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Abstract. This paper is concerned with problems relevant to motion planning in robotics.
Configuration spaces are of practical relevance in designing safe control schemes for robots
moving on a track. The topological complexity of a configuration space is an integer which
can be thought of as the minimum number of continuous instructions required to describe
how to move robots between any initial configuration to any final one without collisions.
We calculate this number for various examples of robots moving in different tracks repre-
sented by graphs. We present and implement an explicit algorithm for two robots to move
autonomously and without collisions on a lollipop-shaped track.

1. Introduction

This paper surveys results concerning the motion planning problem for robots moving
on graphs and includes a new explicit algorithm for the case of two robots on a lollipop
graph. This algorithm is optimal in the sense that the motion planning is performed with
the minimal number of instabilities.

First we introduce the configuration space of distinct robots on a graph. Configuration
spaces in mathematics were introduced in the sixties by Fadell and Neuwirth [2] and first
used in robotics in the eighties [11, 12]. More recently, configuration spaces of robots
moving on graphs have been studied by Farber [5][8] and Ghrist [9] amongst others.

The configuration space for two robots moving on a graph is the space of all feasible
combined positions of the robots. The motion planning problem deals with assigning
paths between initial and final configurations. We are interested in algorithms that as-
sign outputs (paths) to inputs (initial and final configurations) in a continuous way. These
algorithms are rare in real world situations since most algorithms will have discontinu-
ities. Farber introduced the notion of topological complexity of configuration spaces which
measures the discontinuities in algorithms for robot navigation [4]. The topological com-
plexity of a space is invariant under homotopy equivalence.

Our approach consists of presenting an explicit construction of the configuration space
for the case of two robots moving along a lollipop-shaped track and then building a de-
formation retract of it that we call the skeleton. We calculate the topological complexity
of the skeleton of the configuration space and exhibit an algorithm with the minimal
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number of instructions. Finally, we translate back our instructions to the physical space
where the robots move. We provide a detailed algorithm with concrete instructions for
two robots to move on a lollipop-shaped track between any initial and final positions. We
implement this algorithm as well and show a simulation for several cases.

We organize the paper in the following manner. In Section 2 we introduce some basic no-
tions and notations. Section 3 introduces the basic ideas on continuous motion planning.
Section 4 presents the topological complexity and its basic properties. Section 5 provides
a detailed study for the case of two robots moving on a circle track. We construct the con-
figuration space, calculate its topological complexity and present an algorithm for this
case that will set the basis for our main example. Section 6 concerns the characterization
of our main example: two robots moving on a lollipop track. We construct the configura-
tion space as before and give an explicit algorithm for this case. We also implement and
show a simulation for this case.

2. Preliminaries

In this section we briefly review some basic definitions and establish notations that we
will use in this paper. From now on, the interval, circle and disk with the standard
topology will be denoted as I,S1 and D respectively:

I = [0,1] ⊂R,

S1 = {(x,y) ∈R2 | x2 + y2 = 1},
D = {(x,y) ∈R2 | x2 + y2 < 1}.

2.1. Product Topological Space. Given two topological spaces X and Y , consider the
cartesian product:

X ×Y = {(x,y) | x ∈ X, y ∈ Y }.

The product space is the set X ×Y endowed with the product topology.

Example 2.1. Let A and B be the following two subspaces of R2 in polar coordinates:

A = {(r,θ) | θ ∈ [0,2π], r =
π
6

+ |sin(θ +
π
6

)5|},

B = {(r,θ) | θ ∈ [−π
2
,
π
2

], r = 3cos(θ)}.

Figure 1. Subspaces A and B
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The product space shown in figure 2 is the set A×B = {(x,y) | x ∈ A, y ∈ B} endowed with
the product topology.

Figure 2. Product space A×B

2.2. Homeomorphism and Homotopy. Two spaces X and Y are homeomorphic if there
exists a homeomorphism from X to Y . A continuous map f : X → Y is a homeomorphism
if and only if f is a bijection and f −1 is also continuous.

Let f and g be two continuous maps between spaces X and Y . Let H : X × I → Y be a
continuous map such that for each x ∈ X, H(x,0) = f (x) and H(x,1) = g(x), then f and g
are homotopic and H is a homotopy between f and g. We denote this by f ' g. Two spaces
X and Y have the same homotopy type if there exist two functions f : X→ Y and g : Y → X
such that f ◦ g ' idY and g ◦ f ' idX . We write in this case X ' Y .

Informally, we can say that one space has the same homotopy type as another if we can
deform one space into the other by compression, stretching and without tearing the space
nor gluing any two parts of it. For instance, the space A × B in figure 2 has the same
homotopy type as the torus T = S1 × S1 in figure 3.

Figure 3. Torus T = S1 × S1

If two spaces are homeomorphic then they have the same homotopy type. However, hav-
ing the same homotopy type does not imply homeomorphism.
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A topological space X is contractible if X has the same homotopy type as a point. In other
words, there exists a deformation as described before from the space X into a point. For
instance, a disk D is contractible whereas a circle S1 is not.

3. Motion Planning Algorithms

In order to study the problem of planning the movement of robots in a certain space, we
need to introduce certain notions and an associated space to aid with the statement as
well as the solution of the problem.

3.1. Physical and Configuration Space. The physical space Γ is the track where the robots
move. The robots are assumed to be points. The combined positions of all robots at any
given moment defines a state of the system. The space of all possible states is the con-
figuration space. Each state in the configuration space is a point that represents a unique
configuration of the robots’ locations in the physical space. The physical space is a special
case of a configuration space where there is only one robot.

The configuration space X of n robots moving on the physical space Γ without collisions is:

X = Cn(Γ ) = Γ × Γ × . . .× Γ︸         ︷︷         ︸
n times

− ∆n = Γ n −∆n,

where ∆n is the fat diagonal. The fat diagonal represents the set of n-tuples where some
of the robots are co-located and is defined as:

∆n = {(x1,x2, . . . ,xn) ∈ Γ n | ∃j , i, xi = xj}.

For all spaces Γ , we have that C1(Γ ) = Γ .

3.2. Motion Planning. A path α in X is a continuous map α : I → X, where I is the
interval [0,1]. The path space PX is the set of all paths in the space X,

PX = {α | α is a path in X}

endowed with the compact-open topology [13].

The evaluation function ev is a map that takes in a path α in X and returns the initial and
final points of the path.

ev : PX→ X ×X
α 7→ (α(0),α(1))

A section s of the evaluation function is a function that takes in a pair of points in the
space X and gives out a path between them. That is,

s : X ×X→ PX,

(a,b) 7→ αa,b.

where αa,b is an instruction to move the robots from the starting point a to the ending
point b following that specific path. A Motion Planning Algorithm (MPA) is such a section.
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3.3. Continuity of Motion Planning. Motion planning algorithms may or may not be
continuous. In a continuous motion planning algorithm, the small changes of the path are
continuously dependent on the small changes that occur at the initial or final positions.
In other words, the instruction to go from a to b will depend continuously on the points a
and b.

The continuity of the MPA implies the stability of the robot behavior. That is, the errors
due to imprecisions or uncertainties on the initial and final positions would still result in
a nearby path.

We are interested in motion planning algorithms that assign instructions in a continuous
way. Unfortunately, we’ll see later that these are very rare.

Let us consider for instance, one robot moving on a circle, and we will try to construct a
section that would define a MPA. This robot can move between its initial and final posi-
tion in different ways: clockwise, counterclockwise, following the shortest path, following
the longest geodesic, etc.

Let us call preferred shortest path from a to b the path along the shortest geodesic; in
case that there are more than one shortest path (i.e. if a is antipodal to b), choose the
counterclockwise path.

Set the instruction to be “follow the preferred shortest path”, and the section would be
defined as:

s : S1 × S1→ P S1,

(a,b) 7→ αshortest.

We observe that this section is continuous in all pairs of positions except at the antipodal
pairs, and so, this section is not continuous.

Figure 4 shows the initial (filled triangle icon) and final position (empty triangle icon) of
a robot. We see that a small variation in the final position results in a huge variation in
the output path.

Figure 4. Discontinuity at the antipodal pairs

Now, let us try a different instruction, “go counterclockwise” for instance. Here also,
there exists a state where the section is not continuous; that is the state (a,a) for any a in
S1. In other words where the initial and final positions coincide, the section presents a
discontinuity (see figure 5).
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Figure 5. Discontinuity at configuration (a,a)

For both instructions, the section presented discontinuities. In fact, we will see in the
next section that it is impossible to find a continuous section for this particular example.

4. Topological Complexity

Farber proved that a continuous MPA on a configuration space exists only if the space is
contractible.

Theorem 4.1. [4] A continuous motion planning algorithm in X exists if and only if the con-
figuration space X is contractible.

Since in the previous example the robot was moving on the circle S1 which is also the
configuration space in this case, and since a circle S1 is not contractible, we have that
there exists no continuous MPA for one robot moving on a circle.

We can however decompose the cartesian product of the configuration space into subdo-
mains, with each having a continuous instruction.

Definition 4.2. [4] The topological complexity TC(X) of a connected space X is defined as
the minimum integer k such that the cartesian product X ×X can be covered by k open
subsets U1,U2, . . . ,Uk, such that for any i = 1,2, . . . , k there exists a continuous local section
si :Ui → PX with ev ◦ si = incl :Ui ↪→ PX.

The definition of TC(X) is given in terms of open subsets of X ×X admitting continuous
local sections of the evaluation map. To construct a motion planning algorithm in practice
we partition the whole space X ×X into pieces and define a continuous section over each
of the pieces. Any such partition would contain sets which are not open and hence we
need to be able to deal with subsets of X ×X of more general nature.

Definition 4.3. A topological space X is an Euclidean Neighborhood Retract (ENR) if
it can be embedded into an Euclidean space R

n such that for some open neighborhood
X ⊂U ⊂R

n there is a retraction r :U → X, r |X = idX : X→ X.

Definition 4.4. Let X be an ENR. A motion planning algorithm s : X ×X→ PX is said to
be tame if X ×X can be split into finitely many sets (domains of continuity)

X ×X = F1 ∪F2 ∪ · · · ∪Fk
such that
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(1) Each restriction s|Fi : Fi → PX is continuous, where i = 1, . . . , k;

(2) Fi ∩Fj = ∅ for i , j;

(3) Each Fi is an ENR.

It is known that for an ENR X, the minimal number of domains of continuity F1, . . . ,Fk in
tame motion planning algorithms s : X ×X→ PX equals TC(X), see [7].

Example 4.5. One robot moving on an interval I . In this case, we have that the configu-
ration space is X = C1(I) = I and TC(I) = 1 with domain of continuity F = I × I . Since I is
contractible, there exists a continuous MPA where the instruction would be for example
“go in straight line towards the final position”.

Figure 6. One robot moving on I

Example 4.6. One robot moving on a circle S1. Since there is just one robot, the configu-
ration space is X = C1(S1) = S1.

Since S1 is not contractible, TC(S1) > 1. We have seen previously two examples of MPAs
for one robot on S1 where both had discontinuities. Now we can consider the two subsets
where each instruction is continuous so that the union would cover the cartesian product
S1 × S1.

Then, the domains of continuity will be:

F1 = {(a,b) ∈ S1 × S1 | a is not antipodal to b} and

F2 = {(a,b) ∈ S1 × S1 | a is antipodal to b}.
Therefore, TC(X) = 2 since we exhibit an explicit covering by domains of continuity with
exactly two sets.

From the MPA standpoint, this decomposition into k subspaces can be interpreted as hav-
ing a set of k continuous instructions, where each operates in its corresponding domain
of continuity. For this example, the resulting two instructions in the MPA would be as
follows: If the initial and final positions are not antipodal then go following the shortest
path. Otherwise, go counterclockwise.

Figure 7. Two Instructions for one robot moving on S1
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Farber also proved that the topological complexity TC(X) of a space X is invariant under
homotopy.

Theorem 4.7. [4] If X ' Y then TC(X) = TC(Y ).

Computing the topological complexity of a configuration space will equip us with a lower
bound for the number of instructions in any continuous motion planning algorithm in the
physical space. The examples seen so far have relatively simple configuration spaces, but
as we increase the number of robots and the physical space gets more complex, so does
the configuration space. Finding the discontinuities directly while in the configuration
space is not trivial, and the above theorem is crucial to reduce the overall complexity by
using the homotopy not only to calculate the topological complexity of a simpler space,
but also to construct the actual algorithm.

5. Two robots moving on a graph

We consider the case of two distinct robots A and B moving on a graph Γ . The problem
to solve is finding a continuous and collision-free motion planning algorithm with the least
number of instructions needed to move both robots A and B from their initial positions
to their final positions.

5.1. Two robots moving on an interval I . Let A and B be two robots moving on Γ = I .

Figure 8. Physical and configuration spaces for two robots in I

The configuration space in this case is X = C2(I) = I × I −∆. The physical space and the
configuration space are shown in figure 8. Each pair of positions of the two robots in the
physical space defines a state in the configuration space. Figure 8 shows a concrete pair
of positions in the physical space and its corresponding state in the configuration space.

We observe that the configuration space in this case is not connected because of the re-
moval of the diagonal. Even though there are some states where there is a path between
the initial and final positions of the two robots (see figure 9), the problem of finding a
path between any initial and final configuration has no solution (figure 10). In other
words, there is no MPA for this case.

This impossibility to connect two states in the configuration space by a path has its coun-
terpart in the physical space: two robots cannot swap positions within the interval.
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Figure 9. Initial and final states are in the same connected component.

Figure 10. Initial and final states are in different connected components.

5.2. Two robots moving on a circle S1. Now, let’s consider two robots A and B moving
on Γ = S1. The configuration space in this case is given byX = C2(S1) = S1×S1−∆ = T −∆.
This space is homeomorphic to the open cylinder X = C2(S1) = S1 × (0,1).

Figure 11. Physical and configuration spaces for two robots on S1

A very useful way to represent this space would be using the flat torus representation as
shown in figure 11. We also show in this figure the initial and final positions of two robots
in the physical space and their corresponding states in the configuration space.

By working in the configuration space, the complexity of the problem is reduced from
trying to find two paths to move two distinct robots from their initial positions to their
respective final positions into finding one combined path to move the initial state of the
two robots to the final state in the configuration space.
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5.2.1. Topological Complexity of the Configuration Space. As we have seen before, the con-
figuration space is X = C2(S1) = S1 × (0,1). Since the configuration space is homotopy
equivalent to a circle, we have that TC(X) = TC(S1 × (0,1)) = TC(S1) = 2 by theorem 4.7.

This gives us the minimum number of instructions needed for a continuous MPA for two
robots moving on a circle S1. Knowing how to transition back and forth between the
physical space and the configuration space, our objective is first to find two instructions
that define the algorithm to move from the initial state to the final state in the the config-
uration space, and then translate them back to the physical space.

We will take advantage of the construction of an explicit homotopy between the configu-
ration space and the circle to build our algorithm based on the known algorithm for the
circle given in the example 4.6.

5.2.2. MPA for two robots moving on S1. Recall that the configuration space X is path-
connected and is homotopy equivalent to a circle. For the purpose of the homotopy, we
will choose a special circle to deform the configuration space into: the antipodal circle.

Definition 5.1. The antipodal circle A ⊂ C2(S1) is the set of pairs of points on the circle
such that they are antipodal to each other. We write:

A = {(a,b) ∈ S1 × S1 | a is antipodal to b}.

Figure 12. The antipodal circle A and its counterclockwise orientation

In the flat torus representation (figure 12), the antipodal circle A will be the set of points
in X lying on the line b = a− 1

2 .

Consider the homotopy H : X× I → X given by the projection intoA following horizontal
lines. Recall that each state x = (A,B) represents the collective positions of robots A and
B in the circle.

Let xi and xf be the initial and final states of the robots. We call the initial antipodal
state x′i = H1(xi) the image of the initial state in the antipodal circle A by the homotopy.
Likewise, we call the final antipodal state x′f = H1(xf ) the projection per homotopy of the
final state in A (see figure 13).
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xfx′f

x′i
xi

Figure 13. Initial and final antipodal states

The idea of our algorithm will be to move the initial and final states xi and xf to their an-
tipodal states x′i and x′f respectively, and then apply in the circle A the known algorithm
(example 4.6) to move from x′i to x′f (see figure 14).

xf

x′f

x′i

xi

Figure 14. The steps of the MPA in X

We will also define certain distinguished positions in the configuration space that will
correspond to the action of interchanging robots in the physical space.

Definition 5.2. Two states xi = (Ai ,Bi) and xf = (Af ,Bf ) are swapped states if Ai = Bf and
Af = Bi .

Swapped states correspond to points in the configuration space that are symmetric with
respect to the diagonal (see figure 16).

Remark. Observe that the swapped states that are in the antipodal circle A correspond
exactly to the antipodal points in that circle.
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Ai

Bi Af
Bf

Figure 15. Swapped states in the physical space

xi

xf xf

Figure 16. Swapped states in the configuration space

The following is the description of our algorithm in the configuration space X.

(1) Preliminary step: Move initial state xi to its antipodal state x′i on A following the
path Ht(xi). Find the final antipodal state x′f .

(2) Main step: While on A, if the two antipodal states x′i and x′f are swapped states,
then move the initial antipodal state x′i counterclockwise towards the final antipo-
dal state x′f . Otherwise, move the initial antipodal state x′i following the shortest
path on A towards the final antipodal state x′f .

(3) Final step: Move the final antipodal state x′f back to the final state xf following
the reverse path to Ht(xf ).

When transitioning back to the physical space, we obtain the following MPA to move two
robots A and B in a circle:

(1) Preliminary step: Move robot A away from robot B until robot A reaches the an-
tipodal position of the robot B. Robot B remains stationary.

(2) Main step: If the final position of the robot B is antipodal to its initial position,
then move both robots in counterclockwise direction until robot B reaches its fi-
nal destination. Otherwise, move both robots in the same direction following the
shortest path for robot B to its final position, until robot B reaches its final posi-
tion.
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(3) Final step: Move robot A following the shortest path to its final position, until it
reaches its final position. Robot B remains stationary.

Note that the preliminary and final steps are common steps in both instructions, the main
step is where we deal with the discontinuity of the MPA.

The domains of continuity will be determined by the regions described before. Let F1 =
{((a,b), (a′,b′)) ∈ X ×X | b is antipodal to b′} and F2 the set of all other pairs of points in the
configuration space. Then {F1,F2} is a covering of X ×X by domains of continuity.

5.3. Running the proposed MPAs.

Example 5.3. Initial and final positions of the second robot are not antipodals.

Figure 17. Initial setup

Figure 18. Preliminary step

Figure 19. Main step: ”Move following the shortest path”
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Figure 20. Final step

Example 5.4. Initial and final positions of the second robot are antipodals.

Figure 21. Initial setup

Figure 22. Preliminary step

Figure 23. Main step: ”Move both robots in counterclockwise direction”
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Figure 24. Final step

In the next section, we’ll expand this construction of the algorithm to derive a MPA for
two robots moving on a lollipop-shaped track.

6. Main example: Lollipop graph Γ = L

We focus our efforts now on the construction of a MPA for the case of two robots moving
on a track consisting of a circle with an interval attached.

We consider the class Gn,g of connected graphs on n vertices with fixed girth g (recall that
the girth of a graph is the length of its shortest cycle) of which the generalized lollipop
graphs, Cn,g , will be the ones obtained by appending a single g cycle to a pendant vertex
(i.e. a vertex of degree 1) of a path on n− g vertices [3]. See figure 25.

i1 i2 i3 in−g k1

k2
k3

kg

Figure 25. Generalized lollipop graph Cn,g

Definition 6.1. A lollipop graph L will be a generalized lollipop graph with two vertices
and girth 1, L = C2,1. See figure 26.

i1 k1

Figure 26. Lollipop graph L = C2,1



MJUM Vol. 6 (2020-2021) Page 16

We consider L being a metric graph as defined by Bridson and Haefliger in [1, Ch. I.1 and
I.5 Example 5.21]. With this metric, each edge has length one and the distance between
two robots is given by the infimum of the lengths of paths joining them. We can say that
the interval edge is I and the circle edge is S1. See figure 27 for examples of distances d
between robots.

Figure 27. Distance between two robots

6.1. Configuration space. The configuration space X is given by:

X = C2(L) = L×L−∆.

where L is a lollipop graph.

Figure 28 depicts X and its flat representation. Recall that in the configuration space,
each state represents the combined positions of the two robots in L, where the x-axis
represents the positions of the first robot A, and the y-axis represents the positions of the
second robot B as in figure 29.

I

S1

I S1

Figure 28. Configuration space X and its flat representation
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Figure 29. Physical positions and their state in configuration space

6.1.1. Homotopy deformation. Ghrist proved in [10] that the configuration space of any
graph with k vertices of degree greater than two, deformation retracts to a subcomplex of
dimension at most k . We have then that our configuration space is homotopy equivalent
to a 1-dimensional space. Our motion planning algorithm will be derived while working
in the configuration space, as we explained in the previous examples. The execution of
the algorithm, however, will run in the physical space. We will choose a 1-dimensional
space in the configuration space that has a clear meaning when projected back into the
physical space.

Figure 30. Two positions in the skeleton S

Following the same approach, this 1-dimensional space, that we will call the skeleton S,
will be the antipodal circle as before with the addition of two more circles as in figure 30.

The homotopy H deforming the configuration space X into the skeleton S is shown in
figure 31. Note that based on the position of the two robots, the configuration space can
be subdivided into three main regions as highlighted in figure 31: The blue regions are
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where the distance between the robots is larger or equal to half unit and the robots are
in different edges. The yellow region is where the to robots are at half unit apart or less
but not both at the interval edge. In the green region both robots are at the interval edge.
This homotopy will be useful to transit in and out of the skeleton in the configuration
space X.

Figure 31. Traces of the homotopy deformation H

The skeleton S is homeomorphic to a chain of three circles as shown in figure 32. By con-
tracting the lower part of each circle, we can see that the skeleton is homotopy equivalent
to a wedge of three circles S1 ∨ S1 ∨ S1 as shown in figure 33.

Figure 32. The skeleton S
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Figure 33. Wedge of three circles

6.2. Topological Complexity. In order to exhibit a set of instructions for the motion
planning algorithm, we will consider the number of these continuous instructions given
by the topological complexity of the configuration space, TC(X). Farber calculated the
topological complexity of all graphs based on their first Betti number.

In topological graph theory, the first Betti number of a graph G with n vertices, m edges
and k connected components is given by b1(G) =m−n+ k.

Proposition 6.2. [6] Let G be a graph, then

TC(G) =


1 if b1(G) = 0,
2 if b1(G) = 1,
3 if b1(G) > 1.

Theorem 6.3. The topological complexity of the configuration space of two robots moving on
a lollipop graph is three: TC(C2(L)) = 3.

Proof. We have shown that C2(L) ' S1 ∨ S1 ∨ S1. By proposition 4.7, we know that
TC(C2(L)) = TC(S1 ∨ S1 ∨ S1). Since the first Betti number of a wedge of three circles
is b1 = 3 − 1 + 1 = 3, we have that TC(S1 ∨ S1 ∨ S1) = 3 by proposition 6.2. Therefore,
TC(C2(L)) = 3. �

We conclude that for two robots moving on a lollipop graph, any MPA would require at
least three continuous instructions.

6.3. Motion Planning Algorithm. We proved previously that TC(X) = 3 if X = C2(L).
Then we know that the minimum number of continuous local sections that we can define
on X ×X is 3. Recall that although the set of instructions of the algorithm will be derived
in the configuration space, its execution will be run in the physical space.

If the state corresponding to the two robots’ positions is on the skeleton S, we know that
in the physical space the robots are one half unit apart from each other and no robot is in
the first half of the interval edge [0, 1

2 ). Recall that the distance between two robots in L
is the minimal length of the paths in L joining them.

Definition 6.4. Two robots are in generalized antipodal positions in L if the distance be-
tween them is equal to half unit and no robot is in the first half of the interval [0, 1

2 ). See
figure 34.
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Figure 34. Generalized antipodal positions

Observe that the skeleton S ⊂ X corresponds exactly to pairs of robots in L that are in
generalized antipodal position.

Consider the homotopyH : X×I → X given by the projection into the skeleton S following
the traces of the homotopy as in figure 31.

Let xi and xf be the initial and final states of the robots. We call the initial generalized
antipodal state x′i = H1(xi) the image of the initial state in the skeleton S by the homo-
topy. Likewise, we call the final generalized antipodal state x′f = H1(xf ) the projection per
homotopy of the final state in S.

As before, the idea of our algorithm will be to move the initial and final states xi and xf to
their generalized antipodal states x′i and x′f respectively, and then apply in the skeleton S
a new algorithm to move from x′i to x′f that we will explain next.

6.3.1. Moving the states within the skeleton. Recall that the skeleton S is the graph shown
in figure 35. Let V = {v1,v2,v3,v4} be the set of vertices of the graph S. A vertex in the
configuration space represents a pair of robots in the physical space in which one of the
robots is at the center of the lollipop.

S1 S2 S3
v1

v2 v3

v4

Figure 35. The skeleton S

The positions in the physical space corresponding to the vertices v1,v2,v3 and v4 in S are
characterized by having one robot at the center of the lollipop L (figure 36).
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v1 v2 v3 v4

Figure 36. Vertex positions in L

Definition 6.5. If there is more than one path of minimal length from one state to an-
other in S, we will say that the preferred shortest path is the one that traverses complete
semicircles counterclockwise. Otherwise, the preferred shortest path is just the path of
minimal length. See figure 37.

Figure 37. The preferred shortest path from initial to final states in S

Now our instruction will be simply: go always following the preferred shortest path. This
instruction is obviously not continuous in S×S. We will decompose the Cartesian product
S × S in three regions over each of which our instruction will be continuous.

The first region F1 consists of the pairs of points in S, initial and final, such that exactly
one of them is a vertex (see figure 38):

F1 = {(xi ,xf )|(xi ∈ V and xf < V ) or (xi < V and xf ∈ V )}.



MJUM Vol. 6 (2020-2021) Page 22

Figure 38. Motions in F1

Let A =
3⋃
j=1

Sj × Sj . The second region consists of all pairs of points that are antipodal to

each other in the same circle, or both are vertices (see figure 39):

F2 = A∪ (V ×V ).

Figure 39. Motions in F2

The third region is the rest of the Cartesian product, F3 = (S × S) \ (F1 ∪ F2). Explicitly F3
is the set of pairs of states where initial and final states are neither vertices nor antipodal
pairs (see figure 40):

F3 = {(xi ,xf ) ∈ S × S | xi < V and xf < V and (xi ,xf ) are not antipodal pairs}.
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Figure 40. Motions in F3

6.3.2. Algorithm in the configuration space. We need to extend this algorithm to the whole
configuration space. We will do this by considering the traces of the homotopy shown in
figure 31. The counterclockwise direction in each circle Sj ⊂ S is shown in figure 41.

S1 S2 S3v1

v2 v3

v4

v1

v2

v3

v4

v1

v2

v3

v4

Figure 41. Counterclockwise directions in each circle Sj ⊂ S
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The steps of the algorithm are as follows:

(1) Preliminary step: Move initial state xi to its generalized antipodal state x′i in S
following the path Ht(xi). Find the generalized antipodal state x′f in S.

(2) Main step: While on S, go from x′i to x′f following the preferred shortest path.

(3) Final step: Move the final antipodal state x′f to the final state xf following the
reverse path of Ht(xf ).

The three domains of continuity F′1,F
′
2 and F′3 are determined by the regions of the con-

figuration space X that end up in F1,F2 and F3 respectively after applying the homotopy
deformation, i.e. F′j =H−1

1 (Fj), for j = 1,2,3.

6.3.3. Algorithm in the physical space L. By translating the algorithm to the physical space
we mean to describe our instruction in terms of the positions of the robots in the lollipop.
We will say that the robots are far from each other if their distance is greater than half unit
and they are close to each other if their distance is shorter than half unit. See figures 42
and 43.

Figure 42. Distance greater than half unit: far from each other

Figure 43. Distance shorter than half unit: close to each other

Definition 6.6. If there is more than one path of minimal length between two positions
in L, we will say that the preferred shortest path is the one that traverses the complete
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semicircle counterclockwise. Otherwise, the preferred shortest path is just the path of
minimal length. See figure 44.

The instructions of the motion planning algorithm in L will be as follows:

(1) Preliminary step:

(a) If both robots are in the interval, then move whichever robot is closer to the
center of the lollipop to the center following the shortest path. The other
robot moves along the shortest path to the midpoint of I .

Figure 44. The preferred shortest path from initial to final positions in L

(b) If at least one robot is in the circle edge and

• they are far from each other, then move the robot in the interval to-
wards the other robot (which remains stationary) until both robots are
at generalized antipodal position.
• they are close to each other, then move both robots away from each other

without changing edge, until both robots are at generalized antipodal
position.

The ratio between the speeds at which the robots are moving is given by the slopes
of the traces of the homotopy in figure 31. Apply this same procedure to deter-
mine the final generalized antipodal position.

(2) Main step:

(a) If initial and final generalized antipodal positions of each robot are in the
same edge but are not all of them in the interval edge,

• move any robot with initial and final positions in the circle edge follow-
ing the preferred shortest path to final
• the other one follows keeping half unit distance apart and staying in the

edge where its final is.

(b) If one robot has generalized antipodal initial and final positions in the circle
edge and the other robot in different edges,
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• move the robot with initial and final positions in different edges follow-
ing the preferred shortest path to final
• the other one follows staying in the circle, keeping half unit distance

apart and choosing the shortest path when there are two choices.

(c) Otherwise,

(i) • move the robot that is in the interior of the interval edge shortest
path to center
• the other follows keeping half unit distance apart and choosing the

preferred shortest path when there are two choices

(ii) move both counterclockwise until they swap positions

(iii) move both following the shortest path to final positions.

(3) Final step: Move both robots to their final positions following the shortest paths.
Recall that the ratio of the speeds at which the two robots will be moving in this
case is given by the slopes of the traces of the homotopy.

6.4. Running the algorithm in the physical space L. We will show now some sample
cases of two robots moving from initial to final positions following our algorithm under
various configurations. A series of demonstration videos of the algorithm implementa-
tion is publicly available online at https://doi.org/10.6084/m9.figshare.12072183.

(1) Example of motion in the same circle in S

Figure 45. Configuration scenario in L and the paths in X and S

https://doi.org/10.6084/m9.figshare.12072183
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Figure 46. Preliminary step of the execution of the algorithm in L

Figure 47. Main step of the execution of the algorithm in L
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Figure 48. Final step of the execution of the algorithm in L

(2) Example of motion between adjacent circles in S

Figure 49. Configuration scenario in L and the paths in X and S
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Figure 50. Preliminary step of the execution of the algorithm in L

Figure 51. Main step of the execution of the algorithm in L
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Figure 52. Final step of the execution of the algorithm in L

(3) Example of motion between disjoint circles in S

Figure 53. Configuration scenario in L and the paths in X and S
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Figure 54. Preliminary step of the execution of the algorithm in L

Figure 55. Main step of the execution of the algorithm in L
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Figure 56. Final step of the execution of the algorithm in L
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