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Abstract. We study a variant of Chomp which we call a Diet Chomp, where the total num-
ber of squares allowed to be removed is limited. We also discuss other games, which can
be considered as stepping stones from Nim to Chomp.

1. Introduction and Background

We study impartial games with two players where the same moves are available to both
players, see [1, 2]. Players alternate moves. In a normal play, the person who does not
have a move loses. In a misère play, the person who makes the last move loses.

Example 1.1. Consider a game played on a heap of tokens, where a player can take any
number of tokens from the heap. The first player wins under normal play by taking all
the tokens. Moreover, the first player wins under misère play if there is more than one
token in the heap: the player takes all but one tokens.

A P -position is a position from which the previous player wins, assuming perfect play. An
N -position is a position from which the next player wins given perfect play. When we
play we want to end our move with a P -position and want to see an N -position before
our move. A terminal position is a position where neither player can move. We can deduce
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that terminal positions are P -positions under normal play andN -positions under misère
play.

In our Example 1.1, the only P -position under normal play is the terminal position. The
only P -position under misère play is a heap with one token.

1.1. Introduction to Nim. Many introductions to combinatorial game theory start with
the game of Nim, which is played on several heaps of tokens. A move consists of taking
some tokens from one of the heaps. In the terminal position, all the tokens are taken.
Our Example 1.1 was the game of Nim on one heap. There is a natural definition of a sum
of games, where Nim on several heaps is a sum of games of Nim on one heap [2].

Nim is important because every impartial game is equivalent to playing a game of Nim

with one heap of a certain size. Thus, every game can be assigned a non-negative integer—
the size of the heap—called a nimber, nim-value, or a Grundy number. For example, the
game of Nim itself, even when played with many heaps, is equivalent to playing the game
of Nim with one heap.

In many cases researchers find the P -positions first, then solve the game rigorously. The
proof is often easy when the positions are known. It is enough to show that any move
from a non-terminal P -position leads to an N -position and that from any N -position
there exists a move to a P -position.

1.2. Introduction to Chomp. The game of Chomp is played on a rectangular m by n
chocolate bar with grid lines dividing the bar into mn squares. A move consists of chomp-
ing a square out of the chocolate bar along with all the squares to the right and above the
chosen piece. The player eats the chomped squares. Players alternate moves. The lower
left square is poisoned. The player who is forced to chomp it has to eat it. Such a player
loses while dying a slowly and painful death.

The game of Chomp is a misère game. One could make it a normal play, if the lower left
square is not poisoned. Such a game is not particularly interesting, as the first player can
just eat the whole bar and win.

The game of Chomp is not completely solved [5], but the first player wins (in a non-trivial
game when mn > 1). This can be proven by a strategy-stealing argument. Suppose that in
the first move the first player chomps only the top right square. If the second player has a
winning response to this, then the same move is also a legal first move for the first player.
The first player can ‘steal’ this move and win the game.

We study a new variant of Chomp which we call Diet Chomp.

Definition 1.2 (Diet Chomp). In this Chomp variant, players are not allowed to eat too
much chocolate in one move. That is, the number of squares that can be removed in one
move is restricted by a parameter k. The players are allowed to make a move the same
way as in the game of Chomp with a condition that they can only Chomp away not more
than k small chocolate squares at a time. When k is given, we call this variant k-Diet

Chomp. Unlike regular Chomp, the normal play becomes interesting here.
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To start, we review known facts about subtraction games. We also discuss several known
games that serve as a bridge between Nim and Chomp.

2. Nim, Subtraction([k]) and Poker-Nim

In the game of Nim there are several heaps of tokens. The players are allowed to take any
number of tokens from a single heap. The solution to Nim is well known, and we describe
it next [3, 2, 1].

Suppose A = (a1, a2, . . . , an) is a position in this game: ai is the number of tokens in the
i-th heap. Let us denote the XOR operation as ⊕. XORing ai is done by representing ai in
binary, then summing them without carry, then representing the result as a decimal. The
following theorem is true.

Theorem 2.1. For normal play Nim, the Grundy value of a position (a1, a2, . . . , an) is

a1 ⊕ a2 ⊕ · · · ⊕ an.

The P -positions correspond to Grundy value zero.

Corollary 2.2. A P -position in normal play Nim satisfies:

a1 ⊕ a2 ⊕ · · · ⊕ an = 0.

Similarly, the P -positions for misère play are known [2]:

Theorem 2.3. For the misère play if maxai > 1, a P -position satisfies:

a1 ⊕ a2 ⊕ · · · ⊕ an = 0,

otherwise:
a1 ⊕ a2 ⊕ · · · ⊕ an = 1.

A subtraction game, denoted Subtraction(S), is played with heaps of tokens and depends
on a set S of positive integers. A move is defined by choosing a heap and removing
any number of tokens, such that this number is in set S. If S equals a set of all natural
numbers, the resulting subtraction game is Nim. That is, subtraction games are a natural
generalization of Nim.

The subtraction games are well-studied [2, 1], and we restrict ourselves to the case when
S is equal to [k], where the latter denotes the range of integers from 1 to k inclusive:
[k] = {1,2, . . . , k}. We might call Subtraction([k]) game the k-Diet Nim game in an analogy
to k-Diet Chomp. We will not use this name in this paper as our tokens, sadly, are not
made of chocolate.

Example 2.4. Consider Subtraction([k]) under normal play on one heap. The P -positions
are the heaps of sizes that are multiples of k + 1. Indeed, when a losing player is given
a position which is a multiple of k + 1, whatever they do the result is not a multiple of
k + 1. When a winning player is given a position that is not a multiple of k + 1, they can
always move to a multiple of k+1. As the terminal position is also a multiple of k+1, this
strategy works. Under misère play the one-heap game has P -positions equal to 1 plus a
multiple of k + 1.
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The Grundy values and P -positions for Subtraction([k]) game are known [2, 1].

Theorem 2.5. For Subtraction([k]) normal play, the Grundy value for a position (a1, a2, . . . , an)
is

(a1 (mod k + 1))⊕ (a2 (mod k + 1))⊕ · · · ⊕ (an (mod k + 1)).

Therefore the P -positions are such that

(a1 (mod k + 1))⊕ (a2 (mod k + 1))⊕ · · · ⊕ (an (mod k + 1)) = 0.

We are mostly interested in Subtraction([2]).

Example 2.6. Consider a position A = (a1, . . . , an) in Subtraction([2]) under normal play.
It is a P -position if and only if A = (a1, . . . , an) (mod 3) has an even number of ones as well
as an even number of twos.

Theorem 2.7. The P -positions in misère Subtraction([k]) considered modulo k + 1 are:

• If there is a heap that is more than 1, then XOR is zero.
• If every heap is zero or one, then there is an odd number of ones, that is, XOR is 1.

Example 2.8. Consider a position A = (a1, . . . , an) in Subtraction([2]) under misère play.
It is a P -position if and only if A = (a1, . . . , an) (mod 3) either has no twos and an odd
number of ones, or it has an even number of ones as well as an even number of twos.

Example 2.9. Consider a two-heap Subtraction([2]) under misère play. In this case, the
P -positions modulo 3 are (0,1), (1,0), and (2,2). Notice that these are exactly the positions
that have the total number of tokens equal to 1 plus a multiple of 3. Hence we can
describe the P -positions the same way for both one heap and two heaps Subtraction([2]):
P -positions have 1 plus a multiple of 3 tokens.

In the next variant of Nim we want to allow the players to put tokens back into a heap.
We start with several heaps of tokens. We allow two types of moves. A player can take
any number of tokens from a heap or add any number of tokens to a heap. To prevent the
players from being tired of an infinite number of moves, one should add constraints on
putting tokens back. For example, Poker Nim has an additional bag of tokens; and only
the tokens from the bag can be used to increase the size of a heap [1]. This way an infinite
loop in the game is prevented by limiting the total number of tokens that can be put back
during the game.

As with other games we want to put Poker Nim on a diet. We consider the game k-Poker

Nim which is like Subtraction([k]) where, in addition, the players are allowed to put up
to k tokens back into any one of the heaps in one move, given that the total number of
tokens that are put back during the game is limited by some number.

Most books leave it as an exercise to the reader to show that Poker Nim has the same
Grundy values as Nim. Similarly, k-Poker Nim has the same Grundy values as Subtrac-

tion([k]). We decided to follow the tradition and leave the next theorem without a proof.

Theorem 2.10. Poker games have the same P -positions as the non-poker equivalents and the
same Grundy values.



MJUM Vol. 4 (2018-2019) Page 5

3. Monotonic Games

We can define a position A in Chomp as (a1, a2, . . . , an), where ai is the number of chocolate
squares in the i-th row from the top. The rules of Chomp force the sequence ai to be
non-decreasing.

To build a bridge from Nim to Chomp, we consider Nim variants where a position A =
(a1, a2, . . . , an) is allowed only if the sequence is non-decreasing, that is ai ≤ ai+1, for 1 ≤
i < n. We call such games monotonic. For example, Monotonic Nim is a monotonic game
where we can take any number of tokens from one heap, given that the resulting sequence
is still non-decreasing.

If, in addition, we put a limit of k on the total number of tokens that can be taken, we
get a game that we call Monotonic Subtraction([k]). A player can subtract any number
of tokens between 1 and k inclusive from one heap, given that the resulting sequence is
non-decreasing.

Monotonic Nim is similar to the Silver Dollar without the Dollar game [2], also called
Sliding [1]. The Silver Dollar without the Dollar game is played on a strip of squares
numbered 1, 2, . . ., n. Coins are put on some squares, at most one coin per square. On
a move, a player can slide a coin to a lower-numbered square. The coins cannot jump
over or collide with other coins. As usual, the last player to be able to make a legal
move wins under normal play, and loses under misère play. Positions A = (a1, a2, . . . , an) in
Silver Dollar without the Dollar game are strictly increasing: ai < ai+1, for 1 ≤ i < n.
The name of this game, Silver Dollar without the Dollar, sounds weird because there
exists a game called the Silver Dollar game [2]. The Silver Dollar game is related to
the Silver Dollar without the Dollar game, but is out of the scope of our discussion.

We are interested in monotonic games because their legal positions match legal positions
in Chomp. We describe the Grundy values for Monotonic Nim and Monotonic Subtrac-

tion([k]) by using the same method that is used in solving the Silver Dollar game [1, 2].

Suppose we have a position A = (a1, a2, . . . , a2n) with an even number of heaps. We map it
to a vector B = (b1,b2, . . . , bn), where bi = a2i − a2i−1. For a position with an odd number
of heaps we first extend it to a position with an even number of heaps, by adding a zero
heap in front. We call the vector B the difference vector.

Theorem 3.1. Playing a monotonic game with a starting position A is equivalent to playing
the matching poker game starting on the A’s difference vector.

Proof. We start with a non-terminal position A = (a1, a2, . . . , a2n) that is mapped to a vector
of n non-negative integers B = (b1,b2, . . . , bn). Suppose in our move we take x tokens from
an even-numbered heap 2i, where 1 ≤ x ≤ a2i − a2i−1. The resulting position is mapped to
B with x subtracted from bi = a2i − a2i−1. Suppose in our move we take x tokens from an
odd-numbered heap 2i − 1, where 1 ≤ x ≤ a2i−1 − a2i−2. The resulting position is mapped
to B with x added to bi = a2i − a2i−1.
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If we look at changes in the difference vector we see that we are playing Poker Nim on
it. The tokens that we add in this Poker Nim match the tokens that are removed from an
odd-numbered heap in the monotonic game. That means the total is bounded by

n∑
i=1

a2i−1.

Now we consider a Poker Nim move in the difference position B and see if we can find
a matching move in the monotonic game in A. Suppose in our move we take x tokens
from heap i in B. This is equivalent to taking x tokens from heap 2i in A. As 1 ≤ x ≤ bi ,
it follows that the corresponding move in A is legal, that is, the resulting position is

monotonic. Suppose in our move we add x tokens to heap i in B, where x ≤
n∑
i=1

a2i−1. If

x ≤ a2i−1 −a2i−2, then there is a matching legal move from a position A that adds x tokens
to heap 2i − 1. If x > a2i−1 − a2i−2, then there is no such move. That means the monotonic
game is not exactly equivalent to the corresponding Poker Nim. It is almost equivalent:
we have to add additional constraints on how many tokens we can add to a particular
heap at a particular time in the game. The good news is that these extra constraints do
not change the analysis of these variants of Poker Nim. In particular, the Grundy values
of a position in such variants of Poker Nim are the same as in Nim.

Therefore, the Grundy value of a position A in a monotonic game is the same as the
Grundy value of the difference vector, considered as a position in Nim. �

Notice that the theorem establishes a correspondence between the moves in a monotonic
game and the moves in a restricted version of a corresponding Poker Nim. Therefore, the
theorem holds for both normal and misère plays.

Example 3.2. In a two-heap Monotonic Subtraction([2]) under misère play, a position
(a1, a2) is a P -position, if and only if a2−a1 = 3k+1, for k ≥ 0. In a three-heap Monotonic

Subtraction([2]) under misère play, a position (a1, a2, a3) is a P -position, if and only if
a3 − a2 + a1 = 3k + 1, for k ≥ 0.

2-Diet Chomp under Normal Play

Now we move to Chomp for health-conscious players. Namely, we study a variant of
Chomp where a player makes a Chomp move that is limited to one or two chocolate
squares. The positions in our game are A = (a1, a2, . . . , an), so that the sequence is non-
decreasing: ai ≤ ai+1, where 1 ≤ i < n. For convenience, we assume that a0 = 0. As before,
ai corresponds to the number of chocolate squares in the i-th row from the top.

In one move we are allowed to:

• subtract 1 from ai if ai > ai−1.
• subtract 2 from ai if ai > ai−1 + 1.
• subtract 1 from ai and ai+1 if ai+1 = ai > ai−1.

For 2-Diet Chomp, the P -positions depend on the total number of tokens.

Lemma 3.3. For 2-Diet Chomp, the P -positions are such that the total number of tokens( n∑
i=1

ai
)

is divisible by 3.
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Proof. The terminal position, (0,0, . . . ,0), is a P -position. P -positions differ by multiples
of 3, therefore there is no move from a P -position to a P -position. What is left to show is
that everyN -position has a move to a P -position.

Suppose
( n∑
i=1

ai
)
≡ 1 mod 3. We can always remove one square, so it moves to a P -

position. If
( n∑
i=1

ai
)
≡ 2 mod 3, removing two squares moves it to a P -position, except

there could be a position such that there is no valid move that removes two squares.

The only positions for which it is not allowed to remove two squares are “perfect stairs”
positions: (1,2, . . . ,n). However, the total number of tokens in such a position is a trian-
gular number Tn =

∑n
i=1 i =

(n
2
)
. It is widely known, or one might check it as an exercise,

that triangular numbers do not have remainder 2 modulo 3. That means we can always
move from anN -position to a P -position. �

Interestingly, in this case the game is equivalent to playing Subtraction([2]) under nor-
mal play on one heap with the same total of tokens.

2-Diet Chomp under Misère play

This game becomes more difficult under misère play than under normal play.

We can explicitly describe P -positions under misère play for narrow rectangles.

Lemma 3.4. For 1×n rectangles, the P -positions are 3k+1. For 2×n rectangles, the P -positions
are (a,a+ 3k + 1), where k ≥ 0.

Proof. For 1 × n rectangles, the game is equivalent to Subtraction([2]) on one heap, also
under misère play.

For 2×n rectangles, we prove the lemma by showing that all moves from a P -position go
to anN -position, and from anyN -position there exists a move to a P -position.

Notice that we cannot have a move that changes both values from a P -position. By sub-
tracting 1 or 2 from each coordinate we change the difference modulo 3. That means
every move from a P -position goes to anN -position.

On the other hand, from anN -position (a,a+ 3k+ 2), we can move to (a,a+ 3k+ 1), which
is a P -position. From anN -position (a,a+3k), where a > 0, we can move to (a−1, a+3k) =
(a− 1, (a− 1) + 3k + 1), which is a P -position. From an N -position (0,3k), where k > 0, we
can move to (0,3k − 2) = (0,3(k − 1) + 1), which is a P -position.

Additionally, (0,1) is a P -position, which completes the proof. �

We are fascinated by the fact that for 2 × n rectangles the game is equivalent to playing
Monotonic Subtraction([2]) on two heaps with the same total of tokens.

For 3×n rectangles, the situation is more complicated. We wrote a program and observed
that P -positions are periodic with period 12. That is, position (a1, a2, a3) is the same type
as (a1+12, a2+12, a3+12). We know that positions in layer a1 = k depends only on positions
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in layers a1 = k − 1 and a1 = k − 2, because a move removes two chocolate squares at the
most. Therefore, if the two layers a1 = 12 and 13 are the same as layers a1 = 0 and a1 = 1
respectively, then layer a1 = k is the same as layer a1 = k − 12 for any k ≥ 12.

Figure 1 shows P -positions for values a1 ranging from 0 to 11 inclusive. The i-th diagram,
going in order left to right top to bottom, describes positions (i−1, a2, a3). The bottom left
corner of the i-th diagram corresponds to (i−1, i−1, i−1). Given that a3 ≥ a2, the diagrams
have triangular shapes. In addition, the value of a3−a1 is determined by the column, and
the value of a2 − a1 is determined by the row. Also note that a3 − a2 is constant along NE
diagonals. The P -positions are black, while theN -positions are gray.

Figure 1. P -positions for 2-Diet Chomp with 3 rows and a1 ranging from 0
to 11

We can make the following observation from these pictures:

• If we remove three bottom rows and three top NE diagonals, all the pictures have
the same pattern. More precisely, for a2 − a1 ≥ 3 and a3 − a2 ≥ 3 the P -positions
correspond to values a1 + a3 − a2 ≡ 1 (mod 3).
• Each of the three bottom rows eventually becomes periodic too with period either

3 or 1. In particular, for a2 − a1 < 3, for positions with a2 + a3 − a1 > 7, the position
(a1, a2, a3) is the same type as (a1, a2, a3 + 3).
• Each of the three top diagonals going NE becomes periodic with period either 2 or

1. In particular, for a3−a2 < 3, for positions with a3−a1 > 7, the position (a1, a2, a3)
is the same type as (a1, a2 + 2, a3 + 2).
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We also use the function of a position: d(A) = a2 + a3 − a1 in our future discussion. Notice
that if d(A) > 7, the position A belongs to one of the three regions above that follow a
periodic pattern. We call the region, where d(A) > 7, the periodic region.

Given a list of P -positions, to prove that the list is correct, one needs to check that any
move from a P -position goes to an N -position, and from any N -position, there exists a
move to a P -position. The next lemma shows that we need to only make a finite number
of checks.

Lemma 3.5. To prove the pattern we need to check the moves from positions in layers 0 through
13, and for positions A such that d(A) = a2 + a3 − a1 < 14.

Proof. Consider a position A = (a1, a2, a3) so that a2 + a3 − a1 ≥ 14, that is d(A) ≥ 14. Let us
consider positions A′ = (a1, a2, a3 − 3) or A

′′
= (a1, a2 − 2, a3 − 2). Note that if each of these

positions exists, it belongs to the periodic region. Namely, d(A′) ≥ 11, and d(A
′′
) ≥ 10. In

any case, at least one of these two positions exists, and is the same type as A.

Let us assume that it is A
′′
. For any move b, the position A

′′ − b is in the periodic region,
because d(A

′′ − b) ≥ 8. Therefore, for any move b, positions A
′′ − b and A− b are the same

type. Therefore, the positions A and A
′′

are the same type. The case of position A′ is
similar. �

According to the lemma, to prove that the pattern we discovered continues, we need to
carry out a finite number of calculations. We performed all these calculations manually
and painstakingly, thus proving the following theorem.

Theorem 3.6. Position (a1, a2, a3) is the same type as (a1 + 12, a2 + 12, a3 + 12). The positions
in the first 12 layers are described by the diagrams in Figure 1.

We also made a program that calculates the P -positions for up to 5 rows. They show a
similar behavior. The diagrams are available online at [4].

To sum up, this game played on 1×n and 2×n rectangles is equivalent to Subtraction([2])
with 1 and 2 heaps correspondingly. This game on 3× n rectangles is more complicated,
but still, for positions that correspond to middle areas of the diagram, the game is equiv-
alent to playing Subtraction([2]) under normal play on three heaps with the same total
of tokens.

4. Conclusion and Future Research

This research was done as part of MIT PRIMES STEP program. The program allows
students in grades seven through nine to do research in mathematics. Tanya Khovanova
is the mentor in this program. The program functions like a math club with some portion
of the time devoted to research.

For our research topic, the students studied combinatorial game theory. The students
reinvented and solved Poker Nim and Silver Dollar Game without the Dollar. The
Silver Dollar Game without the Dollar is a natural intermediate game between Nim

and Chomp. Poker Nim is needed to solve the Silver Dollar Game without the Dollar.
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The main focus of this paper is Diet Chomp. To the best of our knowledge this game was
invented by us and never studied before. The game of Chomp is still unsolved and Diet

Chomp seems to be more tractable.

The results show that Diet Chomp’s P -positions might be eventually periodic. We can
argue that Diet Chomp on k×n rectangles have a finite number of moves. That means the
Grundy values are bounded. It is natural to assume that some periodic patterns might
emerge.

Our results show that for positions (a1, a2, a3), where the two consecutive numbers differ
at least by 3, the results become periodic. One explanation is that such positions are
several moves away from positions with the same number of squares in two neighboring
rows, that is, from positions that allow moves that are different from subtraction moves.
As a result the game becomes similar to the Monotonic Subtraction([2]) game.

We hope that our initial analysis of Diet Chomp will encourage other researchers to ex-
plore further.
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