the
second braid in Figure 3.

In order to make the braid easier to manipulate, we redraw the picture, looking at the
braid instead from the back, which yields the braid shown in Figure 4. Since we are
interested in the closure of the braid, we notice that by closing the first strand of the first
braid shown in Figure 5, we can pull this strand off over the twist box so that is passes
over the the strands below the twist box instead. This operation reduces the number of
strands of the braid by 1 and increases the number of negative twists in the leftmost twist
box by 1 so that the new number of twists is −s2 − 1. We can use this move r2 − r1 times.
For ease of notation, we use x1 and x2 to represent the number of twists on each set of
strings. We obtain the braid shown in Figure 6, with x1 = r1 − r2 − s2 and x2 = s1.

If there are at least 2(s1 + s2) remaining strings, we can reduce the total number of strings
by performing belt tricks. This move is named from a party trick: lay a long belt in a
loop, flat on a surface. Then, grab the buckle and end of the belt and pull taut. The
belt will no longer lay flat on the surface, but will contain one full twist. Similarly, if
some number k of leftmost strands in a braid are closed up by attaching bottom to top,
and then the k adjacent closed strands are pulled downwards in the braid, the result will
be a braid of k fewer strands, where the strands that were closed off now contain a full
twist. We use this process frequently in simplifying a twisted torus link. The overall pro-
cess is shown in Figure 7. We can perform b r1−(s1+s2)

(s1+s2) c pairs of belt tricks, each of which
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s1 strings︷︸︸︷ s1 strings︷︸︸︷s2 strings︷      ︸︸      ︷ s2 strings︷      ︸︸      ︷r2 − r1 strings︷   ︸︸   ︷ r2 − r1 strings︷   ︸︸   ︷

−→

full twist full twist

Figure 3. Collecting twists from the standard braid representation of T ((r1, s1), (r2, s2))

r2 − r1 strings︷         ︸︸         ︷ s2 strings︷              ︸︸              ︷ s1 strings︷     ︸︸     ︷

−s2 s1

Figure 4. The back of T ((r1, s1), (r2, s2))

adds s2 negative twists to the set of negative twists and s1 positive twists to the set of
positive twists. The result is the braid shown in Figure 8 with x1 = r1 − r2 − s2b

r1
s1+s2
c and

x2 = s1b
r1

s1+s2
c and y1 = s2, y2 = s1. We consider two cases: r1 mod (s1 + s2) ≤min(s1, s2) and
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−s2 −s2 −s2 − 1s1 s1 s1

Figure 5. The links in these three images are equivalent

x1 x2

Figure 6. Our braid after performing r2 − r1 of the moves shown in Figure 5

a b b a− c a− c b+ d

c
︸ ︷︷ ︸

d
︸︷︷︸

d
︸︷︷︸

c
︸ ︷︷ ︸

c
︸ ︷︷ ︸

d
︸︷︷︸

Figure 7. We move between these braids by performing belt tricks.
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x1 x2

︸       ︷︷       ︸
y1

︸︷︷︸
y2

︸︷︷︸
r1 mod (s1 + s2)

Figure 8. Our braid after performing
⌊
r1 − (s1 + s2)

(s1 + s2)

⌋
pairs of belt tricks

x1

x2

r1 mod (s1 + s2)
︸︷︷︸

Figure 9. Case I: r1 mod s1 + s2 ≤ s2

r1 mod (s1 + s2) ≥max(s1, s2).

Case I: r1 mod (s1 + s2) ≤min(s1, s2):

As r1 mod (s1+s2) ≤ s2, we no longer perform more belt tricks. We close the braid partially
to slide strands across tangles and reduce the number of strings in our braid to s1 + s2.
The resulting braid is shown in Figure 9 with x1 = r1− r2− s2b

r1
s1+s2
c− (r1 mod (s1 + s2)) and

x2 = s1b
r1

s1+s2
c. From here, we partially close r1 mod (s1 + s2) more strands to obtain the

general braid, where the parameters are x1 = (r1 − r2) − s2b
r1

s1+s2
c − (r1 mod (s1 + s2)), y1 =

s2,x2 = s1b
r1

s1+s2
c+ (r1 mod (s1 + s2)), y2 = s1, and z = r1 mod (s1 + s2), which was our goal.

Case II: r1 mod (s1 + s2) ≥max(s1, s2):
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x2 x1

a
︸︷︷︸

Figure 10. Our braid after performing an additional belt trick

x1

x2

a
︸︷︷︸

Figure 11. Our braid after closing the (r1 mod (s1 + s2))− s2 strands

When r1 mod (s1 + s2) ≥ s2 we perform one additional belt trick, leaving us with the braid
shown in Figure 10 with x1 = (r1 − r2) − s2b

r1
s1+s2
c − s2,x2 = s1b

r1
s1+s2
c, and a = (r1 mod (s1 +

s2))−s2. At this point, we can perform (r1 mod (s1+s2))−s2 partial closure moves, as above,
to obtain the braid shown in Figure 11 with x1 = (r1 − r2) − s2b

r1
s1+s2
c − s2,x2 = s1b

r1
s1+s2
c +

(r1 mod (s1 + s2))− s2, and a = (r1 mod (s1 + s2))− s2.

From here, we cancel s1 − a = s2 + s1 − (r1 mod (s1 + s2)) of the x1 = (r1 − r2) − s2b
r1

s1+s2
c −

s2 twists by closing the leftmost s1 − a of the strings. The result can be conjugated to
GB(x1, y1,x2, y2, z) with x1 = (r1 − r2) − s2b

r1
s1+s2
c + (r1 mod (s1 + s2)) − s1 − 2s2, y1 = s2,x2 =

s1b
r1

s1+s2
c+ (r1 mod (s1 + s2))− s2, y2 = s1, and z = s1 + s2− (r1 mod (s1 + s2)) (shown in Figure

2), which was our goal. �

Remark. We note that if s1 = 1 or s2 = 1, Theorem 2.3 still holds; however, this case is not
interesting, as a twist on a single strand has no effect.
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Corollary 2.4. Let r1, r2, s1, s2 ∈N with r2 ≥ r1 ≥ s1 + s2. If r1 mod (s1 + s2) is not between s1
and s2, then T ((r1,−s1), (r2, s2)) is isotopic to the closure of GB(x1, y1,x2, y2, z) with parameters:

x1 =

(r2 − r1) + s2b
r1

s1+s2
c+ (r1 mod (s1 + s2)) if r1 mod (s1 + s2) ≤min(s1, s2)

(r2 − r1) + s2b
r1

s1+s2
c − (r1 mod (s1 + s2)) + s1 + 2s2 if r1 mod (s1 + s2) ≥max(s1, s2)

y1 = s2

x2 =

−s1b r1
s1+s2
c − (r1 mod (s1 + s2)) if r1 mod (s1 + s2) ≤min(s1, s2)

−s1b
r1

s1+s2
c − (r1 mod (s1 + s2)) + s2 if r1 mod (s1 + s2) ≥max(s1, s2)

y2 = s1

z =
{
r1 mod (s1 + s2) if r1 mod (s1 + s2) ≤min(s1, s2)
s1 + s2 − (r1 mod (s1 + s2)) if r1 mod (s1 + s2) ≥max(s1, s2)

Proof. We note that the mirror image of T ((r1,−s1), (r2, s2)) is T ((r1, s1), (r2,−s2)) and the
mirror image of GB(x1, y1,x2, y2, z) is GB(−x1, y1,−x2, y2, z). Thus, we apply Theorem 2.3
to T ((r1, s1), (r2,−s2)) then take the mirror image, which gives us our result. �

Definition 2.5 (Inverse Image). We say that a general braid, GB(x1, y1,x2, y2, z) has an
inverse image if there is a twisted torus link which is mapped to GB(x1, y1,x2, y2, z) by
Theorem 2.3 or Corollary 2.4.

By inverting the parameter formulas in Theorem 2.3 and Corollary 2.4, we obtain the
following corollary.

Corollary 2.6. GB(x1, y1,x2, y2, z) has an inverse image if and only if one of the following holds:

(1) GB(x1, y1,x2, y2, z) corresponds to T ((y1
y2

(x2 − z) + x2, y2), (x2 − x1 − z,−y1)) when

(a) y2 divides y1(x2 − z),

(b) x1 < 0 < x2,

(c) x2 − x1 − z ≥
y1
y2

(x2 − z) + x2 ≥ y1 + y2, and

(d) (y1
y2

(x2 − z) + x2) mod (y1 + y2) ≤min(y1, y2).

(2) GB(x1, y1,x2, y2, z) corresponds to T ((y1
y2

(x2 + z) + x2, y2), (x2 − x1 − z,−y1)) when

(a) y2 divides y1(x2 + z),

(b) x1 < 0 < x2,

(c) x2 − x1 − z ≥
y1
y2

(x2 + z) + x2 ≥ y1 + y2, and

(d) (y1
y2

(x2 + z) + x2) mod (y1 + y2) ≥max(y1, y2).

(3) GB(x1, y1,x2, y2, z) corresponds to T ((−y1
y2

(x2 + z)− x2,−y2), (x1 − x2 − z,y1)) when

(a) y2 divides y1(x2 + z),
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(b) x2 < 0 < x1,

(c) x1 − x2 − z ≥
−y1
y2

(x2 + z)− x2 ≥ y1 + y2, and

(d) (−y1
y2

(x2 + z)− x2) mod (y1 + y2) ≥max(y1, y2).

(4) GB(x1, y1,x2, y2, z) corresponds to T ((−y1
y2

(x2 − z)− x2,−y2), (x1 − x2 − z,y1)) when

(a) y2 divides y1(x2 − z),

(b) x2 < 0 < x1,

(c) x1 − x2 − z ≥
−y1
y2

(x2 − z)− x2 ≥ y1 + y2, and

(d) (−y1
y2

(x2 − z)− x2) mod (y1 + y2) ≤min(y1, y2).

3. Restricted Permutations and Component Number

In this section, we describe a tool that is useful in describing the number of components
in the closure of a general braid, which we call the braid’s restricted permutation. We
begin by noting that the permutation which corresponds to GB(x1, y1,x2, y2, z) is (y1 +y2−
z,y1 + y2 − z − 1, . . . , y1 − z + 1)x2 ◦ (y1, y1 − 1, . . . ,1)x1 ∈ Sy1+y2−z. The number of cycles in
the cycle decomposition of this permutation is the same as the number of components in
the closure of the general braid. We will refer to (y1, y1 − 1, . . . ,1)x1 ∈ Sy1+y2−z as the top
permutation of the general braid and (y1 + y2 − z,y1 + y2 − z − 1, . . . , y1 − z + 1)x2 ∈ Sy1+y2−z
as the bottom permutation of the general braid throughout this section. In general, we
use the symbol #α to represent the number of components in the closure of a braid α.
Likewise, α will refer to the normal braid closure of the braid α. We will denote by #σ
the number of cycles in the cyclic decomposition of a permutation σ . We now begin with
the definition of a restricted permutation.

Definition 3.1. Let σ ∈ Sn and S ⊆ {1,2, . . . ,n}. Let ai be the ith smallest element of S for
i ∈ {1, . . . , |S |}. For ai ∈ S, let mi be the smallest positive integer such that σmi (ai) ∈ S. Say
σmi (ai) = aji . We define the restricted permutation, σ restricted to S (denoted σ

∣∣∣
S
), as the

permutation σS ∈ S|S | given by σS(i) = ji

In a general braid’s permutation, the only elements which do not stay on the same side
of the braid after either the top permutation or bottom permutation are elements of the
set S = {y1 − z + 1, . . . , y1} (unless the the top permutation or the bottom permutation is
the identity). As a result, we will be restricting permutations of general braids to the set
S throughout this section. Thus, we will refer to the top permutation of a general braid
restricted to S as the top restricted permutation and the bottom permutation of a general
braid restricted to S as the bottom restricted permutation of GB(x1, y1,x2, y2, z). This allows
us to propose the following Lemma:

Lemma 3.2. Let GB(x1, y1,x2, y2, z) be a general braid. Let c1 be the number of cycles in
the top permutation which are properly contained in {1, . . . , y1 − z} and let c2 be the number
of cycles in the bottom permutation which are properly contained in {y1 + 1, . . . , y1 + y2 − z}.
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α

x1

︷               ︸︸               ︷y1 strings

. . .

. . .

β

x2

︷               ︸︸               ︷y2 strings

. . .

. . .

Figure 12. Tangles α and β

α

︷︸︸︷z strings

↑ ↑
z connection points

x1

. . .

. . .

β

︸︷︷︸
z strings

↓ ↓
z connection points

x2

. . .

. . .

Figure 13. Links α and β

Let σ ′ be the top restricted permutation and let ρ′ be the bottom restricted permutation, then
#GB(x1, y1,x2, y2, z) = c1 + c2 + #(ρ′ ◦ σ ′).

Proof. Let g = GB(x1, y1,x2, y2, z) be a general braid. Let σ be the top permutation of g and
ρ be the bottom permutation of g. We consider g as a (y1 + y2 − z)-tangle. Let α be the
y1-tangle which consists of x1 twists (so the permutation associated with α is σ restricted
to {1, . . . , y1}) and let β be the y2-tangle which consists of x2 twists (so the permutation
associated with β is ρ restricted to {y1 + 1− z, . . . , y1 + y2 − z}). These tangles are shown in
Figure 12.

We now consider the links α and β, shown in Figure 13. We observe that g can be obtained
from α and β by attaching these braids at each of the corresponding z connection points
of each link (highlighted in Figure 13). The result is shown in Figure 14
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x1

. . .

. . .

x2

. . .

. . .

−→

GB(x1, y1,x2, y2, z)

x1

. . .

. . .

x2

. . .

. . .

Figure 14. Attaching at corresponding connection points of α and β.

With the relationship between α,β, and g established, we proceed by removing compo-
nents from α and β. Specifically, we remove components which do not contain any of the
z strings whose closures we connected to form g. Let c1 be the number of components
removed from α and let c2 be the number of components removed from β. We note that
c1 is the number of cycles of σ restricted to {1, . . . , y1} which do not contain elements of
{y1−z+1, . . . , y1} and c2 is the number of cycles of ρ restricted to {y1+1, . . . , y1+y2−z}which
do not contain elements of {1, . . . , z}. We will refer to the link obtained from removing c1
components of α as L1, the link obtained from removing c2 components of β as L2, and
the link obtained from removing the corresponding c1 + c2 components of g as L3. These
steps are shown in Figure 15. We conclude that #g = c1 + c2 + #L3.

Having removed the components of α which do not include any of the z shared strings, we
can isotope L1 to the closure of a z-tangle, α′, on the strings numbered y1−z+1, . . . , y1 such
that the z connection points remain fixed. Similarly, having removed the components of
β which do not include any of the z shared strings, we can isotope L2 to the closure of a z
tangle, β′, on the strings numbered 1, . . . , z such that the z connection points remain fixed.
Performing these isotopies shows that L3 is isotopic to the closure of the concatenation of
α′ and β′, denoted α′ ∗ β′. These steps are shown in Figure 16 and indicate #g = c1 + c2 +
#(α′ ∗ β′).

Finally, we note that the permutation associated with α′ is the top restricted permutation
of g and the permutation associated with β′ is the bottom restricted permutation of g, as
we have now reduced each permutation to be an element of Sz. Let σ ′ and ρ′ be the top
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x1

. . .

. . . ︸   ︷︷   ︸
−→ ..

c1

L1

x2

. . .

. . . ︸   ︷︷   ︸
−→ ..

c2

L2

x1

. . .

. . .

x2

. . .

. . .

︸   ︷︷   ︸
−→

..

c1 + c2

L3

Figure 15. Removing components from α, β, and g

and bottom restricted permutations of g respectively, then #(α′ ∗β′) = #(ρ′ ◦σ ′). It follows
that #g = c1 + c2 + #(ρ′ ◦ σ ′). �

Having proved this lemma, we are ready to prove some results regarding the component
number of general braids.

Now we focus only on general braids which have inverse images, as in Corollary 2.6. How-
ever, it is possible that many of the results proven in this section apply to general braids
which do not have inverse images. Since, in general, the closure of GB(±x1, y1,±x2, y2, z)
has the same number of components as the closure of GB(x1, y1,x2, y2, z), our proofs con-
sider the parameters of the general braid in absolute value. We use #GB(x1, y1,x2, y2, z) to
denote the number of components in the closure of GB(x1, y1,x2, y2, z)

Our goal is to prove the following theorem regarding the component number of general
braids:



MJUM Vol. 4 (2018-2019) Page 14

L1

L2

L3

α′

β′

α′

β′

. . .

. . .

. . .

. . .

. . .

. . .

. . .

−→

−→

−→

Figure 16. Isotoping L1, L2, and L3 to be closures of z-tangles.

Theorem 3.3. Let x1, y1,x2, y2, z ∈ N such that GB(±x1, y1,∓x2, y2, z) has an inverse image.
Then, the following statements hold:

(1) For a positive integer d, if d divides gcd(x1, y1,x2, y2), then

#GB(x1, y1,x2, y2, z) = d #GB
(x1

d
,
y1

d
,
x2

d
,
y2

d
,
z
d

)
.

(2) If gcd(x1, y1) + gcd(x2, y2) = z, then #GB(x1, y1,x2, y2, z) = 2gcd(x1, y1,x2, y2).

(3) If gcd(x1, y1)+gcd(x2, y2) > z, then #GB(x1, y1,x2, y2, z) = gcd(x1, y1)+gcd(x2, y2)−z.

In order to prove Theorem 3.3, we first prove the following lemmas:

Lemma 3.4. If x1, y1,x2, y2, z ∈N such that GB(±x1, y1,∓x2, y2, z) has an inverse image, then
gcd(x2, y2) divides z.
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Proof. Since the braid GB(±x1, y1,∓x2, y2, z) has an inverse image, its closure is isotopic to
T ((r1,∓s1), (r2,±s2)) for some r1, s1, r2, s2 ∈N. We consider four cases:

(1) GB(−x1, y1,x2, y2, z) has inverse image T ((r1, s1), (r2,−s2)) and r1 mod (s1+s2) ≤min(s1, s2)

(2) GB(−x1, y1,x2, y2, z) has inverse image T ((r1, s1), (r2,−s2)) and r1 mod (s1+s2) ≥max(s1, s2)

(3) GB(x1, y1,−x2, y2, z) has inverse image T ((r1,−s1), (r2, s2)) with r1 mod (s1+s2) ≤min(s1, s2)

(4) GB(x1, y1,−x2, y2, z) has inverse image T ((r1,−s1), (r2, s2)) with r1 mod (s1+s2) ≥max(s1, s2)

Case (1): Consider the case where the closure of the braidGB(−x1, y1,x2, y2, z) is isotopic to
T ((r1, s1), (r2,−s2)) with r1 mod (s1 + s2) ≤min(s1, s2). We then have x2 = s1b

r1
s1+s2
c+ (r1 mod

(s1 + s2)), y2 = s1, and z = r1 mod (s1 + s2) by Theorem 2.3. It follows that gcd(x2, y2) =
gcd(z, s1), which divides z.

Case (2): Consider the case where the closure of the braid GB(−x1, y1,x2, y2, z) is isotopic
to T ((r1, s1), (r2,−s2)) with r1 mod (s1 + s2) ≥ max(s1, s2). We then have x2 = s1b

r1
s1+s2
c +

(r1 mod (s1 + s2))− s2, y2 = s1, and z = s1 + s2 − (r1 mod (s1 + s2)) by Theorem 2.3. It follows
that gcd(x2, y2) = gcd(z, s1), which divides z.

Case (3): Consider the case where the closure of the braidGB(x1, y1,−x2, y2, z) is isotopic to
T ((r1,−s1), (r2, s2)) with r1 mod (s1+s2) ≤min(s1, s2). We then have x2 = −s1b

r1
s1+s2
c−(r1 mod

(s1 + s2)), y2 = s1, and z = (r1 mod (s1 + s2)) by Corollary 2.4. It follows that gcd(x2, y2) =
gcd(z, s1), which divides z.

Case (4): Consider the case where the closure of the braid GB(x1, y1,−x2, y2, z) is isotopic
to T ((r1,−s1), (r2, s2)) with r1 mod (s1 + s2) ≥ max(s1, s2). We then have x2 = −s1b

r1
s1+s2
c −

(r1 mod (s1 + s2)) + s2, y2 = s1, and z = s1 + s2− (r1 mod (s1 + s2)) by Corollary 2.4. It follows
that gcd(x2, y2) = gcd(z, s1), which divides z. �

Lemma 3.5. Let x1, y1,x2, y2, z ∈N and suppose that T ((r1,∓s1), (r2,±s2)) is an inverse image
of the braidGB(±x1, y1,∓x2, y2, z). Then, gcd(x1, y1,x2, y2, z) = gcd(x1, y1,x2, y2) = gcd(r1, s1, r2, s2).

Proof. As in the proof of Lemma 3.4, there are four cases to consider:

(1) GB(−x1, y1,x2, y2, z) has inverse image T ((r1, s1), (r2,−s2)) and r1 mod (s1+s2) ≤min(s1, s2)

(2) GB(−x1, y1,x2, y2, z) has inverse image T ((r1, s1), (r2,−s2)) and r1 mod (s1+s2) ≥max(s1, s2)

(3) GB(x1, y1,−x2, y2, z) has inverse image T ((r1,−s1), (r2, s2)) with r1 mod (s1+s2) ≤min(s1, s2)

(4) GB(x1, y1,−x2, y2, z) has inverse image T ((r1,−s1), (r2, s2)) with r1 mod (s1+s2) ≥max(s1, s2)

We will prove the first case of this lemma. The other cases can be proved similarly.

Let x1, y1,x2, y2, z ∈ N be chosen so that the braid GB(−x1, y1,x2, y2, z) has inverse image
T ((r1, s1), (r2,−s2)) and r1 mod (s1+s2) ≤min(s1, s2). From Lemma 3.4, gcd(x1, y1,x2, y2, z) =
gcd(x1, y1,x2, y2). Also, as y1 = s2 and y2 = s1, we know gcd(x1, y1,x2, y2) = gcd(x1,x2, s1, s2).
Let r1 = r1 mod (s1 + s2), so then r1 = k(s1 + s2) + r1 for some k ∈ Z. From Theorem 2.3,
x1 = (r1 − r2) − s2b

r1
s1+s2
c − (r1 mod (s1 + s2)) = k(s1 + s2) − r2 − s2b

r1
s1+s2
c = ks1 − r2. Thus,

gcd(x1,x2, s1, s2) = gcd(r2,x2, s1, s2). From Theorem 2.3, we also know that x2 = s1b
r1

s1+s2
c+
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(r1 mod (s1 + s2)) = ks1 + r1. Thus, gcd(r2,x2, s1, s2) = gcd(r2, r1, s1, s2) = gcd(r2, r1, s1, s2).
Hence, we have shown that gcd(x1, y1,x2, y2, z) = gcd(x1, y1,x2, y2) = gcd(r2, r1, s1, s2). �

Lemma 3.6. Let x1, y1,x2, y2, z ∈N so that GB(±x1, y1,∓x2, y2, z) has an inverse image. If the
inverse image of GB(±x1, y1,∓x2, y2, z) is T ((r1,∓s1), (r2,±s2)), then for a positive integer d, if d
divides gcd(x1, y1,x2, y2, z), then T (( r1d ,∓

s1
d ), ( r2d ,±

s2
d )) is an inverse image ofGB(±x1

d ,
y1
d ,∓

x2
d ,

y2
d ,

z
d ).

Proof. As in the proofs of Lemmas 3.4 and 3.5, there are four cases to consider:

(1) GB(−x1, y1,x2, y2, z) has inverse image T ((r1, s1), (r2,−s2)) and r1 mod (s1+s2) ≤min(s1, s2)

(2) GB(−x1, y1,x2, y2, z) has inverse image T ((r1, s1), (r2,−s2)) and r1 mod (s1+s2) ≥max(s1, s2)

(3) GB(x1, y1,−x2, y2, z) has inverse image T ((r1,−s1), (r2, s2)) with r1 mod (s1+s2) ≤min(s1, s2)

(4) GB(x1, y1,−x2, y2, z) has inverse image T ((r1,−s1), (r2, s2)) with r1 mod (s1+s2) ≥max(s1, s2)

We will prove the first case when GB(−x1, y1,x2, y2, z) has inverse image T ((r1, s1), (r2,−s2))
with r1 mod (s1 + s2) ≤min(s1, s2). The other cases can be proved similarly.

We consider T (( r1d ,
s1
d ), ( r2d ,−

s2
d )). First, note that this twisted torus link can be written as

a general braid. The condition r1 mod (s1 + s2) ≤min(s1, s2) implies the condition r1
d mod

( s1d + s2
d ) ≤ min( s1d ,

s2
d ), which satisfies the hypothesis of Theorem 2.3. This holds given

that r1 mod (s1+s2)
d = r1

d mod ( s1d + s2
d ) and min(s1,s2)

d = min( s1d ,
s2
d ). The first condition follows

because r1 mod (s1 + s2) = r1 − k(s1 + s2) for some k ∈ Z, so r1 mod (s1+s2)
d = r1

d − k( s1d + s2
d ) is

certainly congruent to r1
d mod ( s1d + s2

d ). However, since 0 < r1 − k(s1 + s2) ≤ s1 + s2, then

0 < r1
d − k( s1d + s2

d ) ≤ s1
d + s2

d , so r1 mod (s1+s2)
d is also the desired coset representative.

Now, suppose that GB(−x′1, y
′
1,x
′
2, y
′
2, z
′) corresponds to T (( r1d ,

s1
d ), ( r2d ,−

s2
d )) under the cor-

respondence given in Theorem 2.3. We claim that x′1 = x1
d , y′1 = y1

d , x′2 = x2
d , y′2 = y2

d , and

z′ = z
d . We only need to show that r1 mod (s1+s2)

d = r1
d mod ( s1d + s2

d ), which we have already
shown. Thus, T (( r1d ,

s1
d ), ( r2d ,−

s2
d )) is an inverse image of GB(−x1

d ,
y1
d ,

x2
d ,

y2
d ,

z
d ). �

Lemma 3.7. Let r1, s1, r2, s2 ∈ Z with r2 ≥ r1 > 0. For a positive integer d, if d divides
gcd(r1, s1, r2, s2), then #T ((r1, s1), (r2, s2)) = d#T (( r1d ,

s1
d ), ( r2d ,

s2
d )).

Proof. Consider the modulo d equivalence classes of {1, . . . , r2}. For x ∈ {1, . . . ,d}, let the
equivalence class of x be Sx = {y ∈ {1, . . . , r2} : y = x + kd for k ∈ {0,1, . . . , r2d − 1}}. Let φx :
Sx → [ r2d ] be the bijection given by φx(x + kd) = 1 + k. Let σ1 be the top permutation of
T ((r1, s1), (r2, s2)) and σ2 be the bottom permutation of T ((r1, s1), (r2, s2)).

First, we show that the nontrivial cycles of σ1 and σ2 are contained in the modulo d
equivalence classes of {1, . . . , r2}. For j ∈ {1,2}, and i ∈ {1, . . . , r2}, we know σj(i) ≡ i − sj
mod rj . Reducing this equation modulo d and using the hypothesis that d | sj and d | rj ,
we see that σj(i) ≡ i mod d. It follows that cycles of σj are contained in the modulo d
equivalence classes of {1, . . . , r2}.

As the cycles of σ1 and σ2 are contained in the modulo d equivalence classes of {1, . . . , r2},
we see that the cycles of σ = σ2 ◦ σ1 are also contained in these equivalence classes. In
particular, σ1

∣∣∣
Sx

, σ2

∣∣∣
Sx

, and σ
∣∣∣
Sx

are all well defined and σ
∣∣∣
Sx

= (σ2 ◦ σ1)
∣∣∣
Sx

= σ2

∣∣∣
Sx
◦ σ1

∣∣∣
Sx

.
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The permutation σ
∣∣∣
Sx

induces a permutation on {1, . . . , r2/d} given by σx = φx ◦ σ
∣∣∣
Sx
◦φ−1

x .

Similarly, we let (σ1)x = φx ◦ σ1

∣∣∣
Sx
◦ φ−1

x and (σ2)x = φx ◦ σ
∣∣∣
Sx
◦ φ−1

x . From the equation

σ
∣∣∣
Sx

= σ2

∣∣∣
Sx
◦ σ1

∣∣∣
Sx

it follows that σx = (σ2)x ◦ (σ1)x.

Now, we will show that σx is the permutation associated with T (( r1d ,
s1
d ), ( r2d ,

s2
d )). In light of

the equation σx = (σ2)x ◦ (σ1)x, it suffices to show that (σi)x is the permutation associated
with T ( rid ,

si
d ). Let k1 ∈ {1, . . . ,

r2
d − 1} and j = x + k1d. We note that σi(j) = x + k2d for some

k2 ∈ {1, . . . ,
r2
d − 1}. We now have σi(j) ≡ j − si mod ri which means σi(j) − j ≡ −si mod ri .

This implies that (k2 − k1)d ≡ −si mod ri . It follows that k2 − k1 ≡ −
si
d mod ri

d . Thus,
(σi)x(φx(j)) −φx(j) = φx(σi(j)) −φx(j) = (1 + k2) − (1 + k1) = k2 − k1 ≡ −

si
d mod ri

d . As φx is
surjective, we observe (σi)x is the permutation associated with T ( rid ,

si
d ).

Since the cycle (x+k1d,x+k2d, . . . ,x+knd) in σ
∣∣∣
Sx

maps to the cycle (1+k1,1+k2, . . . ,1+kn)

in σx, we know σ
∣∣∣
Sx

and σx have the same number of cycles. It follows that #σ
∣∣∣
Sx

=

#T (( r1d ,
s1
d ), ( r2d ,

s2
d )). As the total number of disjoint cycles in σ is the sum of the number

of disjoint cycles of each equivalence class, we conclude #σ = #σ
∣∣∣
S1

+ #σ
∣∣∣
S2

+ · · ·+ #σ
∣∣∣
Sd

=

d#T (( r1d ,
s1
d ), ( r2d ,

s2
d )). �

Now, we prove each part of Theorem 3.3.

Proof of Theorem 3.3(1). Suppose GB(x1, y1,x2, y2, z) has an inverse image and for a posi-
tive integer d, d divides gcd(x1, y1,x2, y2). We want to show

#GB(x1, y1,x2, y2, z) = d #GB
(x1

d
,
y1

d
,
x2

d
,
y2

d
,
z
d

)
.

Let d = gcd(x1, y1,x2, y2) and let GB(x1, y1,x2, y2, z) have inverse image T ((r1, s1), (r2, s2)).
From Lemma 3.5, d = gcd(x1, y1,x2, y2) = gcd(r1, s1, r2, s2). The following chain of equiva-
lences proves the result:

#GB(x1, y1,x2, y2, z) = #T ((r1, s1), (r2, s2)) by hypothesis

= d #T
((r1
d
,
s1
d

)
,
(r2
d
,
s2
d

))
from Lemma 3.7

= d #GB
(r1
d
,
s1
d
,
r2
d
,
s2
d
,
z
d

)
from Lemma 3.6

�

Proof of Theorem 3.3(2). Suppose GB(x1, y1,x2, y2, z) has an image and that gcd(x1, y1) +
gcd(x2, y2) = z. We want to show #GB(x1, y1,x2, y2, z) = 2gcd(x1, y1,x2, y2). We must con-
sider two cases: gcd(x1, y1,x2, y2) = 1 and gcd(x1, y1,x2, y2) , 1.

First, we consider the case gcd(x1, y1,x2, y2, z) = 1. From Lemma 3.4, gcd(x2, y2) | z, so from
the equation gcd(x1, y1)+gcd(x2, y2) = z, gcd(x2, y2) | gcd(x1, y1). Hence, gcd(x2, y2) = 1 and
gcd(x1, y1) = z − 1.
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As gcd(x1, y1) = z − 1, then the top restricted permutation is the transposition (1, z). As
gcd(x2, y2) = 1, then the bottom restricted permutation is a z-cycle. Composing (1, z) with
a z-cycle in Sz always leads to a permutation with 2 cycles. In the statement of Lemma
3.2, c1 = c2 = 0, because gcd(x1, y1) ≤ z and gcd(x2, y2) ≤ z. Hence, applying Lemma 3.2,
#GB(x1, y1,x2, y2, z) = 2.

In the case where gcd(x1, y1,x2, y2, z) , 1, let d = gcd(x1, y1,x2, y2, z), and suppose that
T ((r1, s1), (r2, s2)) is the inverse image of GB(x1, y1,x2, y2, z). Because gcd(x1

d ,
y1
d ,

x2
d ,

y2
d ) = 1,

gcd(x1
d ,

y1
d ) + gcd(x2

d ,
y2
d ) = gcd(x1,y1)

d + gcd(x2,y2)
d = z

d , and from Lemma 3.6, GB(x1
d ,

y1
d ,

x2
d ,

y2
d ,

z
d )

has inverse image T (( r1d ,
s1
d ), ( r2d ,

s2
d )). When the parameters of the general braid are rela-

tively prime, we see that #GB(x1
d ,

y1
d ,

x2
d ,

y2
d ,

z
d ) = 2. Using Theorem 3.3(1), we can say that

#GB(x1, y1,x2, y2, z) = 2gcd(x1, y1,x2, y2). �

Proof of Theorem 3.3(3). Consider the case where GB(x1, y1,x2, y2, z) has an inverse image
and the inequality gcd(x1, y1) + gcd(x2, y2) > z holds. We show that #GB(x1, y1,x2, y2, z) =
gcd(x1, y1) + gcd(x2, y2)− z.

First, we consider the case when d = gcd(x1, y1,x2, y2, z) > 1. Then gcd(x1, y1)+gcd(x2, y2) >
z implies that gcd(x1

d ,
y1
d ) + gcd(x2

d ,
y2
d ) = gcd(x1,y1)

d + gcd(x2,y2)
d > z

d . Further, gcd(x1
d ,

y1
d ,

x2
d ,

y2
d ) =

1. Hence, applying the result for when the parameters of the general braid are relatively
prime, we see that #GB(x1

d ,
y1
d ,

x2
d ,

y2
d ,

z
d ) = gcd(x1

d ,
y1
d )+gcd(x2

d ,
y2
d )− zd = gcd(x1,y1)

d + gcd(x2,y2)
d − zd .

Using Theorem 3.3(1), we can say

#GB(x1, y1,x2, y2, z) = d #GB(
x1

d
,
y1

d
,
x2

d
,
y2

d
,
z
d

) = d
(

gcd(x1, y1)
d

+
gcd(x2, y2)

d
− z
d

)
which can be rewritten as gcd(x1, y1) + gcd(x2, y2) − z. Thus it is sufficient to show our
result in the case that gcd(x1, y1,x2, y2, z) = 1.

Assuming gcd(x1, y1,x2, y2, z) = 1, there are three subcases to consider: gcd(x1, y1) ≥ z,
gcd(x2, y2) ≥ z, and gcd(x1, y1) < z and gcd(x2, y2) < z.

For the first case, the top restricted permutation is the identity, and gcd(x1, y1) − z com-
ponents of the x1 twisting section do not intersect the shared z strands. The bottom
restricted permutation has gcd(x2, y2) cycles. Thus, in the statement of Lemma 3.2, c1 =
gcd(x1, y1)− z, c2 = 0, and #(ρ′ ◦ σ ′) = gcd(x2, y2). Hence, from Lemma 3.2,

#GB(x1, y1,x2, y2, z) = gcd(x1, y1) + gcd(x2, y2)− z.

For the second case, from Lemma 3.4, gcd(x2, y2) | z, so gcd(x2, y2) = z. In this case, the
bottom restricted permutation is the identity. We have already discussed the case when
gcd(x1, y1) ≥ z, so we may assume gcd(x1, y1) < z. Then, there are gcd(x1, y1) cycles in
the top restricted permutation. Thus, in the statement of Lemma 3.2, c1 = c2 = 0, and
#(ρ′ ◦ σ ′) = gcd(x1, y1). Hence, from Lemma 3.2,

#GB(x1, y1,x2, y2, z) = gcd(x1, y1) = gcd(x1, y1) + z − z = gcd(x1, y1) + gcd(x2, y2)− z.

Now, we consider the final case, where gcd(x1, y1) < z and gcd(x2, y2) < z. Because gcd(x2, y2)
divides z, gcd(x2, y2) ≤ z

2 . Using the hypothesis gcd(x1, y1) + gcd(x2, y2) ≥ z + 1, it follows
that gcd(x1, y1) ≥ z

2 + 1, or equivalently, 2gcd(x1, y1) ≥ z+ 2. In particular, 2gcd(x1, y1) > z.
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By hypothesis, gcd(x1, y1) < z. Hence, the cycle decomposition of the top restricted per-
mutation consists of transpositions of the form (i, i+gcd(x1, y1)) for i = 1, . . . , z−gcd(x1, y1),
and all other elements are fixed. In particular, the elements that are in the transpositions
are {1,2, . . . , z−gcd(x1, y1)}∪{1+gcd(x1, y1),2+gcd(x1, y1), . . . , z}. Let the cycle decomposition
of the bottom restricted permutation be c1 ◦ c2 ◦ · · · ◦ cgcd(x2,y2), where ci is the cycle con-
taining i. Note that ci contains all elements of {1, . . . , z} equivalent to i mod gcd(x2, y2).

Next, we prove the following essential fact: for each cycle ci of the bottom restricted per-
mutation, ci contains at most two elements from {1,2, . . . , z−gcd(x1, y1)}∪{1+gcd(x1, y1),2+
gcd(x1, y1), . . . , z}. Recall that these elements are precisely those that are in the transposi-
tions of the cycle decomposition of the top restricted permutation. From the hypothe-
sis that gcd(x1, y1) + gcd(x2, y2) ≥ z + 1, it follows that z − gcd(x1, y1) < gcd(x2, y2). This
means that in each set of z − gcd(x1, y1) consecutive integers, every element is distinct
(mod gcd(x2, y2)). Thus, if there were some ci which contained more than two elements
of {1,2, . . . , z−gcd(x1, y1)}∪ {1 + gcd(x1, y1),2 + gcd(x1, y1), . . . , z}, then ci would have to con-
tain more than one element from one of the two sets. This would imply that two integers
from that set are congruent (mod gcd(x2, y2)), a contradiction. Hence, each ci contains
at most two elements from {1,2, . . . , z − gcd(x1, y1)} ∪ {1 + gcd(x1, y1),2 + gcd(x1, y1), . . . , z}.

We define a chain of the cycles ci in the cycle decomposition of the bottom restricted
permutation to be sequence of cycles ci1 , ci2 , . . . , cik such that for j = 1, . . . , k −1, there exists
a transposition (ij , ij + gcd(x1, y1)), ij ≤ z − gcd(x1, y1), so that ij ∈ cij and ij + gcd(x1, y1) ∈
cij+1

. Note that these transpositions are exactly those in the cycle decomposition of the
top restricted permutation. It follows that if ci1 , ci2 , . . . , cik is a chain, then for every j =
1, . . . , k − 1, we have ij+1 ≡ ij + gcd(x1, y1) (mod gcd(x2, y2)).

We consider the equivalence classes on the cycles ci given by the equivalence relation
ci ∼ cj if and only if there is a chain containing both ci and cj . It is straightforward
to check that this is an equivalence relation and that the equivalence classes under this
equivalence relation themselves form chains.

Let ci1 , ci2 , . . . , cik be a chain of k, where k > 1, which form an equivalence class. We
claim that ci1 and cik each must contain only one element of {1,2, . . . , z − gcd(x1, y1)} ∪
{1 + gcd(x1, y1),2 + gcd(x1, y1), . . . , z}. First, notice that every ciλ , λ ∈ {2, . . . , k − 1} con-
tains 2 elements from {1,2, . . . , z−gcd(x1, y1)}∪{1+gcd(x1, y1),2+gcd(x1, y1), . . . , z}, namely
iλ−1 + gcd(x1, y1) and iλ. Similarly, ci1 contains i1 and cik contains ik−1 + gcd(x1, y1).

Suppose that cik contains another element besides ik−1 + gcd(x1, y1), call it x. We claim
that x must be ik. First, note that ik−1 +gcd(x1, y1) ∈ {1+gcd(x1, y1),2+gcd(x1, y1), . . . , z} and
each z−gcd(x1, y1) consecutive integers is distinct modulo gcd(x2, y2), so x is in {1,2, . . . , z−
gcd(x1, y1)}.

Again, using that any consecutive z − gcd(x1, y1) integers are distinct modulo gcd(x2, y2)
and noting that ik ∈ {1, . . . ,gcd(x2, y2)} is the smallest representative of its modulo gcd(x2, y2)
equivalence class, then ik ∈ {1,2, . . . , z − gcd(x1, y1)} and x = ik. Now, we consider the el-
ement ik + gcd(x1, y1). It cannot be in some cλ that is not in the chain, or else cik ∼ cλ,
contradicting that {ci1 , ci2 , . . . , cik } forms an equivalence class. However, ci1 is the only cycle
on the chain with fewer than 2 elements from {1,2, . . . , z−gcd(x1, y1)} ∪ {1+gcd(x1, y1),2+
gcd(x1, y1), . . . , z}. Thus, ik + gcd(x1, y1) ∈ ci1 .
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Thus, for every j = 1, . . . , k, ij+1−ij ≡ gcd(x1, y1) mod gcd(x2, y2), where we define ik+1 = i1.
Taking the sum of this equality for j = 1, . . . , k, we see that 0 = i1 − i1 ≡ kgcd(x1, y1)
mod gcd(x2, y2). Because there is a correspondence between cycles in the chain ci1 , ci2 , . . . , cik
and transpositions in the cycle decomposition of the top restricted permutation, and
there are z − gcd(x1, y1) transpositions in the top restricted permutation, then k ≤ z −
gcd(x1, y1). By hypothesis, z − gcd(x1, y1) < gcd(x2, y2). Thus, k < gcd(x2, y2). By as-
sumption, gcd(gcd(x1, y1),gcd(x2, y2)) = gcd(x1, y1,x2, y2) = 1. Hence, the equation 0 ≡
kgcd(x1, y1) mod gcd(x2, y2) cannot hold. Thus, our original assumption that cik contains
another element of {1,2, . . . , z − gcd(x1, y1)} ∪ {1 + gcd(x1, y1),2 + gcd(x1, y1), . . . , z} besides
ik−1 was incorrect.

Suppose that ci1 contains another element besides i1, call it x. We claim x must be ik +
gcd(x1, y1). First, note that i1 ∈ {1,2, . . . , z − gcd(x1, y1)} and each z − gcd(x1, y1) consecutive
integers are distinct modulo gcd(x2, y2), so x is in {1 + gcd(x1, y1),2 + gcd(x1, y1), . . . , z}. If
x = iλ+gcd(x1, y1), where λ is an element of {1, ..., k−1}, then the cycles in the chain are not
disjoint, which is a contradiction. Likewise, if x = µ+ gcd(x1, y1) for some µ ∈ cµ which is
not in the chain, then cµ is in the same equivalence class as ci1 , a contradiction. Hence, ci1
must also contain only i1 from {1,2, . . . , z−gcd(x1, y1)} ∪ {1+gcd(x1, y1),2+gcd(x1, y1), . . . , z}.

We have shown that if the chain ci1 , ci2 , . . . , cik , k > 1, is an equivalence class, then ci1 and
cik each contain only one element from the set {1,2, . . . , z−gcd(x1, y1)} ∪ {1+gcd(x1, y1),2+
gcd(x1, y1), . . . , z}.

We now show that(
ci1 ◦ ci2 ◦ · · · ◦ cik

)
◦ ((i1, i1 + gcd(x1, y1)) ◦ · · · ◦ (ik−1, ik−1 + gcd(x1, y1)))

is a single cycle by induction on k. In the case k = 2, we have the permutation (ci1 ◦
ci2) ◦ (i1, i1 + gcd(x1, y1)), where i1 ∈ ci1 and i1 + gcd(x1, y1) ∈ ci2 . If ci1 = (j1, i1) and ci2 =
(j2, i1 + gcd(x1, y1)), where j1 and j2 are cycles that are disjoint and each ji is disjoint from
all other cycles in the chain, then (ci1 ◦ ci2) ◦ (i1, i1 + gcd(x1, y1)) = (i1, j2, i1 + gcd(x1, y1), j1)
and has one cycle. For the inductive step, consider(

ci1 ◦ ci2 ◦ · · · ◦ cik
)
◦ ((i1, i1 + gcd(x1, y1)) ◦ · · · ◦ (ik−1, ik−1 + gcd(x1, y1))) .

Again, letting ci1 = (j1, i1) and ci2 = (j2, i1 + gcd(x1, y1)), where j1 and j2 are strings of
consecutive integers, then we have the following equalities, where, for the sake of easing
notational issues, σ = (i2, i2 + gcd(x1, y1)) ◦ · · · ◦ (ik−1, ik−1 + gcd(x1, y1)):

(
ci1 ◦ ci2 ◦ · · · ◦ cik

)
◦ ((i1, i1 + gcd(x1, y1)) ◦ σ )

=
(
ci3 ◦ · · · ◦ cik

)
◦ ci1 ◦ ci2 ◦ (i1, i1 + gcd(x1, y1)) ◦ σ

=
(
ci3 ◦ · · · ◦ cik

)
◦ (i1, j2, i1 + gcd(x1, y1), j1) ◦ σ

=
(
(i1, j2, i1 + gcd(x1, y1), j1) ◦ ci3 ◦ · · · ◦ cik

)
◦ σ
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As the cycle (i1, j2, i1 + gcd(x1, y1), j1) contains only i2 among the set

{i2, i3, . . . , ik} ∪ {i2 + gcd(x1, y1), i3 + gcd(x1, y1), . . . , ik + gcd(x1, y1)}
the inductive hypothesis tells us that, the final permutation in the sequence of equalities
is a cycle.

Every transposition in the top permutation is associated to some equivalence class of
chains with length greater than 1, because the the transposition (i, i + gcd(x1, y1)) is asso-
ciated with the chain containing {ci , ci′ }, where i′ ≡ i + gcd(x1, y1) mod gcd(x2, y2). In this
equivalence class, we have shown that taking the composition with such a transposition
decreases the number of cycles by 1. Hence, composing all z − gcd(x1, y1) transpositions
in the top restricted permutation with the bottom restricted permutation, we obtain a
permutation with gcd(x2, y2)− (z − gcd(x1, y1)) = gcd(x2, y2) + gcd(x1, y1)− z cycles. �

Using these results, we can determine the component number of all twisted torus links
which correspond to general braids of the form GB(±x1, y1,∓x2, y2, z) with z ∈ {0,1,2}.
In the next section, we will show that if z = 0, then T ((r1,±s1), (r2,∓s2)) is the split link
of two torus links, which have well known component number. When z = 1 or z = 2,
we automatically have gcd(x1, y1) + gcd(x2, y2) ≥ z, a situation which was fully described
in Theorem 3.3. Unfortunately, once we let z = 3, Theorem 3.3 no longer describes all
the possibilities. It is possible that gcd(x1, y1) = gcd(x2, y2) = 1. Here, the upper and
lower restricted permutations can be either (1,2,3) or (1,3,2). If both are the same, their
composition is a 3-cycle, and thus the twisted torus link is a knot, but if they are different,
their composition is the identity permutation, meaning the twisted torus link has three
components. We have yet to find a specific formula which tells us, in general, what the
upper and lower restricted permutations will be in this case.

Thus far, we have shown that the formulas given for the component number of the closure
of a general braid only held if that general braid has an inverse image. In the future, we
hope to relax this condition to any general braid. We conjecture that Theorem 3.3 holds
for any general braid. Unfortunately, if GB(x1, y1,x2, y2, z) does not have an inverse image,
Lemmas 3.4, 3.5, and 3.7 no longer hold. In some cases (for example when gcd(x1, y1) ≥ z),
this does not affect the proof of Theorem 3.3, but other portions of the proof become more
difficult when it is no longer true that gcd(x2, y2)|z. In the future, we would like to rework
the proof of Theorem 3.3 so that it no longer relies on the three lemmas.

4. Twisted Torus Links

Component number is a useful tool for classifying links; however, it contains no infor-
mation about the interaction between the components of a given link. In this section,
we give a more thorough classification of several infinite families of twisted torus links
with help from their general braid representations. The results presented here are pre-
sented only for twisted torus links of the form T ((r1, s1), (r2,−s2)), although Corollary 2.4
would provide results for twisted torus links of the form T ((r1,−s1), (r2, s2)). We begin by
examining when two twisted torus links are represented by the same general braid:

Corollary 4.1. Suppose r1, s1, r2, s2 ∈N such that

(1) r2 ≥ r1 ≥ s1 + s2,
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(2) r1 mod (s1 + s2) ≤min(s1, s2),

(3) r2 + 2(r1 mod (s1 + s2)) ≥ r1 + 2s2
s1

(r1 mod (s1 + s2)) ∈N, and

(4) (r1(2s2
s1

+ 1)) mod (s1 + s2) ≥max(s1, s2).

Then T ((r1, s1), (r2,−s2)) and T ((r1 + 2s2
s1

(r1 mod (s1 +s2)), s1), (r2 +2(r1 mod (s1 +s2)),−s2)) are
represented by the same general braid.

Note that, for two twisted torus links, being represented by the same general braid is
equivalent to being isotopic as links in S3.

Proof. Let r1, s1, r2, s2 ∈N satisfying the hypotheses above. Theorem 2.3 then tells us that
T ((r1, s1), (r2,−s2)) is isotopic to the closure of GB(x1, y1,x2, y2, z) with parameters

x1 = r1 − r2 − s2
⌊

r1
s1 + s2

⌋
− (r1 mod (s1 + s2))

y1 = s2

x2 = s1

⌊
r1

s1 + s2

⌋
+ (r1 mod (s1 + s2))

y2 = s1
z = r1 mod (s1 + s2)

By Corollary 2.6, we note that GB(x1, y1,x2, y2, z) satisfies the second set of criteria for
having an inverse image because we have that r2 +2(r1 mod (s1 +s2)) ≥ r1 + 2s2

s1
(r1 mod (s1 +

s2)) ∈N and we have that (r1(2s2
s1

+ 1)) mod (s1 + s2) ≥max(s1, s2). Thus, GB(x1, y1,x2, y2, z)

has closure isotopic to the twisted torus link T ((r1 + 2s2
s1

(r1 mod (s1 + s2)), s1), (r2 +2(r1 mod
(s1 + s2)),−s2)). This means

T ((r1, s1), (r2,−s2)) ≈ T ((r1 +
2s2
s1

(r1 mod (s1 + s2)), s1), (r2 + 2(r1 mod (s1 + s2)),−s2)).

�

We now present two cases in which T ((r1, s1), (r2,−s2)) is a composite knot of two torus
knots. A composite knot is one that can be created from two knots, K and J , by removing
a small arc of bothK and J and then attaching the lose ends ofK and J together, respecting
the orientation of each knot. This process is called taking the connected sum of the knots
K and J , and the resulting knot is denoted K#J . A knot that cannot be expressed as the
connected sum of two nontrivial knots is called prime.

Corollary 4.2. Let r1, s1, r2, s2 ∈N with

(1) r2 ≥ r1 ≥ s1 + s2,

(2) r1 mod (s1 + s2) = 1, and

(3) gcd(r2 − r1 + 1, s2) = 1.

Then T ((r1, s1), (r2,−s2)) ≈ T (s2, r1 − r2 − s2b
r1

s1+s2
c − 1)#T (s1, s1b

r1
s1+s2
c+ 1).
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x1

x2

y1 − 1 strings

y2 strings

Figure 17. GB(x1, y1,x2, y2,1) ≈ T (y1,x1)#T (y2,x2) if T (y1,x1) and T (y2,x2)
are knots.

Proof. Assume the hypotheses as stated. Theorem 2.3 tells us that T ((r1, s1), (r2,−s2)) is
isotopic to the closure of the braid GB(r1 − r2 − s2b

r1
s1+s2
c − 1, s2, s1b

r1
s1+s2
c+ 1, s1,1).

We note that gcd(r1−r2−s2b
r1

s1+s2
c−1, s2) is the same as gcd(r2−r1+1, s2) = 1 and gcd(s1b

r1
s1+s2
c+

1, s1) is the same as gcd(1, s1) = 1. Theorem 3.3 then tells us that T ((r1, s1), (r2,−s2)) is a
knot. The closure of GB(r1 − r2 − s2b

r1
s1+s2
c − 1, s2, s1b

r1
s1+s2
c+ 1, s1,1) is of the form shown in

Figure 17 and is isotopic to T (s2, r1 − r2 − s2b
r1

s1+s2
c − 1) # T (s1, s1b

r1
s1+s2
c+ 1). �

Corollary 4.3. Let r1, s1, r2, s2 ∈N with

(1) r2 ≥ r1 ≥ s1 + s2,

(2) r1 mod (s1 + s2) = s1 + s2 − 1, and

(3) gcd(r2 − r1 − 1, s2) = 1.

Then T ((r1, s1), (r2,−s2)) ≈ T (s2, r1 − r2 − s2(b r1
s1+s2
c+ 1)− 1)#T (s1, s1(b r1

s1+s2
c+ 1)− 1).

Proof. Assume the hypotheses as stated. Theorem 2.3 tells us that T ((r1, s1), (r2,−s2)) is
isotopic to the closure of GB(r1 − r2 − s2b

r1
s1+s2
c − s2 − 1, s2, s1b

r1
s1+s2
c+ s1 − 1, s1,1).

Here we point out that gcd(r1−r2−s2b
r1

s1+s2
c−s2−1, s2) is equal to gcd(r2−r1−1, s2) = 1 and

that gcd(s1b
r1

s1+s2
c+ s1 − 1, s1) = gcd(1, s1) = 1. By Theorem 3.1, T ((r1, s1), (r2,−s2)) is a knot.

The closure of the braid GB(r1− r2− s2b
r1

s1+s2
c− s2−1, s2, s1b

r1
s1+s2
c+ s1−1, s1,1) is of the form

in Figure 17 and is isotopic to T (s2, r1 − r2 − s2(b r1
s1+s2
c+ 1)− 1)#T (s1, s1(b r1

s1+s2
c+ 1)− 1). �

We now observe that if r1 mod (s1 + s2) = 0, then T ((r1, s1), (r2,−s2)) is a split link:

Corollary 4.4. Let r1, s1, r2, s2 ∈N with

(1) r2 ≥ r1 ≥ s1 + s2 and

(2) r1 mod (s1 + s2) = 0

Then T ((r1, s1), (r2,−s2)) ≈ T (s2, r1 − r2 − s2
r1

s1+s2
)t T (s1, s1

r1
s1+s2

).
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x1

x2

y1︷︸︸︷

y2
︸              ︷︷              ︸

Figure 18. GB(x1, y1,x2, y2, y1) which has closure T ((y1,x1), (y2,x2))

Proof. Let r1, s1, r2, s2 ∈N with r2 ≥ r1 ≥ s1 + s2 and r1 mod (s1 + s2) = 0. By Theorem 2.3,
the link T ((r1, s1), (r2,−s2)) is isotopic to the closure of GB(r1 − r2 − s2

r1
s1+s2

, s2, s1
r1

s1+s2
, s1,0).

Since no strings are shared between the two sets of twists, the closure of this braid is
T (s2, r1 − r2 − s2

r1
s1+s2

)t T (s1, s1
r1

s1+s2
). �

Remark. It follows from Corollary 4.4 that if r2 ≥ r1 ≥ s1 +s2 with r1 mod (s1 +s2) = 0, then

T ((r1, s1), (r2,−s2)) ≈ T ((s2, r1 − r2 − s2
r1

s1 + s2
)t T (s1, s1

r1
s1 + s2

)

has gcd(s2, r2 − r1 + s2
r1

s1+s2
) + gcd(s1, s1

r1
s1+s2

) = gcd(s2, r2 − r1) + s1 components.

It also follows from Theorem 2.3 that if r1 mod (s1 + s2) = min(s1, s2) or r1 mod (s1 + s2) =
max(s1, s2), then the closure of the corresponding general braid is another twisted torus
link:

Corollary 4.5. Let r1, s1, r2, s2 ∈ N with r2 ≥ r1 ≥ s1 + s2 and r1 mod (s1 + s2) = min(s1, s2),
then

T ((r1, s1), (r2,−s2)) ≈


T ((s1, s1(b r1

s1+s2
c+ 1)), (s2, r1 − r2 − s2b

r1
s1+s2
c − s1)) if s1 < s2

T ((s2, r1 − r2 − s2(b r1
s1+s2
c+ 1)), (s1, s1b

r1
s1+s2
c+ s2)) if s1 > s2

T (s1, r1 − r2) if s1 = s2

Proof. Assume the stated hypotheses.

First assume s1 < s2. Theorem 2.3 then tells us that T ((r1, s1), (r2,−s2)) is isotopic to the
closure ofGB(r1−r2−s2b

r1
s1+s2
c−s1, s2, s1(b r1

s1+s2
c+1), s1, s2), which has the same closure as the

braid GB(s1(b r1
s1+s2
c+1), s1, r1−r2−s2b

r1
s1+s2
c−s1, s2, s2), which is of the form shown in Figure

18. It is clear that the closure of this braid is T ((s1, s1(b r1
s1+s2
c+1)), (s2, r1−r2−s2b

r1
s1+s2
c−s1)).

Now assume s1 > s2. Theorem 2.3 then tells us that T ((r1, s1), (r2,−s2)) is isotopic to the clo-
sure ofGB(r1−r2−s2(b r1

s1+s2
c+1), s2, s1b

r1
s1+s2
c+s2, s1, s1), which is of the form shown in Figure

18. It is clear that the closure of this braid is T ((s2, r1−r2−s2(b r1
s1+s2
c+1)), (s1, s1b

r1
s1+s2
c+s2)).

Finally assume s1 = s2. Theorem 2.3 then tells us that T ((r1, s1), (r2,−s2)) is isotopic to
the closure of GB(r1 − r2 − s1(b r1

s1+s2
c+ 1), s1, s1(b r1

s1+s2
c+ 1), s1, s1). This braid is made up of

r2−r1 +s1(b r1
s1+s2
c+1) negative twists followed by s1(b r1

s1+s2
c+1) positive twists on s1 strings.
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Since the latter is a set of full twists, Lemma 2.1 allows to cancel the positive twists with
s1(b r1

s1+s2
c+ 1) negative twists. The resulting braid consists of r2 − r1 negative twists on s1

strings, which has closure T (s1, r1 − r2). �

Remark. Corollary 4.5 tells us if r1, r2, s ∈N with r2 ≥ r1 ≥ 2s, r1 mod 2s = s, and r2 = r1 +1,
then T ((r1, s), (r2,−s)) ≈ T (s,−1), which is the unknot.

Remark. Corollary 4.5 tells us if r1, r2, s ∈ N with r2 ≥ r1 ≥ 2s, r1 mod 2s = s, and r2 = r1,
then T ((r1, s), (r2,−s) ≈ T (s,0), which is the unlink of s components.

Corollary 4.6. Let r1, s1, r2, s2 ∈N with r2 ≥ r1 ≥ s1 + s2 and r1 mod (s1 + s2) = max(s1, s2),
then

T ((r1, s1), (r2, s2)) ≈


T ((s1, s1b

r1
s1+s2
c), (s2, r1 − r2 − s2(b r1

s1+s2
c+ 1)− s1)) if s1 < s2

T ((s2, r1 − r2 − s2(b r1
s1+s2
c+ 2)), (s1, s1(b r1

s1+s2
c+ 1)− s2)) if s1 > s2

T (s1, r1 − r2) if s1 = s2

Proof. The proof is analogous to that of Corollary 4.5. We note that when s1 = s2,min(s1, s2) =
max(s1, s2), so the third case in Corollary 4.5 and in Corollary 4.6 are the same. �

We have shown that all those twisted torus knots which correspond to general braids
of the form GB(±x1, y1,∓x2, y2,1) are composite; however, we have not proven that all
other twisted torus knots are prime. To attempt to answer this question, we calculated
the hyperbolic volume of several twisted torus links using SnapPy. Our experiments
suggest that twisted torus knots T ((r1, s), (r2,−s)) for 1 < 2s ≤ r1 ≤ r2 ≤ 30 are hyperbolic. It
follows that these knots are also prime. In lieu of this discovery, we propose the following
conjecture:

Conjecture 4.7. Let r1, s1, r2, s2 ∈ N with r2 ≥ r1 ≥ s1 + s2. If T ((r1, s1), (r2,−s2)) is a knot
and r1 mod (s1 + s2) ∈ {2, ...,min(s1, s2),max(s1, s2), ..., s1 + s2 − 2}, then T ((r1, s1), (r2,−s2)) is a
hyperbolic knot or torus knot. In particular, T ((r1, s1), (r2,−s2)) is prime.
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