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ABSTRACT. It is commonly known from elementary geometry that if a point P is exterior
to a circle, there are exactly two lines tangent to the circle which intersect at P. Conse-
quently, the points of tangency between the circle and these lines identify a specific chord
of the circle, which in turn identifies a distinct line in the plane. If we let P traverse some
parametric function f(t), we obtain a series of chord-containing lines which correspond to
a series of points belonging to f(f). In this paper, we treat these lines as the tangent lines
of a parametric function g(t) which we call the chord inverse of f(t). We also derive chord
inverses of various functions and discuss both their general and specific properties.

1. DEFINING THE CHORD INVERSE

Let us suppose that the twice differentiable parametric function f(¢) = (x(t), y(t)) does not
pass through the interior of the unit circle U and that the point P = (a,b) is on f(¢).

We know from the geometry of the circle that there exist exactly two lines through P that
are tangent to the unit circle. If we draw a line through the points of tangency between
these two lines and the unit circle, we obtain the construction in Figure which we call
the chord line of P.

Consider the family of all chord lines constructed in this manner for every point P be-
longing to f(t). We propose that there exists some parametric function g(t) that we call
the chord inverse of f(t) which is tangent to every line in this family. Consequently, the
chord inverse can be thought of as the envelope of a specially constructed family of linear
curves in the plane. [4]

In order to study the properties of the chord inverse, we first derive a transformation
which maps an arbitrary, twice differentiable function f(¢#) to its chord inverse g(t). To
start, suppose that the two lines through P are tangent to the unit circle at A and B. Our
first step is to find an expression for the chord line L in terms of a and b.

We begin by noticing that since AP and BP are tangent to U, the radii OA and OB are
perpendicular to these lines at A and B. Consequently, the right triangles AOAP and
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Ficure 1. The chord line of P

AOBP are congruent. Since the segment OP has a length of Va2 + b2 and the radii OA
and OB have lengths of 1, then

PA=PB=Va2+b2-1

by the Pythagorean Theorem. Since PA = PB, there exists a circle centered at P with
radius Va? + b? — 1 which intersects U at A and B as shown in Figure

Ficure 2. The circle centered at P that intersects U at A and B
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This implies that A and B form the solution set of the simultaneous equations
x% + yz =1 (1)

(x—ay+@-b)? = (Va2 +b2—1) . (2)

Expanding (1)) and subtracting (2)) from it yields the equation 1 = ax + by. Since A and B
satisfy 1 = ax+by, every point on the chord line containing AB must also satisfy 1 = ax+by.
That is, the equation of the chord line L in terms of a and b is

1
L:y= —%x + 7
Since P = (a,b) is on f(t), it follows for some f that a = x(¢) and b = y(t). Thus, we know
the equation of the chord line L in terms of x(f) and y(¢). This allows us to use the Butler
Transformation

s =i = 0 25 )

to determine the chord inverse g(t) of the parametric function f(t). [1][3]

Before we continue, note that:

e The x-component of B(f(t)) is the negative slope of f(t)’s tangent line at ¢.
e The y-component of B(f(t)) is the y-intercept of f(¢)’s tangent line at ¢.

This latter fact may be more difficult to see at a glance, so observe first that the slope
of f(t) = (x(t),y(t)) at t is y’(¢)/x’(t). Hence, the equation of f(t)’s tangent line through
(x(2), (1)) is

which is the y-component of the Butler transformation.

The Butler Transformation is useful for our purposes because when it is applied twice,
the original curve reappears, albeit reflected about the y-axis. That is,

B(—y ) y(t)_x(t)(y (”)) ~ (Cx()9(1))

x'(t) x'(t)

This fact can be demonstrated by letting X(¢) = —z:x; and letting Y(t) = p(t) — x(t)(y’(t)).
Then
Y'(t)

800100 = (g 10 - X0 g )
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Since x(t) and y(t) are twice differentiable, taking the appropriate derivatives yields

" (1)x'(8) -y’ (£)x" ()

X0 =50
, V(X () -y (D5 (1)
Y'(t) = —x(t) (D)2 ,

so substitution and simplification shows that
B(B(x(), (1)) = B(X(2), Y (1)) = (=x(t), (2)).

Therefore, given the slopes and y-intercepts of the tangent lines to some unknown para-
metric function g(t), the Butler Transformation will reconstruct a reflection of g(¢).

Recall that each chord line L of the form
x(t) 1

y(n” ()
is a tangent line to the chord inverse of f(t) = (x(t),y(¢)). Given the Butler Transforma-
tion’s reconstructive property which we have just demonstrated, we can therefore use L’s
slope and y-intercept to obtain a reflection of the chord inverse g(t).

Suppose g(t) = (u(t),v(t)) is the chord inverse of f(t) = (x(t),y(t)). Let X(t) = % denote

the negative slope of L and let Y (t) = ﬁ denote L’s y-intercept. Then
Y'(t)
X'(t)’

Y'(t)

B(X(1) Y (1) = - 0

Y(8 —X(t)( )) _ (cu(t) (1)),

Taking the appropriate derivatives shows that

X0 == mp
v V(1)
Y=-mme

Since B(X(t), Y(t)) = (—u(t),v(t)), we have the following result.

Proposition 1.1. Let f(t) = (x(t),y(t)) be a twice differentiable function of t on some domain.
Then the chord inverse of f(t) is given by the transformation

_ L w (0
€U0 =000 =5 i g - )
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Therefore, given any twice differentiable function f(f), we can obtain its chord inverse
g(t) using the transformation C, which was our stated goal at the beginning of this section.
Note that although we could have derived the chord inverse by applying the more general
methods used to determine envelopes to families of curves, we were able to avoid many of
the complications introduced by such methods since the members of our family of curves
are exclusively linear. [1]][3]

We now turn from our initial derivation of C to a brief overview of the results when
it is applied to several common functions. Starting with lines, circles, and parabolas,
we calculate and observe both general and specific examples to better understand the
behaviors and properties of chord inverses.

2. THE CHORD INVERSE IN ACTION.

2.1. Chord inverses of lines. Suppose that the line y = mx + b lies exterior to the unit
circle. We can parametrize this line as

f(t)=(t,mt+0),
Applying C, we find

—-m 1 m 1
Cltmt+0) =\ G o) = (mp)’ (mt + D) —(mt)) - (_?’5)’

which is a fixed point. This implies that if f(¢)is a line, then the chord lines of every point
P on f(t) will contain a common point. As a specific example, let f(t) = (t,—t + 2). Then

C(t,—t+2):(%,%).

Figures[3|and [4lon page 6 show some of these chord lines and their behavior as P traverses

f(t).

2.2. Chord inverses of centered circles. Consider a circle of radius r > 1 centered at the
origin. We can parametrize this circle as

f(t) = (rcos(t),rsin(t)), r > 1.

Applying C, we find

C(rcos(t), rsin(t)) = p .

—rcos(t) —rsint ) _ (cos(t) sin(t))

—r2sin?(t) — r2 cos?(t) —r2sin?(t) — r2 cos?(t) ’

which is a circle of radius % centered at the origin. Notice here that C(r cos(t), rsin(t)) is ex-
actly equivalent to the unit circle inversion of f(t), an important fact which will reappear
later in our analysis of the chord inverse. [2] As an example, let f(t) = (2cos(t),2sin(t)).

Then
cos(t) sin(t)
272

C(2cos(t),2sin(t)) = (

as shown in Figure[5|on page 7.
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Ficure 3. Sample points P on f(t) with their chord lines

——

Ficure 4. Four chord lines of f(t) viewed simultaneously, intersecting at (%,

)

=

2.3. The chord inverse of a parabola. Let f(f) be the parabola f(t) = (t, t2 + %), no point
of which lies within the interior of the unit circle. Then

3

2.3\ 2t 1 (a2
C(t,t +2) [(t2+%)_t(zt)’(t2+%)_t(2t)] (3—2t2’3—2t2)

as shown in Figure[6|on page 7.

C (t, t2 + %) appears to be a hyperbola. We can check this by letting

(x )_( —4t 2 )
Y30 302 )
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N@%
(a) f(t) =(2cos(t),2sin(t)) t) and its chord lines

N
i/

(c) f(t) and its chord inverse

4

NZZ T—

Ficure 5. The geometry of C(2cos(t), 2sin(t))

\J/

(a) f(t) = (£12+3) (8) £(1) and its chord lines

(c) f(t) and its chord inverse

Ficure 6. The geometry of C ( t,t2+ %)
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We therefore find that

2
Y=3o5p
2
3-2t2=1Z
v
p2_3_1
2y
3 1

W
I
H
N
\Q-

Substitution yields

|
e
——
H+
[\S][eM)
|
2=
S —

3

N
—_—
[\S][eV]
|

~~—

—~—— e

=
N
Il
A
N
———
N W

finally giving

This hyperbolic equation is equivalent to C (t, t2+ %), which confirms our earlier observa-
tion.

3. CHORD INVERSES FROM A DIFFERENT POINT OF VIEW

Until now we have dealt strictly with functions that lie exterior to the unit circle. Our
selectiveness here stems from the fact that no line tangent to the unit circle can pass
through a point within its interior, by the definition of tangency and the properties of the
circle. As such, our geometric motivation for the chord inverse makes no sense for points
and curves which occupy this interior space.

It is with some surprise, then, that we find that most functions which pass through the
unit circle have well-defined chord inverses. For example, let f(t) = (t,t?). This parabola
passes through the unit circle, but its chord inverse

2 —2t 1 (2 1
C(t19 = (t2)—t(2t)’(t2)—t(2t))_(t’—t2)

clearly exists. This result implies that our initial geometric motivation for the chord
inverse is merely one interpretation of a more general principle. We concern ourselves
next with determining this principle.
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Ficure 7. The geometric construction of Proposition

Recall that the chord inverse of the line f(t) = (¢,—t + 2) is the point (%, %) If (x,y) = (0,0)
is a point in the plane, then its unit circle (U) inversion Inv(x,p) is the point

X Y
Invy(x, ) = (x2+y2' x2+y2)'[2]

Now, suppose that a line I' is constructed which passes through the origin and the point
A =(1,1). Then T is perpendicular to f(t) at A and passes through (%, %) In this instance,
we see that

Invy (A) = C(t,—t + 2).

If we view the line f(#) in this example as being its own tangent line, we arrive at an al-
ternate geometric approach to the chord inverse which is defined both inside and outside
the unit circle U.

Proposition 3.1. Let the line L be a tangent line to the function f(t) at ty which does not inter-
sect the origin. Let the line I be the line passing through the origin such that I is perpendicular
to L, and denote the intersection point between I and L by A = (c,d). Then

Invy (A1) = C(f (o).

Proof. Let the line L which does not intersect the origin be tangent to the curve f(x(t),y(¢))
at the point (a,b). Select t( so that x(ty) = a and y(¢y) = b. Let

/(o)

xX'(tg)

Then the line L is given by
L: y=m(x—a)+b.
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Let the line T be the line passing through the origin which is perpendicular to L. Then
the line I' is given by

I:-y=-——.
Y=
Let (c,d) be the point of intersection between L and I'. Then by substitution, we have
c
-— = —a)+b
- m(c—a)
m(ma—Db)
1+m?

We also have, by substitution, that
d=m(-md—-a)+Db

_b-ma
C14+m?
Therefore, the point (c,d) is given by
m(ma—"b) b—ma
,d) = , .
(.d) ( 1+ m? 1+m2)

The inversion of any point (x,y) across the unit circle U is given by

X y
Invy(x,y) = (xz +p2’ %2 +y2)'

Therefore, the inversion of (c,d) across the unit circle U is given by

m(ma-Db) b—ma
2 2
Invy(c,d) = L 5 Lo 5
( m(ma—b)) " ( b—ma ) (m(ma—b) ) n ( b—ma)
1+m? 1+m? 1+m? 1+m?

_( -m 1 )
“\b-ma’b-ma)’

Since z:xg; =m, x(tg) = a, and y(ty) = b, this point can be written as
(to)
( —-m 1 ) B [ —fmﬁ) 1 ]
b=ma b=mal | y(ty) - x(to) (L3 (ko) - x(to) (L1
:( —y’(to) x'(to) )
X/ (to)y(to) = x(to)y’(to)” x'(to)y(to) — x(t0)y’(t) )
which equals C(f(ty)), the chord inverse of f(t) evaluated at ¢. U

Not only is this definition indifferent to the location of f(t) with respect to the unit circle,
it also clarifies what C is actually doing when it transforms f(t). As a result, we are now
free to examine the chord inverses of functions which pass through the unit circle.
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Ficure 8. The geometric construction of Proposition

In addition to removing restrictions on which functions can be chosen, Proposition
implies that every tangent line of f(f) corresponds to a single point C(f(#y)) on C(f(¢)). A
similar relationship exists between C(f(ty)) and the chord line of f(t).

Proposition 3.2. Let f(t) have chord inverse C(f (t)). If the line L is the chord line of the point
f(to), then L is tangent to C(f (t)) at the point C(f (tg)).

Proof. Suppose C(f (

t)) = (u(t),v(t)). Let L = Ly be the chord line corresponding to the
point f(to) = (x(to), y(t

(
0))- Then L; is the line

x(to) 1

Y(to) (ko)

1-¥Y=-

Let L, be a tangent line to C(f(t)) at (u(t),v(¢)). Then L, is the line

Ly: y= Z:((I;;(x— u(t))+v(t).
By the definition of C,
’ _ _y,(t)
0= i sy
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So
s YO (7)Y (1) X (£)y"(2))
= T B - <oy o7
V(t) = x(t) (p”()x"(t) - y'(t)x"(t))
(x"(t)p(t) = x(£)y'(£))?
and
V() _ X0 OX(0) -y Ox(0) _ (1)
w'(t)  p(t) (x"()y’ (1) —x'(t)y”(£))  p(t)
Therefore L and L, have the same slope m = _Mllo) gy 4 = to-

y(to)

We can find the y-intercept of L, when t = t; by setting x = 0. This gives

- 2k ulto) + vl
_X(to) [ _ -y’ (fo) )+( x'(to)
y(to) x'(to)y(to) —x(t0)y’(to) )  \x'(t0)y(to) — x(t0)y’(t0)
_ —x(t0)y’ (o) N x'(to)y(to)
Y(to) (x(t0)y(to) —x(t0)y’(t0)) ~ w(to) (x'(to)y(to) — x(t0)y’(t0))
1
y(to)

Since the y-intercept and the slope of L, are the same as the y-intercept and slope of L,
when t = ), they are the same line. Since L, = L,, then the chord line L;, = L; is tangent

to C(f(t)) at (u(to), v(to)) = C(f (o). 0

Recall that Proposition implies that every tangent line to f(#) corresponds to a single
point on C(f(t)). In a similar fashion, Proposition implies that every tangent line to
C(f(t)) corresponds to a single point on f(t). Together, these two propositions indicate
a dichotomous relationship between f(t) and its chord inverse which we formalize in

Proposition

Proposition 3.3. Suppose that C(f(t)) is the chord inverse of a twice differentiable curve de-
fined on some domain of t. Then

Proof. Let f(x(t),y(t)) be a twice differentiable curve defined on some domain of t. Then
by the definition of C,

Then
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By the quotient and product rules for derivatives,

=X ()
X5 =y(t) ( O —x(t)y'(t))Z)
. y"(t)x'(t)—x"(ty'(t))
)= "(”(@(t)x'(t) Oy )2

Substituting, we find

It follows that

0 mr)
-Y’(t) (v(t) 2]
YOX' () -X(OY'(1) | 20K > <> <> =x(1)
>'<> () <>>
(y’( t))
X'(1) ) A,
Y(t)X’(t)—X(t)Y’()_ y’t)x”) ()y”(t) =y
BOF -0y D)

4. CHARACTERISTICS OF CHORD INVERSES

One of the direct implications of Proposition [3.1| was that the chord inverse of a tangent
line L to f(t) at t; yields a point on C(f(t)) provided that L does not contain the origin.
Suppose now that L does contain the origin. Then L can be generally parameterized as
L = (t,mt) and its chord inverse is

-m 1

(mt) = (t)(m)" (mt) — (t)(m) |

C(t,mt) =

which is clearly undefined. Hence, Proposition implies that there exists an infinite
discontinuity in C(f(t)) at t;.

Proposition 4.1. Suppose that the tangent line to some twice differentiable nonlinear function

f(t)=(t,y(t)) at f(ty) intersects the origin. If f(ty) = (0,0), then C(f(t)) is asymptotic to least
one line.
Proof. Let f(t) y( )) be some twice differentiable nonlinear function that does not

pass through the origin. Choose t; such that the tangent line to f(t) at f(#y) contains the
origin. Then the equation of the tangent line is

v =9"(to)(x —to) + p(to)
=1/ (to)x + (¥(to) — to(¥(t0)))
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Since this tangent line contains the origin,
y(to) = to(y’(to)) = 0.

Recall that the chord inverse of f(t) is

Since x(t) =t and x/(t) =1,

lim ') * (1) ) = (lim (¥ lim ! )
t—=to\ %' (£)p(t) — x(t)y’(t)" %' (t)p(t) = x(t)y’(t) | \t=to p(t) —t(v'(£) t=t0 p(t) = H(y'(t))

Notice here that the y-component increases or decreases without bound as t — ¢, since
Y(tg) — to(v’(tp)) = 0. Consequently, if the limit of the x-coordinate is equal to a finite
constant ¢, then the chord inverse will be asymptotic to the vertical line x = c at t = .
Otherwise, if the limit of the x-coordinate is undefined, then the chord inverse will be
asymptotic to a non-vertical line at t = ¢. O

Consider the following examples. First, let f(t) = (t,t> —1). Then

) ~ —2t 1 _ 2t -1
cwr-h= <t2—1>—<t><2t>’<t2—1>—<t><2t>)‘(t2+1’t2+1)'

Note that no tangent lines to f(t) intersect the origin. Consequently, C(t,t> — 1) is closed
and has no asymptotes as shown in Figure [9below.

(a) f(t) = (t,t>-1) () f(t) and its chord lines

.

(c) f(t) and its chord inverse

FiGUre 9. The geometry of C(t,t>— 1) and its properties
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Second, let f(t) = (t, t2 + %) Recall from earlier that

_2t 1 —4¢ 2
C(t’t2+5)_[(t2+%)—t<zt>'(t2+%)—t<2t>]_(3”2’3”2)

Note that there exist two tangent lines to f(¢) which intersect the origin. Consequently,
C (t, t2+ %) has two oblique asymptotes as shown in Figure 10| below.

(a) f(t)= (f; £+ %) (B) f(t)’s two tangent lines through the origin

.
;

(c) f(t) and its chord lines (D) f(t) and its chord inverse

\\3/
.
.
=l 5 -4 -3 2 0 2 3 4 5 6
.
.

() f(t), its chord inverse, and the chord in-
verse’s two asymptotes

Figure 10. The geometry of C (t, t2 + %) and its properties
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Finally, let f(t) = (t 312 ) Then

' 212
3-t2 (2 2t2 2 1
C(t, = S
212 3—t2_t( 2t ) 3—t2_t( 2t )
2-12 (2-t2)2 | 2-t2 (2-12)2
- —2t (2-1%)?
\(t2-6)(t2—1) (12— 6)(t2—1)

In this case, there exist four tangent lines to f(f) which intersect the origin. As a result,

C ( t, %) has four oblique asymptotes as shown in Figure below.

(B) f(t)’s four tangent lines through the origin

(c) f(t) and its chord lines (p) f(t) and its chord inverse

2 5 6

() f(t), its chord inverse, and the chord in-
verse’s four asymptotes

Figure 11. The geometry of C (t, ;:—i) and its properties
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4.1. Terminal Points. Suppose that f(¢) is the hyperbola f(t) = (t, %) Then

)
t+1 _( —12) 1
C(t + ) (t-1)

"t-1

B 2 (t-1)?

B (t+1)(t—1)+2t’(t+1)(t—1)+2t)
B 2 (t-1)?

B t2+2t—1’t2+2t—1)

Note that the domain of this chord inverse is {t | t # —1 + V2}. Therefore, the “outer”
boundaries of this domain are +oo. We evaluate the limit as t approaches the outer bound-
aries of this domain and find

. 2 (t—1)?
lim ,
toxoo\ (F+ 1)(t=1)+ 2t (t+1)(t—1)+2¢

)=0.1)

It appears that C(t, %) approaches the point (0,1) from two directions as t — +oco. We
call this the chord inverse’s singular terminal point, a feature which arises from the end
behavior of f(t) as it approaches the asymptote y = 1 as t — +co. (see Figure |12|on page

18)

Now, suppose f(t) = (t, 1Vl ) Then

t+1
(i)
1-Vt+1 2(t+1)72 1
cls +1)_ (t+1) ’
t+1 1—\/t+1_t -1 1—\/t+1_t -1

Vi+1 2(t+1)32 Vi+1 2(t+1)32

B 1 2(t+1)%2

N\ 243t -2(t+1)¥2" 243t —2(t+1)¥2)

This time, the domain of the chord inverse is {t | t > —1}. Evaluating the limits as C(f(t))
approaches the “outer” boundaries —1 and oo of its domain yields

_ 1 2(t+1)3?
lim , =(-1,0)
t>-1+\ 2+ 3t = 2(t+1)¥2" 24+ 3t - 2(t + 1)32
1 2(t+1)32
lim 2t — (0,-1).
tooo\ 243t —2(t+1)%2" 2+ 3t —2(t +1)32
So C(t,l_? “:1) approaches the points (-1,0) and (0,—1) as t —» —17 and t — oo respec-

tively. We call these points the chord inverse’s twin terminal points. Since f(t) does not
approach the same asymptote on both boundaries of its domain like in our previous ex-
ample, we obtain two terminal points instead of one. (see Figure|13|on page 19)
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(c) f(t) and its chord inverse (with a singular
terminal point at (0,1))

FiGure 12. The geometry of C (t, %) and its properties

Definition 4.2. Suppose the curve f(t) is defined on some domain of t. Let @ and w
denote the outer boundaries of C(f(t))’s domain, and suppose }im C(f(t)) and tlim C(f (1))
—a —w

both exist.

o If lim C(f(t)) = lim C(f(¢t)), then C(f(t)) has a singular terminal point at }1_{2 C(f(t)).

o If i;r)rz C(f(t) = iZ%JC(f(t)), then C(f(t)) has twin terminal points at }1_{2 C(f(t)) and
tim C(f(1)).

We can interpret this definition geometrically by observing the behavior of tangent lines
to f(t) near these boundaries. If f(t) has end behavior governed by an asymptote, then
tangent lines to f(t) will approach this asymptote as t approaches the boundary. If this
limiting asymptote does not pass through the origin, then the point on C(f(¢)) which
corresponds to the tangent line for each value of ¢ will approach the chord inverse point
of the limiting asymptote. If f(¢) approaches the same asymptote on both boundaries of
its domain, then C(f(t)) will naturally approach the same point — the singular terminal
point of C(f(t)) — from both directions. The geometric intuition for twin terminal points
follows naturally from this observation if a separate asymptote governs the end behavior
on each outer boundary of f(t)’s domain.



MJUM Vol. 5 (2019-2020)

N

NN

N

N

N

N

e

R
R

R

RN

|
/
]
|

] .
7

77

(B) f(t) and its chord lines

"

(c) f(t) and its chord inverse (with twin ter-
minal points at (-1,0) and (0,-1))

Ficure 13. The geometry of C (t, 1:/;/_f) and its properties

As a further example of terminal points and their behavior, suppose f(t) is the parametrized
cubic polynomial f(t) = (t,¢3). Then

—-3t2 1 3 -1
C(t,t3) = , :(—,—).
(&.2) (t3—t(3t2) t3—t(3t2)) 2t" 213

(B) f(t) and its chord lines

(a) f(5) = ()
Take special note of the fact that the origin is the singular terminal point of C(¢,t°), since

3 -1
li —,—)z 0,0).
lim (5 =)= (0,0)
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(c) f(t) and its chord inverse (with a singular termi-
nal point at (0,0))

Ficure 15. The geometry of C(t,t%) and its properties

This leads to the following generalization and proof.

Proposition 4.3. Let f(t) be the parameterization of a polynomial function with degree n > 1.
Then C(f(t)) has a singular terminal point at the origin.

Proof. Let f(t) = (t, mut" + m,_t"~1 + .-+ myt + mg). Since f(t) is a polynomial curve, its
domain is {t | t € R}. Then the components of C(f(t)) are

C.(f(t) =

—nm,t" -~y

(M, t" + -+ mg) — (nmt" + -+ myt)
1
(M, t" + -+ mg) — (nmt" + -+ myt)

Cy(f(1) =

In both cases the degree of the component’s denominator is greater than the degree of
the numerator, so therefore the limits of both components are equal to 0 as t — +co.
Therefore, C(f(t)) must have a singular terminal point at the origin. O

4.2. Terminal Asymptotes. As seen previously, domain-bounding asymptotes of f(t)
that do not pass through the origin determine the terminal points of C(f(t)). Suppose
instead that one or more domain-bounding asymptotes to f(t) do pass through the origin.
In this scenario, one or more of the chord inverse’s terminal points are replaced by what
we call terminal asymptotes.

To demonstrate, let f(t) = (t, %) Then
cfn})- (7)) (L
“t) %_t(—_l)'l_t(—_zl) \2t’2)

The domain of C( t %) is {t | t # 0}. When we evaluate the limits at the outer boundaries
of the domain, we find

lim (i,i):(O, lim i)
t—+oo\ 2t 2 t—+o0 2
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Since the y-component of the limit increases without bound as t — oo, C(t,%) ap-

proaches the asymptote x = 0 on the outer boundaries of its domain. We call this the
chord inverse’s singular terminal asymptote. (see Figure [16]below)

(a) f(t) = (t, %) (8) f(t) and its ch&& \lines

(c) f(t) and its chord inverse (with a singular
terminal asymptote at x = 0)

Ficure 16. The geometry of C (t, %) and its properties

\/Lf_t(zﬁlﬂ), \/Li_t(ﬁlﬂ

The domain of C(t, \/LZ) is {t | t > 0}). We evaluate the limits of the chord inverse at the
outer boundaries of its domain and find

lim (l Z_V?): (o, lim Z_V?)

t—oo\ 3t 3 t—oo 3

i (1,29

t—0* 31" 3

. 1
( lim —, O).
t—0+ 3t
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Since the y-component of the first limit increases without bound as ¢t — oo and the x-
component of second limit increases without bound as t — 0%, C(t, %) approaches the

asymptotes x = 0 and y = 0 on the outer boundaries of its domain. We call these the chord
inverse’s twin terminal asymptotes. (see Figure[17|below)

(a) f(t)= (t L) (B) f(t) and its éh(;rd ‘I\ines ‘

2 L
4
g T z 3 0

(c) f(t) and its chord inverse (with twin termi-
nal asymptotes at x =0 and y = 0)

_
t— 0+

Ficure 17. The geometry of C (t, L) and its properties

Vt

Definition 4.4. Suppose that the curve f(t) approaches an origin-intersecting asymptote
L; as t approaches an outer boundary of f(t)’s domain. Then C(f(t)) contains a terminal
asymptote M.

e If f(t) approaches L; on both outer boundaries, then M is a singular terminal
asymptote.

e If f(t) approaches an origin-containing asymptote L, # L; on the opposite bound-

ary of its domain, then C(f(t)) contains two distinct twin terminal asymptotes M
and N.
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5. CoNCLUSION

This introduction to chord inverses barely scratches the surface of a topic filled with
possibilities. Many questions remain to be answered — for instance:

e We conjecture that all chord inverse asymptotes are perpendicular to the origin-
intersecting tangents or asymptotes with which they are associated.

e How do horizontal, vertical, or oblique asymptotes which are not at the bound-
aries of f(t)’s domain affect C(f(t))?

e If f(t) contains inflection points, then C(f(t)) always contains cusps. What is the
precise relationship between these inflection points and cusps?

e What do chord inverses of unbounded periodic functions look like and how do
they behave?

e We know that if f(f) is the unit circle (cost,sint) or the hyperbola (t,%), then
C(f(t)) and f(t) have identical graphs. Furthermore, we observe that this property
is invariant under rotation about the origin. Are there any other functions f(t)

such that f(t) and C(f(t)) are identical?
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