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ABsTRACT. M0bius strips are parameterized explicitly by two variables, and have no thick-
ness. However, surfaces with no thickness cannot be 3D-printed without additional post-
processing to the discretization. Hence, we want equations for a naturally printable al-
gebraic approximation of a Mobius strip that has thickness, referred to throughout as a
solid Mobius surface. In this paper, we (re-)derive these algebraic equations, demonstrate
Matlab code generating solid Mobius surfaces with an arbitrary number of twists, and use
Numerical Algebraic Geometry to compute a smoothed numerical cellular decomposition
of the objects. We conclude with 3D-printed results.

1. INTRODUCTION

Mobius strips have intrigued mathematicians, engineers, and the general public since be-
ing discovered by August Ferdinand Mé6bius in 1858. Beyond their mathematical beauty,
Mobius strips have been used in consumer applications such as “infinity scarves”.

Our primary goal in this work is to 3D print variations of Mdébius strips, as artwork and
as instructional aids. There are many ways to prepare a model for 3D printing. Pro-
grams such as Blender [7] or OpenSCAD [8] allow a modeler to input mathematical func-
tions. However, the typical ways we see Mobius strips presented in mathematics is as
twisted strips of “paper”, with no thickness or interior volume. Hence, they are un-
printable. One solution to this problem is to ‘solidify’ the surface, using the so-named
modifier in Blender, but their current implementation struggles with both numerical
data and non-orientable objects. OpenSCAD, a program for procedural boolean geometry,
has Computational Geometry Algorithms Library (CGAL) [6] underlying its routines, but
both OpenSCAD and CGAL struggle with numerically-generated data. Therefore, what we
would really like is a mathematical object that is natively printable with minimal post-
computation processing. That is, we want Mdbius strips that have positive interior vol-
ume, and no singularities (e.g., self-crossings or cusps). We define a solid approximation
of the Mobius strip as a solid Mobius surface.

A model to be 3D printed, which is fed to a type of program called a slicer, is commonly
defined via faces and vertices, in the form of a triangulation, often in an .st1 file. There
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are many ways to compute a triangulation of a mathematical surface given implicitly in
three variables, including isosurfaces [13] and subdivision methods [11]]. We chose to use
a tool from Numerical Algebraic Geometry called Bertini_real [4]. It uses the method
of homotopy continuation implemented in Bertini [2] to repeatedly compute points on
an N-dimensional algebraic variety, and connect them into a numerical cellular decompo-
sition [3] — that is, a set of connections numerically built from points to form simplices of
appropriate dimension. This paper is not about this software or algorithm, but rather an
application of the decomposition software to a particular family of algebraic surfaces, so
we leave most supporting details to the literature.

We have three primary tasks before us. First, we need to (re-)derive equations for al-
gebraic surfaces approximating Mobius strips of arbitrary twist — not just the canonical
1-twist, but as many twists as one desires. Since 3D printing a model requires a well-
defined interior based on outward facing normal vectors, we further require that such
that a computed model can be 3D printed without need for post-computation “solid-
ification” to overcome the problem of a surface with no interior. Second, we need to
transform the surfaces into a 3D-printable digital format. Third, we shall print the solid
Mobius surfaces.

We begin in Section |2| with a discussion of the process of making a surface into a 3D
printed object. Section (3| computes the equations for the ¢-twisted solid Mdbius surface,
reproducing, amending, and extending earlier work. Numerical decomposition to com-
pute 3D models is described in Section [4] Finally, in Section[5| we show our plastic results
and conclude in Section [6l

2. OVERVIEW OF PRINTING A SURFACE

Here we present a brief summary of what needs to be done to move from a surface to a
3D printed object. This is not by any means exhaustive, and a full explanation of all the
techniques for doing this are beyond the scope of this article. We will briefly discuss the
specific printer technologies we utilized to make our prints in Section

The basic components of a 3D printing setup include a printer, materials, and tools; a
software tool called a “slicer” which transforms models into machine instructions; and a
digital model of the object which is to be printed [10]. Hence, a rather general procedure
to print a mathematical object might be to

(1) obtain an equation or procedure to generate the model,
(2) generate the model — usually a triangulation, and
(3) slice and print.

However, slicers are particular about properties of the model, so that the instructions
they generate are correct. Naturally, behavior varies between specific pieces of software
in how they deal with model defects.

The primary requirement, and that of most interest here, is that a model must well-define
an interior. That is, it must be water-tight, well-oriented, and define a non-empty vol-
ume. The water-tightness requirement implies that there are no holes — “missing’ triangles
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or faces in the model. Well-orientedness means that the normal vector for each triangle
points out from the interior, toward where there should be no material in the printed
object. And non-zero volume requires that there is actually a place to put material. For
example, a triangulated sphere with all normals pointing away from the origin and no
holes is printable. But, if a triangle is missing or one triangle’s normal vector points
inside to the origin, the slicer may generate incorrect machine instructions.

One of the main problems with mathematical surfaces, as opposed to models coming
from engineering, for example, is that they often fail to well-define an interior. While a
sphere is trivial to make into a printable digital model, a plane is not. The problem is
that a plane fails to define an inside and out. Similarly, a Mobius strip fails to define an
interior because it does not partition R® into two disjoint subspaces, and furthermore is
unorientable, causing another set of problems for the slicer. In order to overcome this
barrier to printability, the maker must sacrifice mathematical correctness.

One tactic for making an object such as a Mdobius strip printable is to “solidify” it. Per-
haps one could take the Minkowski sum of the surface and a ball. The ball would add a
smooth solidification, as it is “added” to every point of the strip, so that there is a smooth
layer of connected spheres where we previously had only the strip. The Minkowski sum is
implemented in OpenSCAD, for example. Or, one could make additional triangles which
are offset from the original in the direction of the normal vectors, as in the Blender solid-
ify surface modifier. Both methods offer challenges, in terms of software and problems
arising from certain model phenomena, such as self-intersections.

We would like to be able to print something like a Mébius strip without the need for
solidification. The model we want is immediately printable. Hence, we approximate
the strip by a solid of revolution aesthetically similar to the original object, and call the
resulting objects “solid Mobius surfaces”.

3. EqQuartiONS

In this section, we derive equations for solid Mobius surfaces of arbitrary twist. Our
derivation of the k-twisted solid Mobius surface mirrors that of Stephan Klaus [9]]. Rather
than repeat all the details, we refer to Figure[I], explain some notation, and proceed to de-
riving the equations.

To create a Mobius strip, one would revolve an offset line segment about the z-axis while
rotating it about its local origin some number of times, with 1/2 of a rotation generating
the classic 1-twisted strip. As discussed above, this generates a 3D model that is unprint-
able without additional solidification to give it a well-defined interior.

In contrast, to create a solid Mdbius surface with positive interior volume, we use an
offset ellipse instead of a line segment. Revolving an ellipse around the z-axis creates
a flattened torus; rotating the ellipse around its center as it revolves induces twist into
the generated surface. As depicted in Figure|l} let ¢ represent the angle of revolution of
the ellipse about the z-axis in the global fixed xy-plane. Angle i) represents rotation in
the local moving tz-plane, and k represent the (integral) number of twists in the Mébius,
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Ficure 1. Coordinate system for deriving equations for k-twisted solid Mobius surface, which
is essentially a twisted solid of revolution. A quarter of the surface is shown.

where the coupling of rotation and revolution comes from the equation

p="o )

The ellipse has semi-axis lengths va and Vb, with 0 < a,b < 1. Note thatif a = b = 1,
then the solid of revolution is merely a standard torus; however if a > 1 or b > 1, then the
surface will self-intersect.

When the ellipse is rotated in the moving tz-plane by angle 1, it has equation
c(a(t —1)%) + bz?)+ 2cs(a — b)(t — 1)z+ s2(b(t — 1) + az?) = ab, (2)

where C = cos(), S = sin(¥), x = tcos(¢), v = tsin(¢), and +> = x> + y2. The derivation for
all k-twisted surfaces starts from (2), essentially by computing expressions for s2, ¢?, and
2¢s in terms of C and S.

3.1. Derivation of the 1-Twisted Solid Mobius Surface. Given that the “standard” Mobius
strip has one twist, we start our derivations there. To find the equation for the 1-Twisted

solid Mobius surface, wesetk =1 = ¢ = % Due to the double-angle identities, we see
that

where ¢ = cos(%) and s = sin(%).
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Given that ¢? + s?2 = 1 we have

C=c*-s* C=c*-52
=(1-s%) -5 =c?—(1-c?)
=1-2s? =2c%-1

1 1

2 2
:—1—C :—1+C

s 2( ) c 2( )

Using the above equations with (2), C = ¥, and S = £, we arrive at
cH(a(t—1)%) +bz?) + 2cs(a—b)(t —1)z+s*(b(t —1)> + az®) = ab
%(1 +C)a(t-1)%)+bz%)+ S(a-b)(t—1)z + %(1 —~C)(b(t-1)*+az®)=ab
%(1 +;)(a(t—1)2)+bzz)+%(a—b)(t—l)z+%(1—%)(b(f—1)2+a22) — ab

Then multiply each side by 2t to cancel the denominator:
(t+x)(a(t—1)*) + bz?) + 2p(a—b)(t — 1)z + (t — x)(b(t — 1) + az?) = 2abt. (3)

The following three steps rearrange the equation so that even powers of t are on the left
side and odd powers of t are on the right side. First, expand

(t + x)(at? - 2at + a + bz?) + 2y(a — b)(tz — z) + (t — x)(bt*> — 2bt + b + az®) = 2abt.
Then, put the even on the left and odd on the right,

(axt® = 2at? + ax + bxz?) — 2y(a—b)(z) - (bxt® + 2bt? + bx + axz?)

= 2abt + (—at> + 2atx — at — btz?) — 2y(a—Db)(tz) — (bt> + 2btx + bt + atz?),
and simplify by factoring to get
(a—b)(x(t* —2° + 1) = 2yx) — (2a + 2b)t> = —t((a + b)(t* + 2z° + 1) + 2(a — b)(vz — x) — 2ab).

Finally, square both sides and substitute t> = x*> + y? to arrive at the equation for the
1-twisted solid Mdbius surface:

((a=b)(x(x> + 2 =22 + 1) = 292) - (2a + 2b)(x> +37))’ (4)
—(x% + yz)((a +b)(x% + yz +224+1)+2(a- b)(yz—x) - 2ab)? =0

1Equation differs from the one presented by Klaus, where the right-hand side was 2a.
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3.2. Derivation of the 2-Twisted Solid Mébius Surface. Now the number of twists k = 2,
and (1) becomes simply i = ¢, so substituting ¢ = ¥ and s = % into (2)), we get

2 2

%(a(t “ 1)) + b22)+ 2’;—3(51 Cb)(f—1)z+ %(b(t “1)2 4 az?) = ab.

Next, multiply both sides by t? to clear denominators
x*(a(t —1)% + bz?) + 2xp(a — b)(t — 1)z + v>(b(t — 1)* + az®) = abt?.
Rearrange as we did in Section [3.1]by odd and even powers of t,
(t? + 1)(ax? + byz) + 22 (bx® + ayz) - 2xyz(a—b) - abt? = 2t(ax* + by2 — xyz(a — b)).

Square the above equation and insert t? = x>+ to arrive at the polynomial equation for
the 2-twisted solid Mébius surface ]

((x? + p2 + 1)(ax® + by?) + 2%(bx* + ay?) - 2(a — b)xyz — ab(x” + ;;2))2 (5)

— 4(x2 +v?)(ax? + by? — xyz(a — b))2 =0

3.3. Derivation of the 3-Twisted Solid Mébius Surface. To determine the equation for
the 3-Twisted solid M&bius, we first set 1 = 3¢. Due to the double angle and triple angle
identities, we have

C3-3CS?=¢%-5? and 3C%5 - 83 =2cs
Next, isolate ¢?, s, and cs. Then substitute those variables into (2), multiply by 213 to

clear the denominator, separate odd and even powers, and insert x“ + y2 = t2 to arrive at
the equation for the 3-twisted solid Mobius surface:

(~2(a+ b)Y + 2 + (a - b)((x* - 3xp? + 1 - 2%) - 22327y — %))
— (2% + yz)((a +b)(x* + A (x* + P + 1+ 2%)
= 2(a—b)(x® - 3xp® - 2(3x%y - p*)) - 2ab(x” + 7)) = 0

’This equation differs from the one presented by Klaus, where they replaced the (a —b) term with (a+ b) in
what appears to be a simple transcription error.
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3.4. Derivation of the k-Twisted Solid Mdobius Surface. In the MATLAB code found in
Appendix B, we begin the derivation of the k-twisted solid Mébius surface by using De
Moivre’s Formula to compute the corresponding algebraic terms for ¢?, s?, and 2cs. We
then substitute those statements as in previous sections, and multiply by 2t* to cancel
terms. Finally, we collect the even and odd terms, squaring both sides to determine the
final equation. Due to limitations in MATLAB symbolic processing, the resulting equations
are much more verbose than they need to be, but mathematically correct.

A general equation for the k-twisted solid Md&bius surface is
0 =(x?+p?)(a+b-2ab+(a—b)yRe(((x +yi)/(x* + %))
+(a+b)(x? +v% + 22)(bz% — az®)Re (((x + vi)/(x* + p?)V2)K)
+(a=b)Re((x+i)/(x* +37)"2))(x* +p7)
+(2bz - 2az)Tm(((x + vi)/(x> +;;2)1/2)’<))2 —(x® +97)((2a+ 2b)(x” +y7)*/2
+2(a=b)Re((x/(x* + )% + (yi)/ (x* + 7)) (2 + %)
+22(b - a)Im((e/(% + 32) 2 + (i) (2 +32) 2 + p2)2)

where Re and Im are the real and imaginary operators.

4. DECOMPOSITION

To print an object, we need a triangulation to feed to the slicer program, to generate
machine instructions for the printer. To accomplish this goal, we used Bertini_real
[4], a piece of software for real algebraic curves and surfaces, to compute models of the
surfaces we wanted to print.

4.1. Method. A decomposition of a real algebraic set is a union of simplices such that
the entire object is represented, using simplices of dimension equal to that of the de-
composed the object. The surface decomposition algorithm we used in Bertini_real is
essentially an implementation of the implicit function theorem (IFT) for a 2-dimensional
object embedded in RY. Plainly spoken, the IFT tells us that we can use d parameters
to parameterize a d-dimensional object, regardless of ambient dimension N, and off a set
where the parameterization fails.

Rather than recount the full “numerical real cellular decomposition” algorithm here, we
instead briefly describe the high-level procedure. For fuller details, see the original sur-
face algorithm paper [3], or any of the papers on the implementation in Bertini_real
(4,15, 1]]. The numerical path tracking routines coming from Numerical Algebraic Geom-
etry are implemented in Bertini [2]], the description of which is beyond the scope of this

paper.

Since surfaces are 2-dimensional, we use two random orthogonal real linear projections
1 2(x) : RN — R as the parameters for the IFT. The first step is to compute the set where
the IFT would fail — that set where our parameterization would fail the “vertical line test”.
This set is called the “critical curve”, and consists of points and curves on the surface
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where the number of points that project to a single value (7, 7;) changes. Secondly,
smooth points in the centers of the faces and boundaries of the surface are computed
via a sequence of surface-slicing curve decompositions. Finally, these smooth points are
connected to each other to complete the decomposition of the surface. See Figure[2|for an
illustration of a raw decomposition of the 1-twisted solid Mobius surface.

critical curve
----- crit slices
== =mid slices
singular curves

Ficure 2. A numerical real cellular decomposition of the 1-Twisted solid M&bius surface, be-
fore sampling. The output is naturally a triangulation.

The end product is a set of points on the surface, and topologically correct connections
between them. Taken as a static result, the decomposition produces a triangulation. How-
ever, the output from a decomposition with Bertini_real is more than a triangulation. It
also contains information necessary to add more points, to refine the surface arbitrarily.
Again, this is a high-level description, and we leave the many algorithmic and implemen-
tation details to the literature, particularly [4].

We below provide images of the decompositions of our surfaces alongside those generated
from SURFER. Bertini_real differs significantly from SURFER. Whereas SURFER generates
images of algebraic surfaces in three variables on the fly as the user views the object,
Bertini_real computes a simplicial complex of 0-, 1-, and 2-cells in a single decompo-
sition, after which the data is static (and available for refinement). SURFER is specialized
software for viewing surfaces in 3D, whereas Bertini_real decomposes surfaces in RN,
SURFER is very fast but gives only images, whereas Bertini_real is slower but gives a full
N-dimensional refinable triangulation of the surface. That is, SURFER cannot be used to
generate models to 3D print, but is an excellent preview tool for ensuring the surface you
are working with is correct, before spending the time to perform a full decomposition
with Bertini_real.

In our first attempts, decomposition of even the 1-twisted solid Mobius surface proved
tricky because of a singular curve — that is, a curve of points satisfying the equation for
the surface but on which the Jacobian matrix is singular. Notably, such a curve appears
in all of the solid Mobius surfaces regardless of parameter values as the z-axis; that for
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the 1-twist is depicted in Figure |2 To combat this, we added a new runtime option in
Bertini_real, -ignoresing, allowing the user to ignore any singular curvesﬂ

4.2. Application. Here we present visual results for the decomposition of four solid
Mobius surfaces. An example input file, namely that for the 4-twist, can be found in Ap-
pendix [A] The input file consists of settings for the tracker and decomposition software,
and the system of equations. We note that a variety of tolerances had to be tightened to
arrive at the final result, particularly for the 3- and 4-twist. The settings are documented
in [2]].

Bertini setting name value
randomseed 9
maxstepsbeforenewton 0
maxnewtonits 1
functiontolerance le-8
sharpendigits 30
endgamenum 2
numsamplepoints 10
endgamebdry 0.01
targettolmultiplier 10
securitylevel 1
condnumthreshold 1e300

TaBLe 1. Common settings for the Bertini_real decompositions of the 1, 2, 3, and 4-twisted
solid Mdbius surfaces

Our settings were as follows, with exceptions for tracking tolerances and the ODE pre-
dictor. We summarize them in Table |1}, and describe the most important ones below.

e The Cauchy endgame was used with 10 sample points (for an 11-gon); this means
that the method for computing singular points uses the Cauchy integral formula,
using an 11-sided regular polygon as a discretization for the curve of integration.

e In the path tracker, the “endgame boundary time” at which the tracker enters the
special tracking mode called the endgame, was set to be 0.01.

e We allowed only a single Newton iteration during path tracking.
e We also prevented truncation of paths which appear to be diverging to infinity.

Sampling for each of the four surfaces we present below used the distance-adaptive
method. In this mode, when the sampler computes additional points on the surface to
make it appear smoother, it first estimates the next point. Then, it computes the actual
point, and measures the difference between them - that is, the error. It does this until
the error is less than some user-defined tolerance, or a maximum number of iterations
is reached. We used a distance tolerance of 0.01, and a maximum number of sampling
iterations of 7.

3Ignoring singular curves in general is a terrible idea. But, for the solid Mébius surfaces, the singular curves
are naked — they do not contact the rest of the surface — and so are better ignored.
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The sampler works by adding these additional points on curves on the faces called “ribs”,
which are constant when projected through 71, and then triangulating adjacent ribs. The
minimum and maximum number of sampled face ribs we allowed was between 7 and 20.

For each of the equations we used in the paper, we set a = 0.01 and b = 0.23, as this
achieved nice-looking results in SURFER visualizations similar to that of Klause [9].

4.2.1. 1-Twisted Solid Mobius. The 1-twist surface was decomposed using mostly default
settings for Bertini and Bertini_real. Decomposition took about 187 seconds on 24
processors at the University of Notre Dame’s Center for Research Computing (CRC) clus-
ter computer. Tracking tolerances were Bertini defaults: 1e-5 and 1e-6 for pre- and
in-endgame regions. The sampled surface has 305k vertices and 916k faces.

Ficure 3. 1-Twisted solid Mdobius surface. Left: SURFER image. Right: Bertini_real decom-
position.

4.2.2. 2-Twisted Solid Mobius. The 2-twist used the same settings as the 1-twist. Decom-
position took 1341 seconds on 4 processors. The sampled surface has 366k vertices and
1.10M faces.

Ficure 4. 2-Twisted Mobius surface. Left: SURFER image. Right: Bertini_real decomposition.
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4.2.3. 3-Twisted Solid Mobius. This decomposition used tracking settings tighter than de-
fault. The tolerance before the endgame boundary was 1e-9, and during the endgame
1e-10. The ODE predictor we used was a seventh-order Runge-Kutta-Verner method as
implemented in Bertini; using higher-order predictors helps the decomposition algo-
rithm run faster and more correctly. Computation time was 20834 seconds on 24 proces-
sors. The sampled surface has 408k vertices and 1.23M faces.

Ficure 5. 3-Twisted solid Mobius surface. We can see hints of the singular line in the SURFER

image (left), which was omitted from computation during decomposition with Bertini_real
(right).

4.2.4. 4-Twisted Solid Mobius. This decomposition used the same settings as the 3-twist.
Decomposition with Bertini_real took 30535 seconds on 24 processors. The sampled
surface has 572k vertices and 1.72M faces.

Ficure 6. 4-Twisted solid Mobius surface. Left: SURFER image. Right: Bertini_real decom-

position. As with the 3-twist, the barest hint of the singular line appears near the origin in the
SURFER image.
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5. PRINTING

The 3D printer we used was a Lulzbot TAZ4, with a 0.5mm extruder tip and stock hot-
end. The filament is 3mm PLA from Push Plastic. We extruded at 200C, with a bed
temperature of 60C. Bed treatment consisted of PEI sheeting with ABS juice for adhesion.

For mathematical objects like these surfaces, support tends to be the most challenging
part of the printing process. We used manually placed support pillars in the closed-
source slicing software Simplify3D [12] version 3.1.1. Support density was 20%, hori-
zontal offset of 0.15mm, and a single vertical separation layer. Infill was rectangular with
density 15%, with 2 perimeter layers, and 5 top and bottom layers. Layer height was
uniformly 0.2mm. Print speed was 1500mm / minute, with slowdown and speedup for
external perimeters and support respectively.

Print times were approximately 16 hours each for the 1- and 2-twist, and 21 hours each
for the 3- and 4-twist. The objects are approximately 175mm in diameter, and 60mm
thick. Figure|7|shows the results of the prints.

6. FUTURE WORK

For future work in this area, we would like to continue the decomposition and printing of
higher twist solid Mébius surfaces, and to investigate the growth of the degree and mul-
tiplicity of the singular curve. We also desire a larger printed family of Mobius surfaces,
for parameters across the range of a and b values.

The exploration of parameter values is interesting for algorithmic reasons, beyond the
aesthetic. As the parameters tend toward 0, the generated surface becomes arbitrarily
thin, and this can only cause problems for the modeling software. The exploration of
the case where a or b are greater than unity and the surface self-intersects would also be
interesting.

Additionally, the same methodology used in this paper could be used to parameterize
and 3D-print a solidified surface representing a Klein bottle, a surface bearing many
similarities to the Mdbius strip.
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Ficure 7. 3D prints of the smooth algebraic solid Mobitis surfaces, twists 1 through 4, decom-
posed and smoothed using Bertini_real. Printed in PLA on a TAZ4.
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Appendices

ApPPENDIX A. SAMPLE INPUT FILE FOR FOUR-TWISTED SoLID MOBIUS

CONFIG

tracktype: 1; % do numerical irreducible decomposition in Bertini
tracktolbeforeeg: 1e-9;

tracktolduringeg: 1e-10;

randomseed: 2; %fix the random number generator’s seed value
maxstepsbeforenewton: 0; % do newton corrector steps every time step
maxnewtonits: 1; %take at most one newton step

finaltol: 1e-13; %compute solutions to at least 13 digits
functiontolerance: 1e-8; %function residuals are zero if smaller
sharpendigits: 30; %sharpen using Newton’s method to 30 digits, when possible
endgamenum: 2; %use the Cauchy endgame

numsamplepoints: 10; %use 10+1 points in the endgame

endgamebdry: 0.01; % switch to endgame at t = 0.01

odepredictor: 8; % use a higher-order ODE predictor

targettolmultiplier: 10; %numerical fuzzyness factor for zero testing
securitylevel: 1; % don’t truncate paths appearing to go to infinity
condnumthreshold: 1e300; %points are singular only if they appear multiply

END;
INPUT

constant a,b;
a=20.01;
b = 0.23;

variable_group x, y, z7;
function f;

f = (a*(x"2 + y™2)"°2 + a*x(x"2 + y"2)"3 + b*(x"2 + y"2)7"2 + b*(x"2 + y*2)°3 +
axx™4 + axy"4 - bxx"4 - bxy"4 + axz"2x(x"2 + y"2)"2 + bxz"2%(x"2 + y"2)°2 -
6xaxx 2%y 2 4+ Bxbxx"2xy 2 - axx"4x772 - axy 4x772 + b*x"4%7"2 + bxy“4x7"2 -
2xaxbx (x"2 + Yy 2)72 + axx"4x(x"2 + y"2) + axy" 4% (x"2 + y"2) - bxx"4x(x"2 +
Y72) - by 4% (x"2 + y 2) + Braxx"2+y"2%7272 - 6xbrx"2xy 24772 -
B6raxx "2y 2% (X 2 + Yy 2) + Bxbxx"2+y 2% (Xx"2 + y"2) + 8raxxxy 3xz -
8xaxx"3xyxz - Bxbxxxy 3%z + 8Bxbxx"3xyxz)"2 - (x"2 + y"2)*(2xaxx"4 + 2xaxy”4
- 2+b*x"4 - 2+bxy"4 + (X2 + y"2)7"2x(2%a + 2xb) - 12xaxx"2xy"2 +
124b*x " 2%y "2 + 8xaxxxy 3%z - 8xaxx"3Jxy*z - Bxbxxxy 3%z + Bxbxx"3xyxz)"2;

END;
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ApPPENDIX B. k-TwisTED SoLIiD MOBIUS MATLAB CODE

Here we provide a Matlab function for computing a symbolic variable containing the
equation for the k-twisted solid Mdbius surface. This code was tested against Matlab
2016a, and also appears in the test/examples folder in Bertini_real.

function answer = compute_twisted_mobius(twist)
%Created by Travis C. Wert at the University of Notre Dame under Danielle A.
%Brake on 4.26.17

syms x y z t ab c2 s2 two_cs ¢ s CS leftl leftla leftlb left2 rightl rightla
rightlb right2

E_psi = c2x(a*x(t-1)"2+b*z"2)+two_cs*(a-b)*(t-1)*z+s2x%(bx(t-1)"2+a*z"2)-axb;
%from original paper found here
https://imaginary.org/sites/default/files/moebiusband.pdf

assume(C, 'real’); %assists with the substitutions later
assume (S, ‘real’);

left1 = real(expand((C+1i*S) " twist)); %derived from De Moivre’s formula
left2 = imag(expand((C+1i*S) " twist));

%There will be three equations that we need, ¢"2, s"2, and 2cs
%rightla will get s”2, rightlb will get ¢”2, and right2 will get 2cs

c"2 - s72;
2%C*S;

rightt
right2

rightla = subs(rightl1,c”2,1-s72);

leftla = -(leftl1-1)/2;
leftla = subs(leftla,C,x/t);
leftla = subs(leftla,S,y/t);
leftla = expand(leftia);

rightib = subs(rightl1,s"2,1-¢"2);

leftib = (left1+1)/2;

left1b = subs(leftlb,C,x/t);
leftlb = subs(leftlb,S,y/t);
leftlb = expand(leftib);
left2 = subs(left2,S,y/t);
left2 = subs(left2,C,x/t);

%substitute each of the left hand sides into E_psi
E_psi = subs(E_psi,{c2,two_cs,s2},

{left1b,

left2,

leftla});

E_psi = (E_psi)* (2xt"twist); %cancel the denominator for the equation
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E_psi = expand(E_psi);
simplify(E_psi);

%gather the odd and even coefficients of t
[ct,tt] = coeffs(E_psi,t);

even = sym(0); %seed the loop
odd = sym(0);

for ii = 1:length(tt)
deg = feval(symengine, ‘polylib:degree’,char(tt(ii)), t’);
if mod(deg,2) == 1 %odd
odd = odd + ct(ii)*tt(ii);
else % even
even = even + ct(ii)*tt(ii);
end
end

assume(a>0 | a<1);

assume (b>0 | b<1);

odd = collect(odd/t,t); %took out a t term, to be added back later
even = collect(even,t);

even = simplify(even);

%square both sides
even = evenxeven;
odd = oddxodd;

even = subs(even,t,sqrt(x"2+y~2));
odd = subs(odd,t,sqrt(x"2+y"2))*(x"2+y"2); %here the original t term (now t"2)
is added back

answer = even-odd;
end
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AprPENDIX C. 10-TwisTED SoLiD MOBIUS

The Matlab code found in Appendix [B| can also be used to compute Mdobius surfaces of
arbitrary twist, an example of which can be seen in Figure (8| with the 10-twisted solid
Mébius surface:

Ficure 8. 10-Twisted solid Mébius surface rendered in SURFER.
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