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ABSTRACT. The Hilbert schemes of the singular space
(
C
2

Zn

)
and of the orbifold

[
C
2

Zn

]
are

two structures that contain geometric data about group actions on a polynomial ring. Our
goal is to understand this geometry by finding the Euler characteristics of these spaces. The
problem is equivalent to counting Young diagrams that are based on the group action. For
the singular case, we count all zero generated Young diagrams that contain a certain num-
ber of 0 colored squares, and we prove a theorem greatly reducing the problem, sometimes
into already solved cases. For the Hilbert scheme of the orbifold, we count all Young dia-
grams with a given coloring, and we develop a procedure to obtain the desired generating
function, as well as closed form generating functions for special cases. We also explore the
method of vertex operator algebras.

1. INTRODUCTION

In this paper, we seek to further understand the geometry of certain Hilbert schemes by
calculating the Euler characteristic, an important topological invariant. We begin with
some background on Hilbert schemes, the rich interplay between Hilbert schemes and
Young diagrams, and the Euler characteristic. Expanding on previous research, we find
a generating function for the Euler characteristic of certain Hilbert schemes via Young
diagrams. A good reference for background material is Ideals, Varieties and Algorithms
by Cox, Little and O’Shea [2].

1.1. Hilbert Schemes. The Hilbert scheme of m points on the plane, Hilbm(C2), is an
algebro-geometric object parametrizing the possible arrangements of m points in a plane.
That is, each point of the Hilbert scheme is an ideal corresponding to a configuration of
points, and the internal scheme structure reflects the geometric information of the possi-
ble arrangements and the ways the points can collide.

More recently, mathematicians have applied the notion of Hilbert schemes to more com-
plicated surfaces arising from a finite group of symmetries acting on a plane. Given a
finite group G action on C[x,y], the quotient space C

2

G is defined by identifying elements

∗ Corresponding author



MJUM Vol. 5 (2019-2020) Page 2

that lie in the same orbit of the group action. Note that the resulting surface may contain
singularities.

Another surface arising from such a group action is the orbifold
[
C
2

G

]
. It also arises by

identifying points in the same orbit, but carries more geometric structure than the quo-
tient space as it also encodes the isotropic subgroups — that is, at each point the subgroup
of elements that fix that point. For a more thorough introduction to quotient spaces and
orbifolds, see Chapter 13 of [14].

We can define the Hilbert scheme of points on both the quotient space and the orb-
ifold, which parametrize configurations of m points on each surface respectively. We
will only consider the cases where the surfaces arise from the torus actions of cyclic
groups (actions that affect x and y separately), which are represented by multiplication

by Gk,n =
[
ω 0
0 ωk

]
∈Zn, where ω is the nth root of unity.

The Hilbert scheme of m points on the quotient space is defined as:

Hilbm
(
C
2

G

)
=

{
I ⊂C[x,y]G

∣∣∣∣∣ dim
C[x,y]G

I
=m

}
.

Here, G is a cyclic group, and I is an ideal of C[x,y]. Since I is fixed by the torus action of
G, it is a monomial ideal. For each m, we are interested in those ideals I such that when
the fixed points of the group action are quotiented by I , the result forms anm dimensional
vector space C.

Due to the greater structure of the orbifold, the Hilbert scheme of points on the orbifold
will depend not just on the number of points, but on a representation of the group action.
It is defined as:

Hilbv=m0ρ0+m1ρ1+...+mk−1ρk−1

[
C
2

G

]
=

{
I
∣∣∣∣∣ C[x,y]I

' v
}
.

Here, v is a representation of the group action, decomposed into irreducible representa-
tions ρi . For each representation, we are interested in those ideals which when quotiented
into the polynomial ring are isomorphic to that representation.

Further elaboration and explanation for these definitions and the related concepts can be
found in [7].

1.2. Young Diagrams. Young diagrams are important combinatorial objects with wide
use in representation theory and other subfields of mathematics. Young diagrams are sta-
ble configurations of boxes in the plane. Informally, one may think of physically stacking
boxes in the plane, with “gravity” acting in the direction (−1,−1). A configuration is then
stable if it is supported by (i.e. touching) either a box or one of the lines y = 0, x = 0 to the
left and below. See Figure 1 for examples and non-examples of Young diagrams:

More general background on Young diagrams can be found in [4].
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A Young diagram A Young diagram Not a Young diagram

FIGURE 1. Young diagrams and non-Young diagrams

1.2.1. Interpretations of Young Diagrams. One classical problem is to count the number of
Young diagrams with a certain number of boxes. It is easy to see that Young diagrams of
size n are in bijection with partitions of size n: given a Young diagram, let λi be the height
of the ith column, then λ = {λi} is a partition of n. Conversely, given any partition λ = {λi}
of n, we can order λi from greatest to least, then take the Young diagram with ith column
of height λi . See Figure 2 for an example.

4 3+1 2+2 2+1+1 1+1+1+1

FIGURE 2. Young diagrams corresponding to partitions of 4

Although there is no known closed formula for the number of Young diagrams of size n,
the coefficient of qn in the series expansion of the following gives the number of Young
diagrams of size n:

∞∏
i=1

1
1− qi

= (1+ q+ q2 + q3...)(1 + q2 + q4 + q6...)(1 + q3 + q6 + q9...)...

(for a proof of this expansion, see, for example, [13]). One can then calculate the number
of partitions of size n by expanding the series to the nth term. For example, for n = 5:

1+ q+2q2 +3q3 +5q4 +7q5...

The coefficient of q5 is 7, so there are 7 Young diagrams with five blocks. A function
like the one above which stores combinatorial data in its coefficients is called a generating
function. They will be key for presenting solutions to our problem.

Another important interpretation of Young diagrams is their correspondence with mono-
mial ideals of C[x,y]. An ideal of C[x,y] is monomial if it has monomial generators. First,
we assign to each square (m,n) the monomial xmyn. Then we identify the squares repre-
senting the generators of the ideal. All squares above and to the right of these generating
squares will be members of the ideal. The remaining squares form a Young diagram.
Thus, there is a bijection between monomial ideals and Young diagrams. For example,
the Young diagram in Figure 1 corresponds to the ideal generated by y3,xy2,x3.



MJUM Vol. 5 (2019-2020) Page 4

y3 xy3 x2y3 x3y3

y2 xy2 x2y2 x3y2

y xy x2y x3y

1 x x2 x3

FIGURE 3. Monomials in a grid

Note that this notion can naturally be extended to monomial ideals in n variables us-
ing Young diagrams of higher dimension. For more on these correspondences and their
applications, see [12].

1.2.2. Coloring of Young Diagrams via Torus Actions. In addition to regular Young diagrams,
one may also want to count (for reasons that will soon become apparent) the number of
Young diagrams with the boxes filled with “colors” in different patterns. Given three
natural numbers a,b,n, the coloring associated to (a,b,n) assigns to the box (i, j) the value
(ai+bj) mod n. Note that we use zero indexing, meaning that the bottom left most square
to be box (0,0) For some examples, see Figure 4:

1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1

(1,1,2) coloring

1 2 0 1 2 0
2 0 1 2 0 1
0 1 2 0 1 2
1 2 0 1 2 0
2 0 1 2 0 1
0 1 2 0 1 2

(1,2,3) coloring

2 3 0 1 2 3
0 1 2 3 0 1
2 3 0 1 2 3
0 1 2 3 0 1
2 3 0 1 2 3
0 1 2 3 0 1

(1,2,4) coloring

FIGURE 4. Some grid colorings

More background for the colorings described in this paper can be found in the introduc-
tion of [1] and in [6], [5]. Note that there are other ways to fill in Young diagrams with
numbers, like with Young tableaux in [4], which are completely different from the color-
ings we describe here.

In our interpretation of Young diagrams as monomial ideals of C[x,y], the coloring corre-
sponds to an action of (the algebraic torus) (C∗)2 on C[x,y] via

(s, t) · f (x,y) = f (sx, ty)
More specifically, we consider a cyclic subgroup of (C∗)2, generated by (ωa,ωb), where ω
is an nth root of unity.

Note that only monomial ideals are fixed under torus actions (since multiplying by gen-
erators by units does not change the ideal). Therefore, monomial ideals are key to under-
standing the geometry of these Hilbert schemes.
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We can use a “coloring” of the grid to represent the group action. The “color” of each
square is the power of ω by which the corresponding monomial is multiplied when x and
y are acted on by the the group action. For example, Figure 5 shows a Young diagram

corresponding to the action of G1,2 =
[
ω 0
0 ω

]
∈ Z3. The bottom left square is colored 0

because the monomial 1 is unaffected by the group action, the square above and to the
right is colored 2 because xy maps to (ωx)(ωy) = ω2xy, and so on.

0 1 2 0

2 0 1 2

1 2 0 1

0 1 2 0

FIGURE 5. A Young diagram of an action in Z3

1.3. The Euler Characteristic. The Euler characteristic is an old and fundamental topo-
logical invariant related to the curvature of a space. Finding the Euler characteristic of
Hilbert schemes gives us greater understanding of the geometric information they repre-
sent.

In some cases, computing the Euler characteristic reduces to a purely combinatorial prob-
lem. For example, it has been known for a long time that the Euler characteristic of the
Hilbert scheme of m points can be computed by counting the number of partitions of m,
which correspond to Young diagrams. It is well-known also that the Euler characteristic
of the Hilbert scheme of quotient spaces and orbifolds can also be computed by counting
certain types of colored Young diagrams.

Broadly, this follows from the fact that a point of Hilbert scheme is an ideal, and the points
that are fixed by the group action are monomial ideals, which we have seen correspond
to Young diagrams. For more details on this derivation, see [8] and [9]. For explana-
tions specific to the quotient space and orbifold cases, see [3], [6], and [7]. And for more
background on this topic, see [11].

For our purposes, the Euler characteristic of the Hilbert scheme of m points on the quo-
tient space corresponds to the number of zero generated Young diagrams containing m
0-colored squares. A Young diagram is zero generated if each square in a corner posi-
tion on the outside boundary (i.e. a square outside of the Young diagram whose left and
bottom edges lie on the boundary of the Young diagram or the axes) is occupied by a
0-colored square — for instance, the highlighted squares in Figure 6 are in outside corner
positions, and note that they all are 0-colored. Our goal was to find a generating function
to count such diagrams.

Again, since the orbifold has more structure, the Euler characteristic of the Hilbert scheme
in this case will depend not just on a number m, but on a list of m colors. In particular, if
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2 3 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3 0 1

2 3 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3 0 1

2 3 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3 0 1

2 3 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3 0 1

FIGURE 6. A zero-generated Young diagram

2 3 0 1 2 3

0 1 2 3 0 1

2 3 0 1 2 3

0 1 2 3 0 1

2 3 0 1 2 3

0 1 2 3 0 1

FIGURE 7. A Young diagram with coloring 3ρ0 +2ρ1 +4ρ2 +3ρ3

the color i occurs ci times in the list (for i = 0,1, ...) the corresponding Euler characteristic
is equal to the number of Young diagrams that contain c0 0-colored squares, c1 1-colored
squares, and so on. We will refer to such Young diagrams as having the coloring c0ρ0 +
c1ρ1+ ...+cn−1ρn−1. Our goal was to find a generating function which counts such colored
Young diagrams. The coefficient of the monomial qc00 q

c1
1 ...q

cn−1
n−1 in our generating function

will equal the number of Young diagrams with coloring c0ρ0 + c1ρ1 + ... + cn−1ρn−1. For

example, the Young diagram in Figure 3 for the action of
[
ω 0
0 ω2

]
∈ Z4 has the coloring

3ρ0+2ρ1+4ρ2+3ρ3. In the generating function, it would contribute to the q30q
2
1q

4
2q

3
3 term.
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1.4. Previous Work. Both of these problems have been solved for the actions of
[
ω 0
0 ω

]
and

[
ω 0
0 ω−1

]
∈ Zn on C[x,y] in [6] and [5] by Ádám Gyenge, András Némethi, and

Balázs Szendröi. They used a bijection with motions on a combinatorial abacus (some-
times called a Dirac sea representation in the simplest cases) to count each coloring for
the orbifold problem, and then strategically substituted roots of unity to count zero gen-
erated Young diagrams.

For the zero generated problem, the generating function for the case
[
ω 0
0 ω−1

]
∈Zn was

 ∞∏
m=1

(1− qm)−1
n+1 · ∑

m̄=(m1,...,mn)∈Zn

ζm1+m2+...+mn(q1/2)m̄
T ·C∆·m̄ (1)

where ζ = exp 2πi
1+hV , hV is the (dual) Coxeter number of the corresponding finite root

system (one less than the dimension of the corresponding simple Lie algebra divided by
n), and C∆ is the finite type Cartan matrix corresponding to ∆.

For the orbifold problem, the generating function for that same case is: ∞∏
m=1

(1− qm)−1
n+1 · ∑

m̄=(m1,...,mn)∈Zn

qm1
1 · · · q

mn
n (q1/2)m̄

T ·C∆·m̄ (2)

where q =
∏n
i=0 q

di
i with di = dim ρi , and C∆ is the finite type Cartan matrix corresponding

to ∆.

Additionally, Benjamin Young [1] found results about colored three dimensional Young
diagrams using techniques of vertex operator algebras. He sliced three dimensional
Young diagrams into two dimensional Young diagrams, and then used the operators to
describe how they interlace together. This kind of interlacing is useful, because it allows
us to break Young diagrams into simpler Young diagrams and reconstruct them.

1.5. Results. Our goal was to find the Euler characteristic of two types of Hilbert Schemes
arising from the torus action of a cyclic group on C[x,y]: the Hilbert Scheme of the quo-
tient surface, and the Hilbert scheme of points on an orbifold. This group action can be

represented as multiplication by
[
ω 0
0 ωk

]
∈ Zn, where ω is the nth root of unity, and we

call this group action Gn,k.

The Euler characteristic (χ) of both types of Hilbert schemes has a combinatorial interpre-
tation in terms of colored Young diagrams. We worked on finding generating functions
to count the relevant Young diagrams.
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Our first result reduces the problem for the quotient surface to the same problem for a
simpler group action Gn,k where n and k are relatively prime:

χ

(
Hilbm

C
2

Gk,n

)
= χ

Hilbm
C
2

G k
d ,
n
d


where d = GCD(n,k)

In the orbifold case we found that the same simplification applies for representations
where in the corresponding Young diagrams, the distribution of colors is the same in each
column (these are discussed in [5] where they are called ”balanced” Young diagrams).

Furthermore, we found a method of obtaining the generating function for the orbifold
problem: The following procedure results in the generating function in q0,q1, ...,qn−1 for
the Euler characteristic of the orbifold Gk,n acting on C[x,y]. Let d := GCD(n,k) and let u
mod v mean u − vbuv c. Take the series expansion of

∏∞
a=1

1
1−

∏a
b=1 tb

and replace each term
c
∏m
w=0 (tw)

ew with

c
n−1∏
i=0

qi

∑jmax

j=0

∑ n
d −1

l=0

1+
−1−

(
(b id c−l)( kd )

−1
mod n

d

)
+ejn+ld+(i mod d)

( nd )



where jmax is the greatest natural number such that jn+ ld + (i mod d) ≤m.

Although this is not a closed form, as it requires modification of a series in an infinite
number of variables, this formula applies to all group actions Gk,n.

We also used vertex operator algebras to try and develop a closed form of the orbifold
generating function for certain group actions. For example, using the notation of those
operators, the generating function for G2,4 would be:∑

λ

Q1,3 Γ+ Q0,2 λ.

Here, λ ranges over all Young diagram, the operators Q0,2 and Q1,3 describe the coloring
of a Young diagram, and the operator Γ+ finds all Young diagrams whose columns can
be alternately interlaced with the columns of a given diagram to yield a valid Young
diagram.

These operators allow us to build the desired colored Young diagrams out of simpler
diagrams that are better understood. Using identities associated with these operators, it
may be possible to express such formulas explicitly as a generating function. For more on
these methods, see [1] and our Section 4.

2. REDUCING THE ZERO GENERATED PROBLEM

To find the Euler characteristic of the Hilbert scheme of the quotient space, we must find
a generating function where the coefficient of xn is the number of zero generated Young
diagrams containing n 0-colored squares.
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2 3 0 1 2 3 0 1 2 3
0 1 2 3 0 1 2 3 0 1
2 3 0 1 2 3 0 1 2 3
0 1 2 3 0 1 2 3 0 1
2 3 0 1 2 3 0 1 2 3
0 1 2 3 0 1 2 3 0 1
2 3 0 1 2 3 0 1 2 3
0 1 2 3 0 1 2 3 0 1

⇐⇒

2 0 2 0 2 0
0 2 0 2 0 2
2 0 2 0 2 0
0 2 0 2 0 2
2 0 2 0 2 0
0 2 0 2 0 2
2 0 2 0 2 0
0 2 0 2 0 2

FIGURE 8. Reducing a zero-generated Young diagram

2.1. First Reduction Theorem. Our contribution was to find a method of reducing group
actions to simpler group actions with the same number of zero generated Young diagrams

of each size. An example of such a reduction from
[
ω 0
0 ω2

]
∈Z4 to

[
ω 0
0 ω

]
∈Z2 is shown

in Figure 8.

Theorem 2.1. There is a bijection between the zero-generated Young diagrams of C[x,y] under[
ω 0
0 ωk

]
∈ Zn, and the zero-generated Young diagrams of C[x,y] under

[
ω 0
0 ω

k
d

]
∈ Z n

d
, where

d=GCD(k,n).

Proof. Note that in the grid determined by C[x,y] under
[
ω 0
0 ωk

]
∈ Zn the bottom row

consists of: 0,1,2, ...,n − 1,0,1,2, ... This is the case because the bottom left corner square
is 0 (since constants are invariant under Torus actions) and moving right by a square
corresponds to increasing the power of x by 1, and thereby multiplying by ω.

Now we will show that a column contains a 0 only if its bottom entry is divisible by d.
Suppose there is a column containing a 0, and the bottoms entry of that column is a. Mov-
ing up a column corresponds to increasing the power of y by 1 and thereby multiplying
by ωk. Therefore, we have a+ tk ≡ (0 mod n), where t is the height of the square marked
0. We can write this as a+ tk = un for some integer u, or a = un− tk. Since both d divides
both un and tk, it divides the right hand side, and so must also divide a.

Next, consider moving along the boundary of a 0 generated Young diagram (the staircase-
like line separating the boxes in the diagram from the rest of the grid, excluding the axes),
starting from the top left corner and alternately moving down and to the right until the
bottom right corner is reached. We see that every ”down” move must end in the bottom-
left corner of a square marked with 0, because this ending square will be a generator of the
ideal. Thus, a ”down” move can only occur to the left of a column which contains 0’s. We
have shown that only every dth column contains a 0, so the boundary will always move
”right” on columns which do not contain a 0. This means that in 0 generated Young dia-
grams, columns whose bottom-most square is not divisible by d will be the same height
as the first column to the left whose bottom-most square is divisible by d.
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The implication of this fact is that 0 generated Young diagrams are composed of rectangu-
lar blocks of width d. Given this specific rule, we can delete the columns whose bottom
squares are not divisible by d without losing any information. That is, this deletion is
reversible, because we know that the deleted columns must be the same height as the
remaining column to the left. Note that since all 0’s remain, this deletion will map 0 gen-
erated Young diagrams to 0 generated Young diagrams.

Once we delete those columns, moving one square right on the grid means adding d,
while moving one square up means adding k. Thus every square is determined by cd +
wk mod n for some integers c and w. By dividing everything by d, we find that this board
is isomorphic to one determined by c +w k

d mod
n
d which is the board resulting from the

group action of
[
ω 0
0 ω

k
d

]
∈Z n

d
on C[x,y].

Thus, we have a one to one correspondence between 0 generated Young diagrams of these
two group actions, which gives us a way to simplify the task of counting them. �

2.2. Generating Functions. Since the columns deleted never contain 0’s, the number of
0’s is the same in the old and new Young diagram. Therefore, given the above bijection,
the generating functions for zero generated Young diagrams are exactly the same for the

two group actions. In cases where the grid reduces to
[
ω 0
0 ω

]
or

[
ω 0
0 ω−1

]
, we can use

previous results to obtain closed form generating functions. In general, this occurs when
k|n or (n − k)|n. Therefore, we can apply Equation 1 with a simple change of variables
to find the number of 0-generated Young diagrams of a given size in many more cases.
Recall that Equation 1 is: ∞∏

m=1

(1− qm)−1
n+1 · ∑

m̄=(m1,...,mn)∈Zn

ζm1+m2+...+mn(q1/2)m̄
T ·C∆·m̄

where ζ = exp 2πi
1+hV , hV is the (dual) Coxeter number of the corresponding finite root

system (one less than the dimension of the corresponding simple Lie algebra divided by
n), and C∆ is the finite type Cartan matrix corresponding to ∆.

3. TOWARDS AN ORBIFOLD GENERATING FUNCTION

To find the Euler characteristic of the Hilbert scheme of an orbifold, we must find a gen-
erating function such that the coefficient of qe00 q

e1
1 q

e2
2 ... is the number of Young diagrams

with e0 squares of color 0, e1 squares of color 1, and so on.

3.1. Procedure for Orbifold Generating Function. We first give a theorem showing how
we can arrive at such a generating function. Although it is not a closed form (as it requires
manipulation of a generating function with infinitely many variables) it applies for all
torus actions of cyclic groups, Gk,n.
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Theorem 3.1. The following procedure results in the generating function in q0,q1, ...,qn−1 for

the Euler characteristic of the orbifold
[
ω 0
0 ωk

]
∈ Zn acting on C[x,y]. Let d := GCD(n,k) and

let u mod v mean u − vbuv c. Take the series expansion of
∏∞
a=1

1
1−

∏a
b=1 tb

and replace each term
c
∏m
w=0 (tw)

ew with

c
n−1∏
i=0

q

∑jmax
j=0

∑ n
d −1
l=0

1+
−1−

(
(b id c−l)( kd )

−1
mod n

d

)
+ejn+ld+(i mod d)

( nd )


i

where jmax is the greatest natural number such that jn+ ld + (i mod d) ≤m.

Proof. We apply the identity 1
1−ζ = 1 + ζ + ζ2 + ... to each factor 1

1−
∏a
b=1 tb

in the original

function
∏∞
a=1

1
1−

∏a
b=1 tb

. This identity is the formula for the sum of an infinite geometric
series, and we can apply it without worrying about convergence since we are treating our
function simply as a formal sum. Using this, we can write the original function as

∞∏
f =0

∞∑
g=0

f∏
h=1

(th)
g = (1+ t0 + t

2
0 + ...)(1 + (t0t1) + (t0t1)

2 + ...)(1 + (t0t1t2) + (t0t1t2)
2 + ...) · · ·

This can be interpreted as a generating function for Young diagrams, where for each term
in the full expansion (using the same notation as before), c counts the number of Young
diagrams whose wth column has ew boxes. In fact, there is a unique such Young diagram,
and so c = 1 for each term.

Since the coloring of the grid by the group action is fixed, the number of boxes in each
column of a Young diagram uniquely determines the number of boxes of each color in that
diagram. We will show that the replacement procedure takes each term corresponding to
a Young diagram with columns of particular sizes, and returns a term which corresponds
to the coloring of that Young diagram.

Any given color will not necessarily appear in every column of the grid. In fact, the color
numbered α will only appear in a column numbered γ (starting from 0) if and only if
α ≡ γ mod d. For each color i, our procedure affects all of the columns with this property.

In each column, the colors repeat every n
d boxes. If a color α first appears in a column in

row numbered β (again starting from 0), then the number of boxes marked α in the first s
boxes of that column will be b1+ s−β

( nd )
c.

This row number β for column γ is the smallest nonnegative number such that kβ+γ ≡ α
mod n. In our function, α = i and γ = jn + ld + (i mod d). Thus we solve for β in the
equation

kβ + jn+ ld + (i mod d) ≡ i mod n

kβ + ld ≡ i − (i mod d) ≡ d
⌊ i
d

⌋
mod n
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k
d
β + l ≡

⌊ i
d

⌋
mod

n
d

β ≡
(⌊ i
d

⌋
− l

)(k
d

)−1
mod

n
d

and take β to be the smallest nonnegative integer satisfying the congruence. Plugging in
this value for β, and plugging the row index of the top square in column γ of the diagram
s = ejn+ld+(i mod d) − 1 into b1+ s−β

( nd )
c yields the desired formula. �

3.2. Orbifold Special Case Reduction Theorem. For some special cases, we were able to
find a closed form of the generating function for the orbifold. We use a reduction method
much like that used with the zero generated Young diagrams.

Theorem 3.2. Consider all Young diagrams for the action of
[
ω 0
0 ωk

]
∈ Zn on C[x,y] whose

coloring
∑n−1

0 m0ρ0 obeys the property: The sum of all mi for 0 ≤ i ≤ n−1 in a particular residue
class mod GCD[n,k] is the same for all mod GCD[n,k] residue classes. These Young diagrams are

in bijection with Young diagrams of the action of
[
ω 0

0 ω
k

GCD[n,k]

]
∈Z n

GCD[n,k]
on C[x,y].

Proof. Each column of the grid of a torus group action contains numbers of a particular
residue class mod GCD[n,k]. Therefore, the Young diagrams characterized in the state-
ment have the same number of boxes in each type of column. Since no column of a
Young diagram can be taller than the column to its left, such Young diagrams are com-
posed of blocks which are GCD[n,k] wide. Deleting all but one of the columns in each
block does not lose information, and so is reversible. Performing this deletion results in a

Young diagram in a grid corresponding to the group action of
[
ω 0

0 ω
k

GCD[n,k]

]
∈Z n

GCD[n,k]
on

C[x,y]. �

3.3. Generating Functions. If the generating function for the reduced action is the func-
tion f (q0,q1, ...,q n

GCD[n,k]−1), we can use the bijection to obtain the generating function for
the original action by substituting for qi the product of all qj with 0 ≤ j ≤ n − 1 and j ≡ i

mod GCD[n,k]. In cases where the grid reduces to that of
[
ω 0
0 ω

]
or

[
ω 0
0 ω−1

]
, we can

use previous results to obtain closed form generating functions. In general, this occurs
when k|n or (n−k)|n. Again, we find that with a simple change of variables, we can apply
Equation 2 to many more cases. Recall that Equation 2 is:

(
∞∏
m=1

(1− qm)−1)n+1 ·
∑

m̄=(m1,...,mn)∈Zn

qm1
1 · · · q

mn
n (q1/2)m̄

T ·C∆·m̄

where q =
∏n
i=0 q

di
i with di = dim ρi , and C∆ is the finite type Cartan matrix corresponding

to ∆.
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4. VERTEX OPERATOR ALGEBRAS

Another possibly useful tool is that of operators, which were used to solve many prob-
lems involving 3D Young diagrams. For more background information on vertex operator
algebras, see [1].

Two Young diagrams λ,µ interlace if λi ≥ µi ≥ λi+1 for every i; note that this relation is
not necessarily symmetric. More colloquially, λ,µ interlace if we can build a new Young
diagram by alternately taking columns from λ and µ, from left to right. If λ,µ interlace,
then we write λ � µ. For example:

� �

Γ− finds all the partitions that interlace over a given partition. For example:

Γ− = + + · · ·+ + + · · ·
where

�

Γ+ finds all the partitions that interlace into a given partition. For example:

Γ+ = + + +

where

�
Q identifies the coloring of a given partition. For example:

Q0,2 = q0q
2
2

Known commutator identities allow us to obtain closed formulas in many circumstances,
but we have not yet been able to do so for our cases. For instance, the following is operator

notation of the generating function for the orbifold problem of the action
[
ω 0
0 ω2

]
∈Z4:∑

λ

Q1,3 Γ+ Q0,2 λ.

5. CONCLUSION

We have found a way to reduce the quotient space problem to that of simpler group
actions, many of which have been solved. We have also obtained a procedure to obtain
the generating function for the orbifold problem, and have a closed form for some special
cases. We also have investigated additional methods, which may be useful, either to our
problems, or other related questions. Looking ahead, we hope to solve more cases of the
quotient space problem, and to find closed forms for more cases of the orbifold problem.
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6. APPENDIX A: ABACUS METHOD

Though the abacus method has not yet brought us close to a desired generating function,

it was used to solve the orbifold problem for the action of
[
ω 0
0 ω

]
∈ Zn in [7]. It involves

using an abacus – that is, a list of columns of numbers with circles marking some of the
numbers. The columns are called ”runners” and the circles are called ”beads”, and the
beads can be moved to change positions within each runner. We construct such an abacus
configuration in a way that records the boundary of a Young diagram, and then move the
beads to record modification of the diagram. The number of runners corresponds to the
number of colors. For example, if we let marked places represent ”down” moves and
unmarked places represent ”right” moves, the following Young diagram is represented
by the following abacus:

0
1 0 1
0 1 0

5© 4©
3© 2
1© 0
-1 -2©
-3© -4
-5 -6

Using the abacus, we found a way to generate all Young diagrams which interlace with
a given Young diagram, that is, which can be spliced with the original, by alternating
columns, to form a valid Young diagram. Interlacing diagrams correspond to moving
each bead (starting from the top) at most once, either to the left or diagonally up and
right. This fact may be useful because Young diagrams for many group actions can be
broken up into interlacing Young diagrams for simpler group actions.

A more thorough introduction to the combinatorial abacus can be found in Chapter 11 of
[10].

7. APPENDIX B: CHECKING FORMULAS COMPUTATIONALLY

We also used a computer program to test the procedure for obtaining the orbifold gener-
ating function. Given values for n and k and a maximum size, the following Mathematica
code will output a list of n-tuples which represent all of the colorings of Young diagrams
up to the maximum size. In the code below, we have set n = 3 and k = 2, and the maxi-
mum size is 8.

p a r t i t i o n s = {} ;
For [ l = 1 , l <= 8 , l ++ ,

For [m = 1 , m <= P a r t i t i o n s P [ l ] , m++ ,
AppendTo [ p a r t i t i o n s , Part [ I n t e g e r P a r t i t i o n s [ l ] , m] ] ;
]

]
n = 3 ;
k = 2 ;
d = GCD[ n , k ] ;
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h = PowerMod[ k/d , −1 , n/d ] ;
c o l o r i n g s = {} ;
For [ s = 1 , s <= Length [ p a r t i t i o n s ] , s ++ ,

young = Part [ p a r t i t i o n s , s ] ;
term = {} ;
For [ i = 0 , i < n , i ++ ,

j = 0 ;
c = 0 ;
While [ j + Mod[ i , d ] < Length [ young ] ,

c = c +
Floor [1 + ( ( Part [ young , j + Mod[ i , d ] + 1] − 1 −

Mod[ h * ( Floor [ i /d ] − ( j /d ) ) , n/d ] ) / ( n/d ) ) ] ;
j = j + d ;
]

AppendTo [ term , c ] ;
]

AppendTo [ co lor ings , term ] ;
]

c o l o r i n g s

To obtain a generating series from this, we have only to convert each n-tuple into a mono-
mial in n variables, and sum the results into a polynomial. After applying the preceding
program, we use the following:

s e r i e s = 0 ;
For [ r = 1 , r <= Length [ c o l o r i n g s ] , r ++ ,

s e r i e s =
s e r i e s +
x ˆ Part [ Part [ co lor ings , r ] , 1 ] *
y ˆ Part [ Part [ co lor ings , r ] , 2 ] *
z ˆ Part [ Part [ co lor ings , r ] , 3 ] ;

]
s e r i e s

And we get the first few terms of the generating series:

x+ xy + xz+3xyz+3x2yz+ xy2z+3x2y2z+ x3y2z+

xyz2 +3x2yz2 + x3yz2 + xy2z2 +9x2y2z2 +9x3y2z2 + x4y2z2+

3x2y3z2 +9x3y3z2 +3x2y2z3 +9x3y2z3 +3x2y3z3

The term 9x3y2z3, for example, means that for the action of
[
ω 0
0 ω2

]
∈Z3 on C[x,y], there

are 9 Young diagrams with the coloring 3ρ0 +2ρ1 +3ρ +2. Indeed, the first several terms
of our generating series for this action match those found in [6].
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