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Abstract. For a fixed b ∈Z+, a point (r, s) ∈Z×Z is b-visible from the origin if there exists
a power function f (x) = axb with a ∈Q such that f (0) = 0 and f (r) = s, and no other point
in the integer lattice belongs to the graph of f . In this article, we extend the definition of
b-visibility given by Goins, Harris, Kubik, and Mbirika [1] to the study of weak visibility.
For a fixed b ∈Z+, we say that a point Q = (h,k) in the array ∆m,n = {1,2, . . . ,m} × {1,2, . . . ,n}
is weakly b-visible from a point P = (r, s) ∈ Z

+ ×Z+ such that P < ∆m,n if no other point

in ∆m,n lies on the curve f (x) = (s−k)
(r−h)b

(x − h)b + k between Q and P . In this paper we give

necessary and sufficient conditions for determining if a point in ∆m,n is weakly b-visible by
an external point. We also show that for any point P = (r, s) with r > m and s > n, there exists
a b ≥ 1 such that every point in ∆m,n is weakly b-visible from P . Our last result considers
a fixed b > 1 and specifies the coordinates of a point P that weakly b-views every point in
∆m,n, and as a corollary we provide a way to determine the coordinates of the closest point
to the array satisfying such a condition. We conclude by providing a few directions for
future research.

1. Introduction

We can contextualize results in the study of weak lattice point visibility by imagining a
photographer commissioned to take pictures of a marching band. The photographer must
be able to take a picture where every band member is visible, and where all members are
in an evenly spaced, rectangular formation. To formally describe this, we imagine the
band members standing on lattice points in the rectangular array ∆m,n = {1,2,3, . . . ,m} ×
{1,2,3, . . . ,n} with m ≥ n, while the photographer stands on a positive integer lattice point
somewhere outside of the region encompassed by the band.

Assuming that the photographer’s camera only takes pictures linearly (i.e in a straight
line), we say that a point, Q ∈ ∆m,n, is weakly visible by P < ∆m,n if there are no other
points in ∆m,n which lie on the line segment connecting Q and P . If all Q ∈ ∆m,n are
weakly visible from P , then we say that the array ∆m,n is weakly visible from P . Laison
and Schick [3] showed that in order to guarantee that ∆m,n is weakly visible from P , the
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lattice point P = (r, s) must satisfy r > m and s > n, but this point might be rather far
away from the formation. Nicholson and Sharp [5], further determined that such a lattice
point P must lie at least

√
m2 + 1 units away from ∆m,n. More recently, Nicholson and

Rachan [4] gave necessary and sufficient conditions, depending only on the parameters
m and n, such that a particular lattice point Q ∈ ∆m,n, is weakly visible from the point
P . However, giving coordinates to the closest point P from which every point is weakly
visible remains unknown.

Of course, not all physical behavior acts along a linear trajectory. In a more general
situation, consider our scenario from before, but instead of taking pictures, we wish to
throw a Frisbee to one of the band members. In order to avoid tossing the disk to a band
member directly obstructing our target we decide that the Frisbee must be thrown with a
curved trajectory, which we assume is a polynomial function of a fixed degree.

As before, we think of each member of the band as an integer lattice point in ∆m,n and
we suppose that we are located outside of this rectangular array. Thus, the question of
interest is:

If the trajectory of the disk follows the trajectory of a polynomial function
(with a fixed degree), will we be able to throw the disk to every member of
the band without having another band member obstruct our throw?

This question has been fully analyzed when the person throwing the disk is standing at
the origin and the team comprises all integer lattice points in a Z

+ ×Z+ array. In partic-
ular, Goins, Harris, Kubik and Mbirika [1], and later Harris and Omar [2], determined
whether the band member standing at the location (r, s) can receive the disk thrown via a
trajectory of the form f (x) = axb, for a fixed b ∈ Z+ and a ∈ Q. Furthermore, they deter-
mined necessary and sufficient conditions for a band member standing at (r, s) ∈Z+ ×Z+

to be able to receive the disk (when thrown from the origin) to be solely dependent on
the existence or non-existence of an integer k > 1 satisfying k|r and kb|s. Lattice points
satisfying such a divisibility condition were said to be b-invisible from the origin.

Throughout this manuscript we assume that every integer lattice point lies on the positive
quadrant of Z ×Z. Furthermore, when we talk about the integer lattice, saying that a
point (x,y) is between two points, (p,q) and (r, s), we mean that min{p,r} < x < max{p,r}
and min{q,s} < y <max{q,s}. We recall here the definition of b-visibility of a lattice point,
as given in [1].

Definition 1.1. Fix b ∈Z+. A point (r, s) ∈Z+ ×Z+ is said to be b-invisible with respect to
the unique function f (x) = axb, such that the point (r, s) lies on the graph of f (x), if the
following condition holds: f (x) intersects at least one point on the integer lattice between
(0,0) and (r, s). The point is said to be b-visible if it lies on the graph of f (x), and is not
b-invisible.

Proposition 1.2 (Proposition 3 in [1]). A point (r, s) ∈ Z+ ×Z+ is b-visible iff g̃cdb(r, s) = 1,
where g̃cdb(r, s) := max{k ∈Z+ | k|r and kb|s}.
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Proposition 1.2 says that a lattice point (r, s) is b-visible if and only if there is no number
k such that k > 1, k|r, and kb|s. This is because such a k would give us the point ( rk ,

s
kb

)
which lies in the integer lattice between (0,0) and (r, s), and lies on the graph of f (x). Fur-
thermore, suppose there is at least one point that lies on the graph of f (x) between (0,0)
and (r, s). Take the smallest x value of any such point, let’s say µ. Then we can conclude
that k = r

µ is an integer greater than 1 that divides r and such that kb|s. We know that
k is an integer as the prime factorization of µ is equal to that of the denominator of a,
and so must also appear in the factorization of r. We also know that k is greater than one
because µ < r, and we know that k|r as k ·µ = r. To see that kb|s, note that µ is the smallest
value capable of canceling the lowest-terms denominator of a, the rational coefficient of
our function, f (x). Thus, a ·µb is an integer, and s = a ·µb · kb, thus kb|s.

In this article, we extend the definition of b-visibility given by Goins et al. to the study of
weak b-visibility.

Definition 1.3. Fix b ∈ Z+. A point Q = (h,k) ∈ ∆m,n is said to be weakly b-visible from a
point P = (r, s) < ∆m,n if the curve f (x) = (s−k)

(r−h)b
(x − h)b + k exists, and there does not exist

Q′ ∈ ∆m,n (Q′ ,Q) such that Q′ lies on the curve f (x) between Q and P . If every Q ∈ ∆m,n
is weakly b-visible from P < ∆m,n, then we say that ∆m,n is weakly b-visible from P or that
P weakly b-views ∆m,n.

The curve f (x) in Definition 1.3 will exist in all cases except when r = h, which is to say,
when the point P lies directly above Q. Note as well that by setting b = 1 we recover the
standard definition of weak visibility.

We continue by describing our results on weak b-visibility. For the following lemma, we
define P −Q := (r −h,s−k) to be the point found by subtracting the coordinates of Q from
the coordinates of P .

Lemma 1.4. Fix b ∈ Z+, and let Q = (h,k) ∈ ∆m,n and P = (r, s) < ∆m,n, such that r > m and
s > n. Then Q is weakly b-visible from P if and only if one of the following holds

(1) P −Q is b-visible,

(2) P −Q is b-invisible and
(
r − h
`
,
s − k
`b

)
< ∆m−h,n−k for any ` > 1 satisfying `|(r − h) and

`b|(s − k).

Moreover, we prove that the behavior of weak b-visibility is rather different from classical
weak visibility (the b = 1 case). For example, Nicholson and Rachan established that for
a point P to be able to weakly view all points in ∆m,n, P must lie outside of a specified
region of the plane adjacent to ∆m,n. We restate their result below for ease of reference.

Theorem 1.5 (Theorem 3 in [4]). The point Q = (x0, y0) ∈ ∆m,n is not weakly visible by the
point P = (x1, y1) if and only if all the following hold

(1) gcd(x1 − x0, y1 − y0) > 1
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(2) m− x0 ≥ (x1 − x0)/ gcd(x1 − x0, y1 − y0)

(3) n− y0 ≥ (y1 − y0)/ gcd(x1 − x0, y1 − y0).

In the weakly b-visible setting, the result is rather different.

Theorem 1.6. Fix b ∈Z+. Then the point Q = (h,k) ∈ ∆m,n is not weakly b-visible by the point
P = (r, s), with r > m,s > n if and only if all the following hold

(1) g̃cdb(r − h,s − k) > 1

(2) m− h ≥ (r − h)/ g̃cdb(r − h,s − k)

(3) n− k ≥ (s − k)/(g̃cdb(r − h,s − k))b

Since g̃cdb(r − h,s − k) ≤ gcd(r − h,s − k) for b > 1, Theorem 1.6 shows that the point P can
lie within the adjacency region for any b > 1.

Next, we show that for any P = (r, s) with r > m and s > n, we can always find a b > 1 such
that ∆m,n is weakly b-visible from P .

Theorem 1.7. Let P = (r, s), where r > m and s > n. Then there exists a b0 ∈Z+ such that ∆m,n
is weakly b-visible by P for all b ≥ b0.

Our last result considers a fixed b > 1 and specifies a point P such that ∆m,n is weakly
b-visible by P , and as a corollary we provide a way to determine the coordinates of the
closest point to the array satisfying such a condition.

Theorem 1.8. Fix b ∈ Z+ and let m,n ∈ Z+ satisfy m− 1 > n+ 1. Then the set ∆m,n is weakly

b-visible from the point P =
(⌈ b√

mb+1 − 2mb −m+ 3
⌉
,n+ 1

)
.

Our last result describes the location of the point P closest on average to ∆m,n that weakly
b-views all of ∆m,n.

Corollary 1.9. Fix m − 1 > n + 1 and b ∈ Z
+ and let f (x) = 1

(mb−1)
(xb − 1) + 1. If m∗ > m

is the smallest positive integer such that n + 1 < f (m∗), then ∆m,n is weakly b-visible from
P = (m∗,n+ 1).

In Section 2, we establish all of the above results related to weak b-visibility, presenting
illustrative examples throughout. We conclude with Section 3, where we provide a few
possible directions for future research.

2. Results

We begin our analysis with the proof of Lemma 1.4, which establishes that weakly b-
visible and b-visible are non-equivalent notions. In general, there are more weakly b-
visible points.
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Proof of Lemma 1.4. (⇒) Suppose Q ∈ ∆m,n is weakly b-visible from P , and suppose that
P −Q = (r − h,s − k) is not b-visible, and hence is b-invisible. Now we assume that there
exists an ` > 1 such that ( r−h` ,

s−k
`b

) ∈ ∆m−h,n−k, because if no such ` existed, we’d be done

with our proof. From this assumption, it follows that ( r−h` + h, s−k
`b

+ k) ∈ ∆m,n. How-
ever, this contradicts that Q is weakly b-visible from P , as this point lies on the function
f (x) = (s−k)

(r−h)b
(x − h)b + k and is a point of ∆m,n strictly between Q and P .

(⇐) If P −Q = (r − h,s − k) is b-visible, then there are no lattice points on the curve g(x) =
(s−k)
(r−h)b

xb lying strictly between (0,0) and P −Q. Thus, there are no such points in ∆r−h,s−k.

It follows that there are no points in ∆r,s that lie on f (x) = (s−k)
(r−h)b

(x−h)b +k and are strictly
between P and Q. As r > m and s > n, the same holds for ∆m,n and Q is weakly b-visible
from P . See Figure 2 for an illustration.

Likewise, if P −Q is b-invisible and ( r−h` ,
s−k
`b

) < ∆m−h,n−k for any ` > 1 satisfying `|(r−h) and
`b|(s−k), then suppose for contradiction thatQ is not weakly b-visible from P . Then there
exists a Q′ ∈ ∆m,n strictly between Q and P which lies on the curve f (x) = (s−k)

(r−h)b
(x−h)b +k.

SupposeQ′ = (α,β). Then α must be equal to r−h
` +h for some integer ` > 1. This is because

(α − h) < (r − h) and (s−k)
(r−h)b

(x − h)b must be an integer. Then, It follows that β = s−k
`b

+ k, and

as α and β are integers, `|(r − h) and `b|(s − k). Finally, as (α,β) ∈ ∆m,n, we have that
( r−h` ,

s−k
`b

) ∈ ∆m−h,n−k, which is a contradiction as desired. �

1 2 3 4 5

1
2
3
4
5
6
7
8
9

10
P

Q′

Figure 1. Weakly 2-visibility of points in ∆3,2 from P = (5,10).

We illustrate Lemma 1.4 in the following example.

Example 2.1. Consider the case of 2-visibility (b = 2 in the definition of b-visibility), ∆3,2,
and P = (5,10). We compute the 2-visibility of each of the points P −Q with Q ∈ ∆3,2 and
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use this to determine if Q ∈ ∆m,n is weakly 2-visible from P . Note

P − (1,1) = (4,9) is 2-visible,

P − (2,1) = (3,9) is 2-invisible and (3/3,9/32) = (1,1) ∈ ∆3−2,2−1 = ∆1,1,

P − (3,1) = (2,9) is 2-visible,

P − (1,2) = (4,8) is 2-invisible and (4/2,8/22) = (2,2) < ∆3−1,2−2 = ∆2,0 = ∅,
P − (2,2) = (3,8) is 2-visible, and

P − (3,2) = (2,8) is 2-invisible and (2/2,8/22) = (1,2) < ∆3−3,2−2 = ∆0,0 = ∅.

From the above computations and Lemma 1.4 we know that all of the points in ∆3,2,
with the exception of (2,1), are weakly 2-visible from P = (5,10). Figure 1 provides a
visualization of this example. Note that if Q ∈ ∆3,2 and Q , (2,1), then no point in ∆3,2
blocks Q from being weakly 2-visible from P , but the point (3,2) ∈ ∆3,2 blocks Q′ = (2,1)
from being weakly 2-visible from P .

P

Q

∆m,n

f (x)

P −Q

∆m−h,n−k

g(x)

Figure 2. The left shows P attempting to weakly b-viewQ. The right shows
the origin attempting to b-view P − Q. Note f (x) = s−k

(r−h)b
(x − h)b + k and

g(x) = s−k
(r−h)b

xb.

Nicholson and Rachan [4] provided necessary and sufficient conditions for a point Q ∈
∆m,n to not be weakly visible from a point P < ∆m,n as stated in Theorem 1.5.

We now present a proof to Theorem 1.6, the analogous result in the weak b-visibility
setting.

Proof of Theorem 1.6. Fix b, Q = (h,k) ∈ ∆m,n, and P = (r, s) such that r > m,s > n. (⇒)
Suppose that Q is not weakly b-visible by P . Therefore, by Lemma 1.4, P −Q cannot be
b−visible. By Proposition 1.2, this gives us that g̃cdb(r −h,s−k) > 1. Now, by some careful

study of Lemma 1.4, we see by contrapositive of the lemma that
(

r−h
g̃cdb(r−h,s−k)

, s−k
g̃cdb(r−h,s−k)

)
is in ∆m−h,n−k as desired.

(⇐) Now suppose that g̃cdb(r − h,s− k) > 1. By Proposition 1.2, we know that P −Q is not
b-visible. Suppose further that ( r−h

g̃cdb(r−h,s−k)
, s−k

g̃cdb(r−h,s−k)
) ∈ ∆m−h,n−k. Then, by Lemma 1.4,

Q is not weakly b-visible from P . �
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Our next result establishes restrictions on the coordinates of P so that ∆m,n can be weakly
b-visible from P . In particular, we can conclude that if P = (r, s) weakly b-views ∆m,n, then
r > m and s > n.

Lemma 2.2. Fix b ∈ Z+, and let P < ∆m,n, with m ≥ 2. If P = (r, s) weakly b-views ∆m,n, then
r > m and s > n.

Proof. We show that if r ≤ m, or s ≤ n, then P does not weakly b-view ∆mn,, starting
with the case s ≤ n. Let P = (m + i, j) with i ∈ Z

+ and 1 ≤ j ≤ n. We claim that Q =
(m − 1, j) ∈ ∆m,n is not weakly b-visible from P = (m + i, j). Note that P and Q lie on the
curve f (x) = (j−j)

(m+i−(m−1))b
(x − (m − 1))b + j = j and Q′ = (m,j) ∈ ∆m,n lies between Q and P .

Hence Q is not weakly b-visible from P .

For the other case, let P = (`, j) with n < j and 1 ≤ ` ≤ m. P doesn’t weakly b-view any
of the points in the lattice with the same x-coordinate, because, as was mentioned after
Definition 1.3, we do not have a curve in this case. �

We are now ready to show how to find a family of exponents, such thatQ ∈ ∆m,n is weakly
b-visible by a fixed point P = (r, s) with r > m and s > n. This was the statement of
Theorem 1.7.

Proof of Theorem 1.7. By Lemma 1.4 it suffices to find b0 ∈Z+ such that P −Q is b0-visible
for any Q ∈ ∆m,n. Let Q = (i, j) ∈ ∆m,n with 1 ≤ i ≤m and 1 ≤ j ≤ n. Note P −Q = (r − i, s− j)
and let F(s−j) denote the maximum exponent appearing in the prime factorization of s−j,

or if s − j = 1, then F(s − j) = 0. Then setting b0 =
[

max
1≤j≤n

F(s − j)
]

+ 1 ensures that kb 6 |(s − j)

for any k > 1, 1 ≤ j ≤ n, and any b ≥ b0. Hence ∆m,n is weakly b-visible by P . Note that
we do not need to consider the prime factorization of r − i since showing that kb 6 |(s − j)
for any k > 1 and any Q is enough to guarantee that Q is already weakly b-visible from P .
This holds for any b ≥ b0, which gives us a family of exponents. �

To illustrate Theorem 1.7, we present the following example.

Example 2.3. Consider ∆3,2 and P = (5,10) < ∆3,2. The prime factorization of P −Q, for
each Q ∈ ∆3,2, is given by:

(5− 1,10− 1) = (4,9) = (4,32)

(5− 1,10− 2) = (4,8) = (4,23)

(5− 2,10− 1) = (3,9) = (3,32)

(5− 2,10− 2) = (3,8) = (3,23)

(5− 3,10− 1) = (2,9) = (2,32)

(5− 3,10− 2) = (2,8) = (2,23).

Notice that the highest power appearing in the factorization of the y-coordinates in the
set of points P −Q for Q ∈ ∆3,2 is 3. So selecting b = 4 would make ∆3,2 weakly 4-visible
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by P , as there would not exist a k > 1 such that the y-coordinate of P −Q is divisible by
k4 for any k > 1 and any Q ∈ ∆3,2. Thus by Lemma 1.4, ∆3,2 is weakly b-visible from P for
any b ≥ 4.

For any b ≥ 2, Theorem 1.8 provides a P = (r, s) such that ∆m,n is weakly visible from P ,
provided that m > n+ 2. We present the proof of this statement below.

Proof of Theorem 1.8. We proceed using a similar proof technique as in [3, Theorem 1]

and Figure 3 illustrates the point of interest P =
(⌈ b√

mb+1 − 2mb −m+ 3
⌉
,n+ 1

)
.

P = (`,n+ 1)

(`,m− 1)

H

L

(`,n)

Figure 3. The point P = (`,n+ 1) (where ` =
⌈ b√
mb+1 − 2mb −m+ 3

⌉
) weakly

b-views all of ∆m,n.

Let L denote the set of all curves of the form

f (x) =

y1 − y0

xb1 − x
b
0

xb +
y0x

b
1 − y1x

b
0

xb1 − x
b
0

uniquely connecting Q = (x0, y0) to Q′ = (x1, y1), where Q′ and Q are points in ∆m,n such
that the coordinates of Q′ −Q are positive integers (Figure 4a depicts some of the curves

in L when b = 2) . Showing that the point P =
(⌈ b√

mb+1 − 2mb −m+ 3
⌉
,n+ 1

)
does not lie

on any of the curves in L, will establish the result. This is because we could then find
curves between P and any point in ∆m,n, and those curves won’t have any other points in
∆m,n on them.

Note that the curve L ∈ L connecting the points (1,1) and (m,2) in ∆m,n is the graph of
the function f (x) = 1

(mb−1)
((x)b − 1) + 1, and f (x) has the smallest possible positive rate of

change on the interval [1,∞) from all of the curves in L. That is, the power function f (x)
through the points (1,1) and (m,2) results in the smallest positive leading coefficient for
the power functions in L.

Now note that no curves in L cross through the region below L and above the line H
with equation H(x) = n. But by evaluating f (x) at a chosen x value, we see that L contains
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the point
(⌈ b√

mb+1 − 2mb −m+ 3
⌉
,M

)
(where dxe indicates the least integer greater than or

equal to x) andM≥m−1. Furthermore, H contains the point
(⌈ b√

mb+1 − 2mb −m+ 3
⌉
,n

)
,

and m− 1 > n+ 1 > n.
Therefore, the point P =

(⌈ b√
mb+1 − 2mb −m+ 3

⌉
,n+ 1

)
is below L and above H , as illus-

trated in Figure 3. Thus ∆m,n is weakly b-visible by P . �

Although Theorem 1.8 provides a point that weakly b-views all of ∆m,n, this point might
be quite far from ∆m,n. The following example illustrates this issue.

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

P

(a) Curves in L.

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

P

(b) Quadratics through P and Q ∈ ∆4,2.

Figure 4. Figure for Example 2.4.

Example 2.4. Fix b = 2. Consider ∆4,2 and define P = (12,3). Let L denote the set of all
curves of the form f (x) = (y1−y0)

(x1−x0)2 (x−x0)2 +y0 connectingQ = (x0, y0) toQ′ = (x1, y1), where
Q′ andQ are points in ∆4,2 such that the coordinates ofQ′−Q are positive integers. Figure
4a depicts the curves in L in blue.

Then the curve L ∈ L connecting the points (1,1) and (4,2) is the graph of the function
f (x) = 1

32 (x − 1)2 + 1. Moreover, this function f has the smallest possible positive rate of
change from the lines in L. That is, the function f (x) through the points (1,1) and (4,2)
results in the smallest value of a possible for the power functions in L.

We now claim that ∆4,2 is weakly 2-visible by P = (12,3). To show this we proceed as in
Example 2.3 by computing the prime factorization of P −Q for each Q ∈ ∆4,2, which are
given by:

(12− 1,3− 1) = (11,2), (12− 1,3− 2) = (11,1),
(12− 2,3− 1) = (2 · 5,2), (12− 2,3− 2) = (2 · 5,1),
(12− 3,3− 1) = (32,2), (12− 3,3− 2) = (32,1),
(12− 4,3− 1) = (23,2), (12− 4,3− 2) = (23,1).
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Let P −Q = (r, s) and notice that there is no k > 1 such that k|r and k2|s for any Q ∈ ∆4,2.
Thus ∆4,2 is weakly 2-visible by P = (12,3), by Lemma 1.4. Figure 4b shows the quadratics
through Q and P for each Q ∈ ∆4,2, so that Q is weakly 2-visible from P . Note that there
is a point closer to ∆4,2 that weakly b-views all of ∆4,2. That point is P ′ = (6,3).

We now provide a proof of Corollary 1.9, which describes the location of the point P
closest on average to ∆m,n that weakly b-views all of ∆m,n.

Proof of Corollary 1.9. Let L andH be as in the proof of Theorem 1.8. Note that f (x) = L.
If P = (m∗,n+1), wherem∗ > m is the smallest positive integer such that n+1 < f (m∗), then
P satisfies the conditions of Theorem 1.8 - namely, n < n+ 1 < f (m∗) and m < m∗. Thus P
weakly b-views ∆m,n.

The coordinates of P will be minimal among any points lying below L and above H . This
means that it is the point closest to (m,n) that is able to weakly b-view ∆m,n. Thus the
average distance from P = (m∗,n + 1) to ∆m,n will be minimal, as any P ′ able to weakly
b-view the lattice must be at least as far horizontally and vertically from any point in the
lattice as P is. �

3. Future work

In this paper, we fixed a nonnegative integer b and we considered polynomial functions
of degree d going through the pointsQ = (h,k) ∈ ∆m,n and P = (r, s) with r > m and s > n. In
particular, we considered the functions f (x) = s−k

(r−h)b
(x−h)b+k, as this allowed us to extend

the definition of b-visibility to weak lattice point visibility. However, one could consider
other types of functions, such as rational, exponential, logarithmic, or even sinusoidal
functions, albeit some of the computations would be much more difficult to analyze.
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