Critical Points of a Family of Complex-Valued Polynomials

Camille Felton ${ }^{1}$ and Christopher Frayer ${ }^{2}$
${ }^{1}$ University of Kentucky
${ }^{2}$ University of Wisconsin - Platteville

The Minnesota Journal of Undergraduate Mathematics
Volume 5 (2019-2020 Academic Year)

Critical Points of a Family of Complex-Valued Polynomials

Camille Felton* ${ }^{1}$ and Christopher Frayer ${ }^{2}$
${ }^{1}$ University of Kentucky
${ }^{2}$ University of Wisconsin - Platteville

Abstract

For $k, m, n \in \mathbb{N}$, let $P(k, m, n)$ be the family of complex-valued polynomials of the form $p(z)=z^{k}\left(z-r_{1}\right)^{m}\left(z-r_{2}\right)^{n}$ with $\left|r_{1}\right|=\left|r_{2}\right|=1$. The Gauss-Lucas Theorem guarantees that the critical points of $p \in P(k, m, n)$ will lie in the unit disk. This paper further explores the location and structure of these critical points. When $m=n$, the unit disk contains a desert region, $\left\{z \in \mathbb{C}:|z|<\frac{k}{k+2 m}\right\}$, in which critical points do not occur, and a critical point almost always determines a polynomial uniquely. When $m \neq n$, the unit disk contains two desert regions, and each c is the critical point of at most two polynomials in $P(k, m, n)$.

1. Introduction

The Gauss-Lucas Theorem guarantees that the critical points of a complex-valued polynomial will lie in the convex hull of its roots [4]. For example, if p has three non-collinear roots, then its critical points will lie in the triangle with vertices located at its roots. For $k, m, n \in \mathbb{N}(0 \notin \mathbb{N})$, several recent papers $([3],[2],[1])$ have studied critical points of the family of polynomials

$$
\mathcal{P}_{k, m, n}=\left\{p: \mathbb{C} \rightarrow \mathbb{C} \mid p(z)=(z-1)^{k}\left(z-r_{1}\right)^{m}\left(z-r_{2}\right)^{n} \text { with }\left|r_{1}\right|=\left|r_{2}\right|=1\right\} .
$$

Critical points of polynomials in $\mathcal{P}_{1,1,1}$ are studied in [3]. For this family of polynomials, the unit disk contains a desert region, $\left\{z \in \mathbb{C}:\left|z-\frac{2}{3}\right|<\frac{1}{3}\right\}$, in which critical points do not occur, and a critical point almost always (with the exception of two points) determines a polynomial uniquely. Critical points of polynomials in $\mathcal{P}_{1,1,2}$ are characterized in [2]. Due to the loss of symmetry in the multiplicities of r_{1} and r_{2}, the unit disk contains two desert regions in which critical points do not occur: $\left\{z \in \mathbb{C}:\left|z-\frac{3}{4}\right|<\frac{1}{4}\right\}$ and the interior of $2 x^{4}-3 x^{3}+x+4 x^{2} y^{2}-3 x y^{2}+2 y^{4}=0$. Furthermore, each c in the unit disk and outside the closure of the desert regions, is the critical point of exactly two polynomials in $\mathcal{P}_{1,1,2}$.
For $k, m, n \in \mathbb{N},[1]$ extends the results of [3] and [2] by characterizing the critical points of polynomials in $\mathcal{P}_{k, m, n}$. When $m=n$, similar to [3], the unit disk contains a single desert region, and a critical point almost always determines a polynomial uniquely. When $m \neq n$,

[^0]similar to [2], the unit disk contains two desert regions, and each c is the critical point of at most two polynomials in $\mathcal{P}_{k, m, n}$.
For $k, m, n \in \mathbb{N}$, this paper investigates a variation of [1] by characterizing the critical points of the family of polynomials
$$
P(k, m, n)=\left\{p: \mathbb{C} \rightarrow \mathbb{C} \mid p(z)=z^{k}\left(z-r_{1}\right)^{m}\left(z-r_{2}\right)^{n} \text { with }\left|r_{1}\right|=\left|r_{2}\right|=1\right\} .
$$

As motivating examples, we investigate $P(1,1,1)$ and $P(1,1,2)$, and then use those results to characterize the critical points of polynomials in $P(k, m, m)$ and $P(k, m, n)$.

2. Critical Points

We begin our discussion by introducing some notation. For $\alpha>0$, we let $\mathcal{O}(\alpha)$ represent the circle centered at the origin with radius α. That is,

$$
\mathcal{O}(\alpha)=\{z \in \mathbb{C}| | z \mid=\alpha\} .
$$

A polynomial of the form

$$
p(z)=z^{k}\left(z-r_{1}\right)^{m}\left(z-r_{2}\right)^{n}
$$

with $\left|r_{1}\right|=\left|r_{2}\right|=1$ and $k, m, n \in \mathbb{N}$ has $k+m+n-1$ critical points. Differentiation gives

$$
p^{\prime}(z)=z^{k-1}\left(z-r_{1}\right)^{m-1}\left(z-r_{2}\right)^{n-1} q(z)
$$

with

$$
q(z)=(k+m+n) z^{2}-\left(k\left(r_{1}+r_{2}\right)+n r_{1}+m r_{2}\right) z+k r_{1} r_{2} .
$$

There are $k-1$ critical points at $z=0, m-1$ critical points at $r_{1}, n-1$ critical points at r_{2}, and two additional critical points in the unit disk.

Definition 2.1. Given $p \in P(k, m, n)$ we say c is a nontrivial critical points of p if $q(c)=0$. We call the remaining critical points trivial.

This paper will characterize the nontrivial critical points of polynomials in $P(k, m, n)$. We begin with an example.

Example 2.2. Let $p \in P(k, m, n)$ have a nontrivial critical point at $c \in \mathcal{O}(1)$. By the Gauss Lucas Theorem, c must lie in the convex hull of the roots of $p(z)=z\left(z-r_{1}\right)^{n}\left(z-r_{2}\right)^{m}$. That is, $c \in \mathcal{O}(1)$ is in the convex hull of a set containing two points on the unit circle and the origin. This can only happen if $c=r_{1}$ or $c=r_{2}$. Furthermore, as c is a nontrivial critical point, we have $c=r_{1}=r_{2}$.

Therefore, $p \in P(k, m, n)$ has a nontrivial critical point at $c \in \mathcal{O}(1)$ if and only if $p(z)=$ $z^{k}(z-c)^{m+n}$. In this case, $q(z)=(z-c)((k+m+n) z-k c)$, and one can calculate that the second nontrivial critical point is $\frac{k c}{k+m+n} \in \mathcal{O}\left(\frac{k}{k+m+n}\right)$. To summarize, $c \in \mathcal{O}(1)$ is a nontrivial critical points of $p \in P(k, m, n)$ if and only if $r_{1}=r_{2}$.

A similar argument shows that $c=0$ will never be a nontrivial critical point of a polynomial in $P(k, m, n)$. We can say even more.

Theorem 2.3. No polynomial in $P(k, m, n)$ has a nontrivial critical point inside $\mathcal{O}\left(\frac{k}{k+m+n}\right)$.

Proof. Suppose c_{1} and c_{2} are nontrivial critical point of $p(z)=z^{k}\left(z-r_{1}\right)^{m}\left(z-r_{2}\right)^{n}$. Then, c_{1} and c_{2} are roots of $q(z)=(k+m+n) z^{2}-\left(k\left(r_{1}+r_{2}\right)+n r_{1}+m r_{2}\right) z+k r_{1} r_{2}$ and it follows that $c_{1} c_{2}=\frac{k r_{1} r_{2}}{k+m+n}$. As $\left|r_{1}\right|=\left|r_{2}\right|=1,\left|c_{1}\right| \leq 1$ and $\left|c_{2}\right| \leq 1$, we have

$$
\left|c_{1}\right| \geq\left|c_{1} c_{2}\right|=\frac{k}{k+m+n}
$$

and the result follows.
To characterize the nontrivial critical points of a polynomial in $P(k, m, n)$, we investigate the relationship between its roots and nontrivial critical points. Suppose c is a nontrivial critical point of $p(z)=z^{k}\left(z-r_{1}\right)^{m}\left(z-r_{2}\right)^{n} \in P(k, m, n)$. Then,

$$
0=q(c)=(k+m+n) c^{2}-\left(k\left(r_{1}+r_{2}\right)+n r_{1}+m r_{2}\right) c+k r_{1} r_{2}
$$

and it follows that

$$
r_{1}=\frac{(k+m) c r_{2}-(k+m+n) c^{2}}{k r_{2}-c(k+n)} \text { and } r_{2}=\frac{(k+n) c r_{1}-(k+m+n) c^{2}}{k r_{1}-c(k+m)} .
$$

Definition 2.4. Given $c \in \mathbb{C} \backslash\{0\}$, define

$$
f_{c, 1}(z)=\frac{(k+m) c z-(k+m+n) c^{2}}{k z-c(k+n)} \text { and } f_{c, 2}(z)=\frac{(k+n) c z-(k+m+n) c^{2}}{k z-c(k+m)}
$$

and let $S_{1}=f_{c, 1}(\mathcal{O}(1))$ and $S_{2}=f_{c, 2}(\mathcal{O}(1))$.
The functions $f_{c, 1}$ and $f_{c, 2}$ are fractional linear transformations with $f_{c, 1}\left(r_{2}\right)=r_{1}$ and $f_{c, 2}\left(r_{1}\right)=r_{2}$. The above work has established the following result.

Theorem 2.5. Suppose $c \in \mathbb{C} \backslash\{0\}$. Then, $p(z)=z^{k}\left(z-r_{1}\right)^{m}\left(z-r_{2}\right)^{n} \in P(k, m, n)$ has a nontrivial critical point at c if and only if $f_{c, 1}\left(r_{2}\right)=r_{1}$ and $f_{c, 2}\left(r_{1}\right)=r_{2}$.

When $c \neq 0, f_{c, 1}$ and $f_{c, 2}$ are invertible with $\left(f_{c, 1}\right)^{-1}=f_{c, 2}$. Since $f_{c, 1}(z)$ and $f_{c, 2}(z)$ are fractional linear transformations, they send circles and lines to circles and lines. Therefore, S_{1} and S_{2} are either circles or lines. An additional result concerning fractional linear transformations [2, page 491], will be of interest.

Theorem 2.6. A fractional linear transformation T sends the unit circle to the unit circle if and only if

$$
T(z)=\frac{\bar{\alpha} z-\bar{\beta}}{\beta z-\alpha}
$$

for some $\alpha, \beta \in \mathbb{C}$ with $\left|\frac{\alpha}{\beta}\right| \neq 1$.
Example 2.7. For $c \neq 0$,

$$
f_{c, 1}(z)=\frac{(k+m) c z-(k+m+n) c^{2}}{k z-c(k+n)}=\frac{(k+m) z-(k+m+n) c}{\frac{k}{c} z-(k+n)},
$$

We recall that $f_{c, 1}$ is a fractional linear transformation such that $f_{c, 1}(\mathcal{O}(1))=S(1)$ and Theorem 2.6 implies $S_{1}=\mathcal{O}(1)$ if and only if

$$
\overline{(k+n)}=u(k+m) \text { and } \bar{k} / \bar{c}=u(k+m+n) c
$$

for some $u \in \mathbb{C}$ with $|u|=1$. Since $k, m, n \in \mathbb{N}$, we then get $k+n=u(k+m)$ which implies $u \in$ $(0, \infty)$. Therefore, $u=1$ and it follows that $m=n$. The right equation gives $c \bar{c}=\frac{k}{u(k+m+n)}$, so that $|c|^{2}=\frac{k}{u(k+m+n)}=u \frac{k}{k+m+n}$. Then $|c|^{2} \in \mathbb{R}$ so the right hand side is real-valued as well which implies $u \in \mathbb{R}$. This gives that $|c|=\sqrt{\frac{k}{K+m+n}}$ which is equivalent to $c \in \mathcal{O}\left(\frac{k}{k+m+n}\right)$. Therefore, $S_{1}=\mathcal{O}(1)$ if and only if $m=n$ and $c \in \mathcal{O}\left(\sqrt{\frac{k}{k+2 m}}\right)$. Similar calculations yield, $S_{2}=\mathcal{O}(1)$ if and only if $m=n$ and $c \in \mathcal{O}\left(\sqrt{\frac{k}{k+2 m}}\right)$.

Given $c \in \mathbb{C} \backslash\{0\}$, there are associated circles (or lines) $S_{1}=f_{c, 1}(\mathcal{O}(1))$ and $S_{2}=f_{c, 2}(\mathcal{O}(1))$. Since $r_{1}, r_{2} \in \mathcal{O}(1), f_{c, 1}\left(r_{2}\right)=r_{1}$ and $f_{c, 2}\left(r_{1}\right)=r_{2}$, it follows that $r_{1} \in S_{1} \cap \mathcal{O}(1)$ and $r_{2} \in$ $S_{2} \cap \mathcal{O}(1)$. The sets $S_{1} \cap \mathcal{O}(1)$ and $S_{2} \cap \mathcal{O}(1)$ give candidates for the roots of polynomials in $P(k, m, n)$ with nontrivial critical points at c. When $m=n, f_{c, 1}=f_{c, 2}$ so that $S_{1}=S_{2}$. In this case, Lemma 2.8 provides a relationship between $\left|S_{1} \cap \mathcal{O}(1)\right|$ and the number of polynomials in $P(k, m, m)$ with a nontrivial critical point at c.

Lemma 2.8. Suppose $m=n$ and $c \in \mathbb{C} \backslash\{0\}$.
(1) If $S_{1} \cap \mathcal{O}(1)=\emptyset$, then no polynomial in $P(k, m, m)$ has a nontrivial critical point at c.
(2) If $S_{1}=\mathcal{O}(1)$, then $p(z)=z^{k}(z-r)^{m}\left(z-f_{c, 1}(r)\right)^{m} \in P(k, m, m)$ has a nontrivial critical point at c for each $r \in \mathcal{O}(1)$.
(3) If $\left|S_{1} \cap \mathcal{O}(1)\right| \in\{1,2\}$, then c is the nontrivial critical point of a unique polynomial in $P(k, m, m)$.

Proof. Let $c \in \mathbb{C} \backslash\{0\}$.
(1) If $S_{1} \cap \mathcal{O}(1)=\emptyset$, then no point in \mathbb{C} is eligible to be r_{1} or r_{2}. Therefore, no polynomial in $P(k, m, m)$ has a nontrivial critical point at c.
(2) If $S_{1}=\mathcal{O}(1)$, Theorem 2.5 implies that c is a nontrivial critical point of $p(z)=$ $z^{k}(z-r)^{m}\left(z-f_{c, 1}(r)\right)^{m} \in P(k, m, m)$ has a nontrivial critical point at c for each $r \in \mathcal{O}(1)$.
(3) If $S_{1} \cap \mathcal{O}(1)=\{a\}$, then $f_{c, 1}(a)=a$ and Theorem 2.5 implies $p(z)=z^{k}(z-a)^{2 m}$ is the only polynomial in $P(k, m, m)$ with a nontrivial critical point at c.

Suppose $S_{1} \cap \mathcal{O}(1)=\{a, b\}$ with $a \neq b$. If $f_{c, 1}(a)=a$, the definitions of $f_{c, 1}$ and S_{1} imply $f_{c, 1}(b)=b$. Then, by Theorem 2.5, c is a nontrivial critical point of $p(z)=z^{k}(z-a)^{2 m}$ and $p(z)=z^{k}(z-b)^{2 m}$, which contradicts the Gauss-Lucas Theorem. Therefore, $f_{c, 1}(a)=b$ so that $f_{c, 1}(b)=a$ and Theorem 2.5 implies $p(z)=z^{k}(z-a)^{m}(z-b)^{m} \in$ $P(k, m, m)$ has a nontrivial critical point at c. Furthermore, as $S_{1} \cap \mathcal{O}(1)=\{a, b\}$, no other polynomial in $P(k, m, m)$ has a nontrivial critical point at c.

When $m \neq n, S_{1} \neq S_{2}$. Extensions of results in [2] (Lemmas 10 and 11 on page 493) imply that $\left|S_{1} \cap \mathcal{O}(1)\right|=\left|S_{2} \cap \mathcal{O}(1)\right|$ (our Lemma 2.9] and that $\left|S_{1} \cap \mathcal{O}(1)\right|$ is the number of polynomials in $P(k, m, n)$ having a nontrivial critical point at c (our Lemma 2.10).

Lemma 2.9. Let $c \in \mathbb{C} \backslash\{0\}$ and $m \neq n$. Then $\left|S_{1} \cap \mathcal{O}(1)\right|=\left|S_{2} \cap \mathcal{O}(1)\right| \in\{0,1,2\}$.
Lemma 2.10. Let $c \in \mathbb{C} \backslash\{0\}$ and $m \neq n$.
(1) If $S_{1} \cap \mathcal{O}(1)=\emptyset$, then no polynomial in $P(k, m, n)$ has a nontrivial critical point at c.
(2) If $\left|S_{1} \cap \mathcal{O}(1)\right|=1$, then c is the nontrivial critical point of exactly one polynomial in $P(k, m, n)$.
(3) If $\left|S_{1} \cap \mathcal{O}(1)\right|=2$, then c is the nontrivial critical point of exactly two polynomials in $P(k, m, n)$.
2.1. Center and Radius of S_{1}. To characterize the nontrivial critical points of polynomials in $P(k, m, n)$, Lemmas $2.8,2.9$ and 2.10 suggest that we need to further understand S_{1}.

Example 2.11. For $c \neq 0, S_{1}=f_{c, 1}(\mathcal{O}(1))$ is either a circle or a line. Thinking of a line as a circle with a point at infinity, we observe that $S_{1}=f_{c, 1}(\mathcal{O}(1))$ is a line whenever there exists a $z_{o} \in \mathcal{O}(1)$ that makes the denominator of $f_{c, 1}\left(z_{o}\right)$ equal to zero. This occurs whenever $k z_{o}-(n+k) c=0$. In this case, $\frac{c}{z_{o}}=\frac{k}{n+k}$. Take the modulus of both sides and note that $\left|z_{o}\right|=1$ and it follows that $|c|=\left|\frac{k}{n+k}\right|$. Therefore, S_{1} is a line if and only if $c \in \mathcal{O}\left(\frac{k}{k+n}\right)$.

For $c \in \mathcal{O}(\alpha)$ with $\alpha \neq \frac{k}{k+n}, S_{1}$ is a circle. We use methods from [2] to determine the center and radius of S_{1}. Since $S_{1}=f_{c, 1}(\mathcal{O}(1)), z \in S_{1}$ if and only if there exists some $w \in \mathcal{O}(1)$ with $f_{c, 1}(w)=z$. Furthermore, as $\left(f_{c, 1}\right)^{-1}=f_{c, 2}, z \in S_{1}$ if and only if $\left|f_{c, 2}(z)\right|=1$. That is,

$$
\left|\frac{-c(k+n) z+(k+m+n) c^{2}}{-k z+(k+m) c}\right|=1
$$

Therefore, $z \in S_{1}$ if and only if

$$
\left|\frac{c(k+n)}{k}\right|\left|z-\frac{(k+m+n) c}{k+n}\right|=\left|z-\frac{(k+m) c}{k}\right| .
$$

From introductory complex analysis, when $d \neq 1$, the solution set of

$$
d|z-v|=|z-u|
$$

is a circle with center $C=\frac{d^{2} v-u}{d^{2}-1}$ and radius $R=|v-u|\left|\frac{d}{d^{2}-1}\right|$. Direct calculations establish the following result.

Lemma 2.12. Suppose $c \in \mathcal{O}(\alpha)$ with $\alpha \neq \frac{k}{k+n}$. Then, S_{1} is a circle with center C and radius R given by

$$
\begin{equation*}
C=\frac{\left[(k+n)(k+m+n) \alpha^{2}-(k+m) k\right] c}{(k+n)^{2} \alpha^{2}-k^{2}} \text { and } R=\frac{m n \alpha^{2}}{\left|\alpha^{2}(k+n)^{2}-k^{2}\right|} . \tag{1}
\end{equation*}
$$

3. Determining the Desert Regions

When $S_{1} \cap \mathcal{O}(1)=\emptyset$, Lemmas 2.8 and 2.10 imply that c lies in a desert region. As S_{1} varies continuously with c, c will lie on the boundary of a desert region when S_{1} is tangent to $\mathcal{O}(1)$. This proves to be an interesting case!

Figure 1. If S_{1} is internally tangent to $\mathcal{O}(1)$, then $|C|+R=1$.

We begin by determining when S_{1} is internally tangent to $\mathcal{O}(1)$. For $c \neq 0$, if S_{1} is internally tangent to $\mathcal{O}(1)$, then

$$
\begin{equation*}
|C|+R=1 \tag{2}
\end{equation*}
$$

See Figure 1. Substituting C and R from (1) into (2) and setting $c=x+i y$ gives

$$
\begin{aligned}
x^{2}+y^{2} & =\left(\frac{(k+n)^{2} \alpha^{2}-k^{2}}{(k+n)(k+n+m) \alpha^{2}-(k+m) k}\right)^{2}\left(1-\frac{m n \alpha^{2}}{\left|\alpha^{2}(k+n)^{2}-k^{2}\right|}\right)^{2} \\
& =\frac{\left(\left|\alpha^{2}(k+n)^{2}-k^{2}\right|-m n \alpha^{2}\right)^{2}}{\left((k+n)(k+n+m) \alpha^{2}-(k+m) k\right)^{2}}
\end{aligned}
$$

For $c \in \mathcal{O}(\alpha), S_{1}$ is internally tangent to $\mathcal{O}(1)$ if and only if $|c|=\alpha$ satisfies

$$
\begin{equation*}
\alpha^{2}=\left(\frac{(k+n)^{2} \alpha^{2}-k^{2}}{(k+n)(k+n+m) \alpha^{2}-(k+m) k}\right)^{2}\left(1-\frac{m n \alpha^{2}}{\left|\alpha^{2}(k+n)^{2}-k^{2}\right|}\right)^{2} . \tag{3}
\end{equation*}
$$

As $\mathcal{O}(\alpha)$ and (3) are circles centered at the origin, we have established the following result.
Lemma 3.1. Let $c \in \mathcal{O}(\alpha)$ with $\alpha \in(0,1]$. Then, S_{1} is internally tangent to $\mathcal{O}(1)$ if and only if α satisfies (3).

In order to proceed, we investigate the $m=n$ and $m \neq n$ cases separately.
3.1. $P(k, m, m)$. We begin the $m=n$ discussion by analyzing the $P(1,1,1)$ case. When $k=m=n=1$, (3) implies

$$
\begin{equation*}
x^{2}+y^{2}=\frac{1}{4\left(3 \alpha^{2}-1\right)^{2}}\left(\left(4 \alpha^{2}-1\right)-\frac{\alpha^{2}\left(4 \alpha^{2}-1\right)}{\left|4 \alpha^{2}-1\right|}\right)^{2} . \tag{4}
\end{equation*}
$$

According to Lemma 3.1, S_{1} is internally tangent to $\mathcal{O}(1)$ whenever (3), and therefore (4), is satisfied. Because of the $\left|4 \alpha^{2}-1\right|$ in (4), we consider 3 cases.
(1) If $\alpha \in\left(0, \frac{1}{2}\right)$, then $\frac{4 \alpha^{2}-1}{\left|4 \alpha^{2}-1\right|}=-1$ and 4 becomes

$$
x^{2}+y^{2}=\frac{1}{4\left(3 \alpha^{2}-1\right)^{2}}\left(\left(4 \alpha^{2}-1\right)-\alpha^{2}(-1)\right)^{2}=\frac{\left(5 \alpha^{2}-1\right)^{2}}{4\left(3 \alpha^{2}-1\right)^{2}} .
$$

Therefore, (3) is satisfied when

$$
\alpha^{2}=\frac{\left(5 \alpha^{2}-1\right)^{2}}{4\left(3 \alpha^{2}-1\right)^{2}}
$$

To find α that satisfy this equation, we observe that $\alpha= \pm 1$ are solutions. Then, algebraic manipulation and polynomial long division lead to the solutions $\alpha=$ $\pm \frac{1}{3}, \pm \frac{1}{2}, \pm 1$. For $\alpha \in\left(0, \frac{1}{2}\right)$, Lemma 3.1 implies S_{1} is internally tangent to $\mathcal{O}(1)$ only when $\alpha=\frac{1}{3}$.
(2) If $\alpha \in\left(\frac{1}{2}, 1\right]$, then $\frac{4 \alpha^{2}-1}{\left|4 \alpha^{2}-1\right|}=1$ and $\sqrt{4}$ becomes

$$
x^{2}+y^{2}=\frac{1}{4\left(3 \alpha^{2}-1\right)^{2}}\left(4 \alpha^{2}-1-\alpha^{2}\right)^{2}=\frac{1}{4} .
$$

Therefore, for $\alpha \in\left(\frac{1}{2}, 1\right]$, 3) is not satisfied and Lemma 3.1 implies S_{1} is not internally tangent to $\mathcal{O}(1)$.
(3) If $\alpha=\frac{1}{2}$, then S_{1} is a line. Furthermore, as $m=n, S_{1}=S_{2}$ and it follows that $\left\{r_{1}, r_{2}\right\} \subseteq S_{1} \cap \mathcal{O}_{1}$. Therefore, S_{1} is tangent to $\mathcal{O}(1)$ if and only if $r_{1}=r_{2}$. However, according to Example 2.2, when $r_{1}=r_{2}, c \notin \mathcal{O}\left(\frac{1}{2}\right)$, and S_{1} is not tangent to $\mathcal{O}(1)$.
Our analysis of Lemma 3.1 has established the following result.
Lemma 3.2. The circle S_{1} is internally tangent to $\mathcal{O}(1)$ if and only if $c \in \mathcal{O}\left(\frac{1}{3}\right)$.
Furthermore, S_{1} will be externally tangent to $\mathcal{O}(1)$ if and only if $|C|-R=1$. A similar analysis leads to the following result.

Lemma 3.3. The circle S_{1} is externally tangent to $\mathcal{O}(1)$ if and only if $c \in \mathcal{O}(1)$.
The following lemma will be needed to finish the characterization of critical points of polynomials in $P(1,1,1)$.

Lemma 3.4. If $c \in \mathcal{O}(\alpha)$ with $\alpha \in\left(\frac{1}{3}, 1\right) \backslash\left\{\sqrt{\frac{1}{3}}\right\}$, then $\left|S_{1} \cap \mathcal{O}(1)\right|=2$.

Proof. For $0 \neq c \in \mathcal{O}(\alpha)$, define $L=\{t c \mid t \in \mathbb{R}\}$ and let v, w be the points of intersection of L and $\mathcal{O}(1)$. See Figure 2. Direct calculations give

$$
v=\frac{1}{\alpha} c \text { and } w=\frac{-1}{\alpha} c .
$$

Since $v, w \in \mathcal{O}(1),\left\{f_{c, 1}(v), f_{c, 1}(w)\right\} \subseteq S_{1}$. As $f_{c, 1}$ is a fractional linear transformation, $f_{c, 1}(L)$ is a circle or line. For $z_{0} \in L, z_{0}=t_{0} c$ for some $t_{0} \in \mathbb{R}$ and

$$
f_{c, 1}\left(z_{o}\right)=\frac{2 c\left(t_{o} c\right)-3 c^{2}}{t_{o} c-2}=\frac{2 t_{o}-3}{t_{o}-2} c \in L
$$

Therefore, $f_{c, 1}(L)=L$. Letting $t_{o}= \pm \frac{1}{\alpha}$ gives

$$
f_{c, 1}(w)=\frac{\frac{2}{\alpha}-3}{\frac{1}{\alpha}-2} c=\frac{2-3 \alpha}{1-2 \alpha} c \in \mathcal{O}\left(\left|\frac{2 \alpha-3 \alpha^{2}}{1-2 \alpha}\right|\right)
$$

and

$$
f_{c, 1}(v)=\frac{\frac{-2}{\alpha}-3}{\frac{-1}{\alpha}-2} c=\frac{2+3 \alpha}{1+2 \alpha} c \in \mathcal{O}\left(\frac{2 \alpha+3 \alpha^{2}}{1+2 \alpha}\right) .
$$

Comparing the graphs of $f(\alpha)=\left|\frac{2 \alpha-3 \alpha^{2}}{1-2 \alpha}\right|$ and $g(\alpha)=\frac{2 \alpha+3 \alpha^{2}}{1+2 \alpha}$ in Figure 2, shows that when $\alpha \in\left(\frac{1}{3}, \sqrt{\frac{1}{3}}\right) \cup\left(\sqrt{\frac{1}{3}}, 1\right)$, exactly one of $f_{c, 1}(w)$ and $f_{c, 1}(v)$ lies inside the unit circle. Therefore, $\left.\mid S_{1} \cap \mathcal{O}(1)\right) \mid=2$.

Figure 2. Left: $f_{c, 1}(w) \in \mathcal{O}(f(\alpha))$ and $f_{c, 1}(v) \in \mathcal{O}(g(\alpha))$. Right: $L=\{t c \mid t \in \mathbb{R}\}$.

We are now able to describe the critical points of polynomials in $P(1,1,1)$. See Figure 3 .

Theorem 3.5. Let $c \in \mathcal{O}(\alpha)$.
(1) If $\alpha \in\left[0, \frac{1}{3}\right) \cup(1, \infty)$, then no polynomial in $P(1,1,1)$ has a nontrivial critical point at c.
(2) If $\alpha=\sqrt{\frac{1}{3}}$, then $p(z)=z(z-r)\left(z-f_{c, 1}(r)\right) \in P(1,1,1)$ has a nontrivial critical point at c for each $r \in \mathcal{O}(1)$.

Figure 3. Critical points of polynomials in $P(1,1,1)$ cannot occur in the white regions.
(3) If $\alpha \in\left[\frac{1}{3}, 1\right] \backslash\left\{\sqrt{\frac{1}{3}}\right\}$, then c is the nontrivial critical point of a unique polynomial in $P(1,1,1)$.

Proof. Let $c \in \mathcal{O}(\alpha)$.
(1) If $\alpha \in(1, \infty)$, the Gauss-Lucas Theorem implies that c is not the critical point of a polynomial in $P(1,1,1)$. If $\alpha \in\left[0, \frac{1}{3}\right)$, Theorem 2.3 implies no polynomial in $P(k, m, n)$ has a nontrivial critical point at c.
(2) If $\alpha=\sqrt{\frac{1}{3}}$, then Example 2.7 implies $S_{1}=\mathcal{O}(1)$. By Lemma 2.8, $p(z)=z(z-r)(z-$ $\left.f_{c, 1}(r)\right) \in P(1,1,1)$ has a nontrivial critical point at c for each $r \in \mathcal{O}(1)$.
(3) Supposed $\alpha \in\left(\frac{1}{3}, 1\right) \backslash\left\{\sqrt{\frac{1}{3}}\right\}$. Then, by Lemma $3.4,\left|S_{1} \cap \mathcal{O}(1)\right|=2$ and Lemma 2.8 implies that a unique polynomial in $P(1,1,1)$ has a nontrivial critical point at c. If $\alpha \in\left\{\frac{1}{3}, 1\right\}$, Lemmas 3.2 and 3.3 imply that S_{1} is tangent to $\mathcal{O}(1)$, and Lemma 2.8 implies that c is the nontrivial critical point of a unique polynomial in $P(1,1,1)$.

The analysis of $P(1,1,1)$ generalizes to $P(k, m, m)$.
When $m=n$, equation (3) becomes $\alpha^{2}=\frac{\left.(k+m)^{2} \alpha^{2}-k^{2}+m^{2} \alpha^{2}\right)^{2}}{(k+m)^{2}\left((k+2 m) \alpha^{2}-k\right)^{2}}$ and has roots $\pm 1, \pm \frac{k}{k+m}, \pm \frac{k}{k+2 m}$.
Theorem 3.5 restated for $P(k, m, m)$ is as follows.
Theorem 3.6. Let $c \in \mathcal{O}(\alpha)$.
(1) If $\alpha \in\left[0, \frac{k}{k+2 m}\right) \cup(1, \infty)$, then no polynomial in $P(k, m, m)$ has a nontrivial critical point at c.
(2) If $\alpha=\sqrt{\frac{k}{k+2 m}}$, then $p(z)=z^{k}(z-r)^{m}\left(z-f_{c, 1}(r)\right)^{m} \in P(k, m, m)$ has a nontrivial critical point at c for each $r \in \mathcal{O}(1)$.
(3) If $\alpha \in\left[\frac{k}{k+2 m}, 1\right] \backslash\left\{\sqrt{\frac{k}{k+2 m}}\right\}$, then c is a nontrivial critical point of a unique polynomial in $P(k, m, m)$.

4. Polynomials in $P(k, m, n)$ with $m \neq n$

To begin the $m \neq n$ case, we analyze the critical points of polynomials in $P(1,1,2)$. For $k=m=1$ and $n=2$, (3) becomes

$$
\begin{equation*}
x^{2}+y^{2}=\left(\frac{9 \alpha^{2}-1}{12 \alpha^{2}-2}\right)^{2}\left(1-\frac{2 \alpha^{2}}{\left|9 \alpha^{2}-1\right|}\right)^{2} \tag{5}
\end{equation*}
$$

According to Lemma 3.1, S_{1} in internally tangent to $\mathcal{O}(1)$ whenever (3) and therefore (5) is satisfied. Because of the $\left|9 \alpha^{2}-1\right|$ in (5), we consider 3 cases.
(1) If $\alpha \in\left(0, \frac{1}{3}\right)$, then $\frac{9 \alpha^{2}-1}{\left|9 \alpha^{2}-1\right|}=-1$, and $\sqrt{5}$ b becomes

$$
x^{2}+y^{2}=\left(\frac{1-11 \alpha^{2}}{12 \alpha^{2}-2}\right)^{2}
$$

Therefore, (3) is satisfied whenever

$$
\alpha^{2}=\left(\frac{1-11 \alpha^{2}}{12 \alpha^{2}-2}\right)^{2}
$$

Observing that $\alpha= \pm 1$ are solutions and using polynomial division leads to $\alpha=$ $\pm \frac{1}{4}, \pm \frac{1}{3}, \pm 1$. Therefore, for $\alpha \in\left(0, \frac{1}{3}\right), S_{1}$ is internally tangent to $\mathcal{O}(1)$ when $\alpha=\frac{1}{4}$.
(2) If $\alpha \in\left(\frac{1}{3}, 1\right]$, then $\frac{9 \alpha^{2}-1}{\left|9 \alpha^{2}-1\right|}=1$, and 5$)$ becomes

$$
\begin{equation*}
x^{2}+y^{2}=\left(\frac{7 \alpha^{2}-1}{12 \alpha^{2}-2}\right)^{2} \tag{6}
\end{equation*}
$$

Therefore, (3) is satisfied whenever

$$
\alpha^{2}=\left(\frac{7 \alpha^{2}-1}{12 \alpha^{2}-2}\right)^{2}
$$

In order to solve for α we manipulate algebraically and use the rational roots test to find that $\alpha= \pm \frac{1}{3}$ are solutions. Polynomial division leads to the remaining solutions $\alpha=\frac{ \pm \sqrt{17} \pm 1}{8}$. Therefore, for $\alpha \in\left(\frac{1}{3}, 1\right], S_{1}$ is internally tangent to $\mathcal{O}(1)$ when $\alpha=\frac{\sqrt{17} \pm 1}{8}$.
(3) If $c \in \mathcal{O}\left(\frac{1}{3}\right)$, then S_{1} is a line. Similar to the $P(1,1,1)$ case, S_{1} is not tangent to $\mathcal{O}(1)$. The analysis of (3) and $\mathcal{O}(\alpha)$ has established the following result.

Lemma 4.1. Let $c \in \mathcal{O}(\alpha)$. Then, S_{1} is internally tangent to $\mathcal{O}(1)$ if and only if $\alpha \in\left\{\frac{1}{4}, \frac{\sqrt{17} \pm 1}{8}\right\}$.
A similar analysis determines when S_{1} is externally tangent to $\mathcal{O}(1)$.
Lemma 4.2. Let $c \in \mathcal{O}(\alpha)$. Then, S_{1} is externally tangent to $\mathcal{O}(1)$ if and only if $\alpha=1$.
We are now able to describe the second desert region.
Theorem 4.3. No polynomial in $P(1,1,2)$ has a nontrivial critical point on $\mathcal{O}(\alpha)$ with $\alpha \in$ $\left(\frac{\sqrt{17}-1}{8}, \frac{\sqrt{17}+1}{8}\right)$.

Proof. Let $c \in \mathcal{O}(\alpha)$ with $\alpha \in\left(\frac{\sqrt{17}-1}{8}, \frac{\sqrt{17}+1}{8}\right)$. Then,

$$
\alpha^{2}<\left(\frac{7 \alpha^{2}-1}{12 \alpha^{2}-2}\right)^{2}
$$

and (2) and (6) imply $|C|+|R|<1$. Therefore, for $\alpha \in\left(\frac{\sqrt{17}-1}{8}, \frac{\sqrt{17}+1}{8}\right), S_{1} \cap \mathcal{O}(1)=\emptyset$ and Lemma 2.10 implies that no polynomial in $P(1,1,2)$ has a nontrivial critical point on $\mathcal{O}(\alpha)$.

The following lemma will be needed to characterize the nontrivial critical points of polynomials in $P(1,1,2)$. The proof is similar to that of Lemma 3.4. For the line $L=\{t c \mid t \in \mathbb{R}\}$ and v, w as defined in Lemma 3.4, it can be shown that $f_{c, 1}(L)=L$ and that exactly one of $f_{c, 1}(w) \in S_{1}$ and $f_{c, 1}(v) \in S_{1}$ lie inside the unit circle. This leads to the following result.

Lemma 4.4. If $c \in \mathcal{O}(\alpha)$ with $\alpha \in\left(\frac{1}{4}, \frac{\sqrt{17}-1}{8}\right) \cup\left(\frac{\sqrt{17}+1}{8}, 1\right)$, then $\left|S_{1} \cap \mathcal{O}(1)\right|=2$.
We are now able to characterize the nontrivial critical points of polynomials in $P(1,1,2)$. See Figure 4

Theorem 4.5. Let $c \in \mathcal{O}(\alpha)$.
(1) If $\alpha \in\left[0, \frac{1}{4}\right) \cup\left(\frac{\sqrt{17}-1}{8}, \frac{\sqrt{17}+1}{8}\right) \cup(1, \infty)$, then no polynomial in $P(1,1,2)$ has a nontrivial critical point at c.
(2) If $\alpha \in\left\{\frac{1}{4}, \frac{\sqrt{17} \pm 1}{8}, 1\right\}$, then c is the nontrivial critical point of a unique polynomial in $P(1,1,2)$.
(3) If $\alpha \in\left(\frac{1}{4}, \frac{\sqrt{17}-1}{8}\right) \cup\left(\frac{\sqrt{17}+1}{8}, 1\right)$, then c is the nontrivial critical point of exactly two polynomials in $P(1,1,2)$.

Proof. Let $c \in \mathcal{O}(\alpha)$
(1) If $\alpha>1$, the Gauss-Lucas Theorem implies c is not the critical point of a polynomial in $P(1,1,2)$. If $\alpha \in\left(0, \frac{1}{4}\right) \cup\left(\frac{\sqrt{17}-1}{8}, \frac{\sqrt{17}+1}{8}\right)$, Theorems 2.3 and 4.3 imply no polynomial in $P(1,1,2)$ has a nontrivial critical point at c.
(2) If $\alpha \in\left\{\frac{1}{4}, \frac{\sqrt{17} \pm 1}{8}, 1\right\}$, Lemmas 2.10, 4.1, and 4.2 imply that c is the nontrivial critical point of a unique polynomial in $P(1,1,2)$.
(3) Suppose $\alpha \in\left(\frac{1}{4}, \frac{\sqrt{17}-1}{8}\right) \cup\left(\frac{\sqrt{17}+1}{8}, 1\right)$. Lemma 4.4 implies $\left|S_{1} \cap \mathcal{O}(1)\right|=2$, and by Lemma 2.10, c is a nontrivial critical point of exactly two polynomials in $P(1,1,2)$.

Figure 4. Critical points of polynomials in $P(1,1,2)$ do not occur in the white regions.

The analysis of $P(1,1,2)$ can be extended to $P(k, m, n)$ with $m \neq n$. The analysis includes finding the values of α that satisfy (3) and extending the lemmas used in the $P(1,1,2)$ case.

To conveniently state the main result we set

$$
\alpha_{ \pm}=\frac{\sqrt{(m-n)^{2}+4 k(k+m+n)} \pm|m-n|}{2(k+m+n)} .
$$

Theorem 4.6. Let $c \in \mathcal{O}(\alpha)$.
(1) If $\alpha \in\left[0, \frac{k}{k+m+n}\right) \cup\left(\alpha_{-}, \alpha_{+}\right) \cup(1, \infty)$, then no polynomial in $P(k, m, n)$ has a nontrivial critical point at c.
(2) If $\alpha \in\left\{\frac{k}{k+m+n}, \alpha_{ \pm}, 1\right\}$, then c is the nontrivial critical point of a unique polynomial in $P(k, m, n)$.
(3) If $\alpha \in\left(\frac{k}{k+m+n}, \alpha_{-}\right) \cup\left(\alpha_{+}, 1\right)$, then c is the nontrivial critical point of exactly two polynomials in $P(k, m, n)$.

5. Conclusion

This concludes our characterization of the nontrivial critical point of polynomials in $P(k, m, n)$. However, there is still more to be discovered. For example, as a consequence of Theorem 2.3, if $p \in P(k, m, n)$ has nontrivial critical points $c_{1} \in \mathcal{O}(\alpha)$ and $c_{2} \in \mathcal{O}(\beta)$, then $\mathcal{O}(\alpha)$ is the inversion of $\mathcal{O}(\beta)$ across the circle $\mathcal{O}\left(\sqrt{\frac{k}{k+m+n}}\right)$. What other structure is associated with the nontrivial critical points of polynomials in $P(k, m, n)$? Additionally, for c in the unit disk, is it possible to determine the polynomial(s) in $P(k, m, n)$ with a nontrivial critical point at c ? Many interesting and open questions remain.

References

[1] Christopher Frayer, Geometry of Polynomials with Three Roots, Missouri Journal of Mathematical Sciences 29 (2017), no. 2, 161-175.
[2] Christopher Frayer and Landon Gauthier, A Tale of Two Circles: Geometry of a Class of Quartic Polynomials, Involve: A Journal of Mathematics 11 (2018), no. 3, 489-500.
[3] Christopher Frayer, Miyeon Kwon, Christopher Schafhauser, and James A. Swenson, The Geometry of Cubic Polynomials, Math. Magazine 87 (2014), no. 2, 113-124.
[4] Morris Marden, Geometry of polynomials, Second edition. Mathematical Surveys, No. 3, American Mathematical Society, Providence, R.I., 1966. MR0225972 (37 \#1562)
[5] E.B Saff and A.D Snider, Fundamentals of Complex Analysis for Mathematics, Science, and Engineering, Prentice-Hall, Anglewood Cliffs, New Jersey, 1993.

Student biographies

Camille Felton: (Corresponding author: camille.felton@uky.edu) Camille graduated from the University of Wisconsin Platteville with Bachelor's degree in mathematics. She is currently a PhD student at the University of Kentucky. Her main interest is in analysis.

[^0]: * Corresponding author

