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Abstract. If X and Y are real valued random variables such that the first moments of X,
Y , and XY exist and the conditional expectation of Y given X is an affine function of X,
then the intercept and slope of the conditional expectation equal the intercept and slope
of the least squares linear regression function, even though Y may not have a finite second
moment. As a consequence, the affine in X form of the conditional expectation and zero
covariance imply mean independence.

1. Introduction

If X and Y are real valued random variables such that the conditional expectation of Y
given X is an affine function of X, then the intercept and slope of the conditional expec-
tation equal, respectively, the intercept and slope of the least squares linear regression
function. As explained in Remark 2.8, when both X and Y have finite second moments,
this equality follows from the well-understood connection among conditional expecta-
tion, least squares linear regression, and the operation of projection. However, that this
equality continues to hold when one only assumes that the first moments of X, Y , and
XY exist is the most important finding of this note [Theorem 2.6].

Theorem 2.6 evolves from the investigation of the directional hierarchy of the interdepen-
dence among the notions of independence, mean independence, and zero covariance. It
is well-known that, for random variables X and Y , independence implies mean indepen-
dence and mean independence implies zero covariance, whenever the notions of mean
independence and covariance make sense. Note that, the notion of covariance makes
sense as long as the first moments of X, Y , and XY exist; it does not require X and Y to
have finite second moments. We review well-known counterexamples to document that
the direction of this hierarchy cannot be reversed in general. Theorem 2.6, above and
beyond establishing that an affine in X form of the conditional expectation of Y given
X implies its equality with the least squares linear regression function, also leads to the
conclusion that mean independence is necessary and sufficient for zero covariance when
the conditional expectation is affine in X.

∗ Corresponding author
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Remark 2.9 examines the feasibility of obtaining the result of Theorem 2.6 by using the
projection operator interpretation of conditional expectation and least squares linear re-
gression elucidated in Remark 2.8 and the technique of extending operators to the closure
of their domains, and concludes in the negative. Remark 2.10 explains how the relaxation
of the assumption of Y having a finite second moment is non-trivial.

The following notational conventions are used throughout the note. Equality (or inequal-
ity) involving measurable functions defined on a probability space, unless otherwise in-
dicated, indicates that the relation holds almost surely. The universal null set is denoted
by K. The normal distribution with mean µ and variance σ2 is denoted byN

(
µ,σ2

)
.

2. Results

Let (Ω,F , P ) be an arbitrary probability space. Let L1 (respectively, L2) denote the Ba-
nach (respectively, Hilbert) space of integrable (respectively, square integrable) real val-
ued functions on (Ω,F , P ). Let E denote the expectation induced by P and EC the condi-
tional expectation given a sub σ -algebra C of F . In what follows, we repeatedly use the
averaging property

E
(
EC (Z) IA

)
= E(ZIA) for every Z ∈ L1 and A ∈C,

the pull-out property

EC (ZT ) = TEC (Z) if Z ∈ L1, ZT ∈ L1, and T is C-measurable,

and the chain rule

EB
(
EC (Z)

)
= EB (Z) if B is a sub σ -algebra of C;

see [4, p. 105]. If C = σ (U ) for some random variable U defined on (Ω,F , P ), we write
EU in place of EC. Recall that

σ (U ) =
{
U−1 (A) : A is a Borel subset of R

}
.

If X,Y ,XY ∈ L1, and X and Y are independent, then

Cov(X,Y ) = 0. (1)

As is well-known, the reverse implication is not true in general; see Example 2.1.

Example 2.1. Let X ∼ N (0,1) be independent of the Rademacher random variable W ,
defined by P (W = −1) = P (W = 1) = 1/2. Let Y = WX; then Y ∼ N (0,1) and (1) holds.
However, X and Y are not independent; because if they were, then X +Y would have the
N (0,2) distribution, implying P (X +Y = 0) = 0, whereas in actuality 2P (X +Y = 0) = 1.

Definition 2.2. If Y ∈ L1 and
EX (Y ) = E(Y ) , (2)

Y is said to be mean independent of X. Similarly, if X ∈ L1 and

EY (X) = E(X) , (3)

X is said to be mean independent of Y . Example 2.3 shows that Y can be mean independent
of X without X being mean independent of Y .
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Example 2.3. Consider the equi-probable discrete sample space Ω = {−1,0,1} and de-
fine random variables X and Y on Ω as X (ω) = I[ω=0] (ω) and Y (ω) = ω. Since σ (X) =
{K, {0} , {−1,1} ,Ω} and E(Y IA) is trivially equal to 0 for all A ∈ σ (X), we obtain EX (Y ) =
0 = E(Y ). However, since X (ω) = I[Y (ω)=0] (ω), X is σ (Y ) measurable, and consequently
EY (X) = X, whereas E(X) = 1/3.

It follows from the definition of independence and conditional expectation [2, p. 264]
that for X and Y independent, (2) holds if Y ∈ L1, whereas (3) holds if X ∈ L1. The
asymmetric nature of the notion of mean independence established in Example 2.3 shows
that (2) (or, for that matter, (3)) does not imply independence of X and Y . Example 2.4
extends Example 2.1 to show that even (2) and (3) combined do not necessarily imply
independence of X and Y .

Example 2.4. Let X, W , and Y be as in Example 2.1. Since X and W are independent and
−X ∼N (0,1), by [1, Corollary 7.1.2],

E
(
XI[Y∈B]

)
=

1
2

E
(
XI[X∈B]

)
+

1
2

E
(
XI[−X∈B]

)
= 0,

implying that EY (X) = 0 = E(X). Clearly, by the pull-out property,

EX (Y ) = EX (WX) = XEX (W ) = XE(W ) = 0 = E(Y ) .

However, as observed in Example 2.1, X and Y are not independent.

As mentioned in the introduction, that mean independence implies zero covariance is
well-known. Example 2.5 shows that zero covariance, that is (1), does not necessarily
imply mean independence, as in (2).

Example 2.5. Let X be uniformly distributed over the interval (−1,1) and Y = X2. Since
E(X) = 0 = E

(
X3

)
= E(XY ), (1) holds. Since E(Y ) = E

(
X2

)
= Var(X) = 1/3 and EX (Y ) =

EX
(
X2

)
= X2, (2) does not hold.

Theorem 2.6 shows that if Y is mean independent of X (as in (2)), then (1) holds; it also
characterizes the setup wherein the reverse implication holds.

Theorem 2.6. Assume that X,Y ,XY ∈ L1. Then, the following four conclusions hold:

(i) Var(X) is well defined, though it may be∞; that is, Var(X) ∈ [0,∞].

(ii) If Y is mean independent of X (as in (2)), then (1) holds; also,

EX (Y ) = α + βX (4)

for some α,β ∈R, which are unique if Var(X) > 0.

(iii) The affine form of EX (Y ) in (4) implies

α = E(Y )− βE(X) , (5)

EX (Y ) = E(Y ) + β (X −E(X)) , (6)



MJUM Vol. 4 (2018-19) Page 4

and

β =


0 if Var(X) = 0
Cov(X,Y )

Var(X) if 0 < Var(X) <∞
0 if Var(X) =∞.

(7)

(iv) If (4) holds, then (1) implies (2).

Remark 2.7. Clearly, if X is mean independent of Y as in (3), then (1) holds as well. Also,
going back to Example 2.5, we now know why (1) does not imply (2) in that context; since
EX (Y ) = X2, (4) does not hold, and by part (ii) of Theorem 2.6, (2) cannot hold.

We now present the proof of Theorem 2.6.

Proof. Since X ∈ L1, the assertion of part (i) is vacuously true.

The equality
E(XY ) = E

(
EX (XY )

)
= E

(
XEX (Y )

)
(8)

is used in the proofs of both parts (ii) and (iii); it is substantiated by the averaging and
pull-out properties.

If (2) holds, then (1) follows from (8). Clearly, (4) holds with α = E(Y ) and β = 0. If
EX (Y ) = α′ + β′X, then E(Y ) = α′ + β′E(X) by the averaging property, whence (2) implies

β′ (X −E(X)) = 0; (9)

when Var(X) > 0, (9) implies β′ = 0 and consequently α′ = E(Y ). That completes the proof
of part (ii).

Now assume (4) holds. Taking expectations of both sides,

E(Y ) = α + βE(X) , (10)

whence (5) follows. The equality in (6) is a straightforward consequence of (4) and (5).
We lay out the groundwork for proving (7) in the next paragraph.

By the Conditional Jensen’s inequality [2, Theorem 10.2.7], we obtain
∣∣∣EX (Y )

∣∣∣ ≤ EX (|Y |),
implying

∣∣∣XEX (Y )
∣∣∣ ≤ |X |EX (|Y |). By the averaging and pull-out properties, E(|XY |) =

E
(
|X |EX (|Y |)

)
. Since XY ∈ L1, it follows XEX (Y ) ∈ L1 and, by (4), X (α + βX) ∈ L1. Since

X ∈ L1, αX ∈ L1 for every α ∈R; consequently,

βX2 ∈ L1. (11)

To prove (7), we consider the three cases separately.

If Var(X) =∞, that is, X < L2, then β = 0 by (11).

If 0 < Var(X) <∞, then X ∈ L2. By (8) and (4),

E(XY ) = E(X (α + βX)) = αE(X) + βE
(
X2

)
. (12)

Multiplying both sides of (10) by E(X),

E(X)E(Y ) = αE(X) + β (E(X))2 . (13)
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Subtracting (13) from (12),
Cov(X,Y ) = βVar(X) ,

whence β = Cov(X,Y )
Var(X)

.

Note that Var(X) = 0 implies X = E(X) and consequently, Cov(X,Y ) = 0, that is, (1) holds.
Since X = E(X), for any Borel subset A of R,

P ([X ∈ A]) =
{

0 if E(X) < A
1 if E(X) ∈ A,

whence

E
(
EX (Y ) I[X∈A]

)
=

{
0 if E(X) < A
E(Y ) if E(X) ∈ A

= E
(
E(Y ) I[X∈A]

)
,

and (2) follows from the definition of conditional expectation, without using the assump-
tion that (4) holds. As in the proof of part (ii), (2) implies (4) with α = E(Y ) and β = 0.
However, since Var(X) = 0, (E(Y ) ,0) is not the unique choice for (α,β) (see (9)). In other
words, when Var(X) = 0, we cannot algebraically conclude from (4) that β = 0 (α and β
can be anything subject to (10)). That said, since Var(X) = 0 implies that (2) holds, the
canonical choice of parameters in the affine model for EX (Y ) specified in (4) is α = E(Y )
and β = 0. That completes the proof of part (iii).

The conclusion of part (iv) follows from (6) and (7). As noted in the preceeding para-
graph, the validity of (2) when Var(X) = 0 does not depend on the canonical choice of
parameters. �

Remark 2.8. Is there an element of surprise in the conclusion of part (iii) of Theorem 2.6
which asserts that (4) implies (5) and (7)? The answer is no when X,Y ∈ L2, since in that
case it follows from the well-understood connection (outlined below) among conditional
expectation, least squares linear regression, and the operation of projection.

For a fixed real valued measurable function X on (Ω,F , P ), let L2 (X) denote the Hilbert
space of real valued measurable functions f on (Ω,σ (X) , P ) such that E

(
f 2

)
<∞. Clearly,

L2 (X) ⊂ L2. Let ‖·‖2 denote the L2 norm on L2, and by inheritance, on L2 (X). Define

M2 = {f ∈ L2 : for some g ∈ L2 (X) , f = g outside of a P -null set in F } .
Clearly, M2 is a subspace of L2 that contains L2 (X). If {fn : n ≥ 1} is a sequence in M2
that converges to f ∈ L2, then, since every convergent sequence is Cauchy, ‖fn − fm‖2→ 0
as m,n→∞. By definition ofM2, there exists a sequence {gn : n ≥ 1} in L2 (X) such that
‖fn − fm‖2 = ‖gn − gm‖2, implying that {gn : n ≥ 1} is a Cauchy sequence in L2 (X). Since
L2 (X) is complete, there exists g ∈ L2 (X) such that ‖gn − g‖2 → 0 as n → ∞. Since
‖fn − gn‖2 = 0 for every n ≥ 1, by the triangle inequality in L2, ‖f − g‖2 = 0, showing
that f ∈M2, that is,M2 is closed in L2.

Since
(
EX (h)

)2
≤ EX

(
h2

)
by the Conditional Jensen’s Inequality, by the averaging prop-

erty EX (h) ∈ L2 (X) if h ∈ L2. Let T denote the map from L2 to L2 (X) that takes h ∈ L2
to EX (h) ∈ L2 (X). Note that, T depends on X, but we suppress that dependence for nota-

tional convenience. Clearly, T is a linear map. Since
(
EX (h)

)2
≤ EX

(
h2

)
, ‖T h‖2 ≤ ‖h‖2 by

the averaging property. Thus, T is a contraction operator.
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For any g ∈ L2 (X) and h ∈ L2, using the pull-out property,〈
h− T h,T h− g

〉
= 0,

where
〈
·,·
〉

denotes the inner product in L2, and consequently,

‖h− g‖22 = ‖h− T h‖22 + ‖T h− g‖22 ,
showing that T h is the unique minimizer of ‖h− g‖2 as g varies over L2 (X).

Now recall thatM2 is a closed subspace of L2; let the orthogonal projection from L2 to
M2 be denoted by ΠM2

. Then, for any f ∈M2 and h ∈ L2,

‖h− f ‖22 =
∥∥∥h−ΠM2

h
∥∥∥2

2
+
∥∥∥ΠM2

h− f
∥∥∥2

2
,

showing that ΠM2
h is the unique minimizer of ‖h− f ‖2 as f varies overM2.

Since {
‖h− g‖2 : g ∈ L2 (X)

}
=

{
‖h− f ‖2 : f ∈M2

}
,

ΠM2
h equals T h outside of a P -null set in F ; that is, as elements of L2, ΠM2

h = T h.

Note that if the probability space (Ω,σ (X) , P ) is complete, so that the almost sure limit of
a sequence of measurable functions is measurable, L2 (X) becomes a closed subspace of
L2, and in our identification of the conditional expectation as a projection, we can avoid
the construction involvingM2.

Let H denote the two-dimensional linear space spanned by J and X, where J is the real
valued function defined on (Ω,F , P ) that is almost surely equal to 1; since X ∈ L2, we
obtain H⊂ L2 (X) ⊂M2.

Let A denote the subspace of L2 that consists of all f ∈ L2 such that T f ∈ H, that is, (4)
holds for f .

Using ΠM2
h = T h for every h ∈ L2 and H⊂ L2 (X) ⊂M2, for f ∈ A we obtain

T f =ΠM2
f =ΠH

(
ΠM2

f
)

=ΠHf , (14)

where ΠH denotes the orthogonal projection from L2 to H.

Since X ∈ L2, we obtain Var(X) < ∞. If Var(X) > 0, equivalently, X and J are linearly
independent, applying the Gram-Schmidt orthonormalization process to the basis {J,X}
of H we obtain that {J,X∗}, where

X∗ =
X −

〈
J,X

〉
J∥∥∥∥X − 〈J,X〉
J
∥∥∥∥

2

,

is an orthonormal basis of H. Consequently, by (14),

T Y =
〈
J,Y

〉
J +

〈
X∗,Y

〉
X∗,

which, in more familiar notation, asserts

EX (Y ) = E(Y ) +
Cov(X,Y )

Var(X)
(X −E(X)) .
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If Var(X) = 0, equivalently, X and J are linearly dependent, H is simply the span of J ,
implying T Y =

〈
J,Y

〉
J , that is, EX (Y ) = E(Y ), leading to the conclusion of part (iii) of

Theorem 2.6 for X,Y ∈ L2.

Remark 2.9. Can the conclusion of part (iii) of Theorem 2.6, when we only have Y ∈ L1\L2,
X ∈ L1, andXY ∈ L1, be obtained using the projection operator tools employed in Remark
2.8? The answer, as far as we can tell, is no.

The domain of the map T can be expanded to L1, causing the range to be expanded
to L1 (X), the Banach space of real valued measurable functions f on (Ω,σ (X) , P ) such
that E(|f |) < ∞. The linearity of T is not impacted by this expansion of domain. Since∣∣∣EX (h)

∣∣∣ ≤ EX (|h|) (again by the Conditional Jensen’s Inequality), ‖T h‖1 ≤ ‖h‖1 by the av-
eraging property, where ‖·‖1 denotes the L1 norm on L1, and by inheritance, on L1 (X).
Thus, T remains a contraction operator on L1. In fact, as observed by [4], T on L2 is uni-
formly L1-continuous and its extension to a linear and continuous map on L1 is unique
up to almost sure equivalence.

The definition of A can be extended to denote the subspace of L1 that consists of all
f ∈ L1 such that T f ∈ H. Since H is a finite-dimensional, hence closed, subspace of L1,
and T is continuous,A is a closed subspace of L1. Part (iii) of Theorem 2.6 asserts that the
representation of T as the orthogonal projection to H (for X ∈ L2) that is valid on A∩L2
can be extended to hold on A∩B, where B denotes the subspace of L1 that consists of all
f ∈ L1 such that Xf ∈ L1. For that conclusion to be drawn using the technique of operator
extension, we need to have the closure of A∩L2 in L1 equal A∩B. However, even if we
assume X is bounded, we can only conclude that B = L1 andA∩B =A, implying that the
closure of A∩L2 in L1 is contained in A∩B (since A is a closed subspace of L1), but the
reverse inclusion is not necessarily true.

Remark 2.10. What does the relaxation of the structural assumption from X,Y ∈ L2 to
Y ∈ L1\L2, X ∈ L1, and XY ∈ L1 entail? One can conceivably argue that the Cauchy-
Schwartz inequality remains the primary tool for verifying that XY ∈ L1 when X and Y
are dependent random variables, and as such, this relaxation of assumption is neither
insightful nor useful. While that argument may have some merit, we would like to point
out that if X is bounded, then obviously X ∈ L1, and Y ∈ L1\L2 implies XY ∈ L1.

A classic example of (4) holding for a bounded random variableX is the Bernoulli random
variable, since, for any measurable function h (X) of the Bernoulli random variable X, we
have h (X) = h (0) + (h (1)− h (0))X, and EX (Y ) is a measurable function of X.

Working with the non-central t-distribution with 2 degrees of freedom, the following
example presents X,Y such that X ∈ L1 but is not bounded, Y ∈ L1\L2, XY ∈ L1, and (4)
holds. Let X ∼ N (0,1) and given X, W ∼ N (X,1). Let V ∼ χ2

2 be independent of (W,X).
Let Y =W/

√
V /2.

Clearly, X ∈ L1 but is not bounded.

To verify that Y ∈ L1\L2, we first obtain the marginal distribution of W . Using the form
of the conditional density of W given X = x and the form of the marginal density of X,
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we obtain that the joint density of (W,X) is given by

f (w,x) =
exp

(
−w2

2 +wx − x2
)

2π
;

since x 7→ exp
(
− (x −w/2)2

)/√
π represents the density of the N

(
w
2
,1
2

)
distribution, com-

pleting the square in x we obtain the marginal density of W to be

fW (w) =
∫
R

f (w,x)dx =
exp

(
−w2

4

)
√

2π
√

2

∫
R

exp
(
−
(
x − w2

)2
)

√
π

dx =
exp

(
−w2

4

)
√

2π
√

2
,

showing that W ∼ N (0,2). Since V = 2U , where U is a Γ (1) random variable [3, Defini-
tion 3.3.6], by [3, Theorem 3.3.9],

E
(

1
√
V /2

)
= E

(
U−

1
2
)

=
Γ
(

1
2

)
Γ (1)

=
√
π; (15)

since W and V are independent, Y ∈ L1. However, E(2/V ) = E
(
U−1

)
=∞, showing that

Y < L2.

To show that XY ∈ L1, by independence of (W,X) and V , along with (15), it suffices to
show that XW ∈ L1, which follows readily from the Cauchy-Schwartz inequality.

Finally, by [1, Corollary 7.1.2] and (15),

EW,X (Y ) =
√
πW ,

implying, by the chain rule, EX (Y ) =
√
πX, that is, (4) holds.
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