Critical Points of a Family of Complex-Valued Polynomials

Camille Felton¹ and Christopher Frayer²

¹University of Kentucky ²University of Wisconsin - Platteville

The Minnesota Journal of Undergraduate Mathematics

Volume 5 (2019-2020 Academic Year)

Sponsored by School of Mathematics University of Minnesota Minneapolis, MN 55455 The Minnesota Journal of Undergraduate Mathematics

Volume 5 (2019-2020 Academic Year)

Critical Points of a Family of Complex-Valued Polynomials

Camille Felton^{* 1} and Christopher Frayer²

¹University of Kentucky ²University of Wisconsin - Platteville

ABSTRACT. For $k, m, n \in \mathbb{N}$, let P(k, m, n) be the family of complex-valued polynomials of the form $p(z) = z^k (z - r_1)^m (z - r_2)^n$ with $|r_1| = |r_2| = 1$. The Gauss-Lucas Theorem guarantees that the critical points of $p \in P(k, m, n)$ will lie in the unit disk. This paper further explores the location and structure of these critical points. When m = n, the unit disk contains a *desert region*, $\{z \in \mathbb{C} : |z| < \frac{k}{k+2m}\}$, in which critical points do not occur, and a critical point almost always determines a polynomial uniquely. When $m \neq n$, the unit disk contains two desert regions, and each *c* is the critical point of at most two polynomials in P(k, m, n).

1. INTRODUCTION

The Gauss-Lucas Theorem guarantees that the critical points of a complex-valued polynomial will lie in the convex hull of its roots [4]. For example, if *p* has three non-collinear roots, then its critical points will lie in the triangle with vertices located at its roots. For $k, m, n \in \mathbb{N}$ ($0 \notin \mathbb{N}$), several recent papers ([3], [2], [1]) have studied critical points of the family of polynomials

$$\mathcal{P}_{k,m,n} = \left\{ p : \mathbb{C} \to \mathbb{C} \mid p(z) = (z-1)^k (z-r_1)^m (z-r_2)^n \text{ with } |r_1| = |r_2| = 1 \right\}.$$

Critical points of polynomials in $\mathcal{P}_{1,1,1}$ are studied in [3]. For this family of polynomials, the unit disk contains a *desert region*, $\{z \in \mathbb{C} : |z - \frac{2}{3}| < \frac{1}{3}\}$, in which critical points do not occur, and a critical point almost always (with the exception of two points) determines a polynomial uniquely. Critical points of polynomials in $\mathcal{P}_{1,1,2}$ are characterized in [2]. Due to the loss of symmetry in the multiplicities of r_1 and r_2 , the unit disk contains two desert regions in which critical points do not occur: $\{z \in \mathbb{C} : |z - \frac{3}{4}| < \frac{1}{4}\}$ and the interior of $2x^4 - 3x^3 + x + 4x^2y^2 - 3xy^2 + 2y^4 = 0$. Furthermore, each *c* in the unit disk and outside the closure of the desert regions, is the critical point of exactly two polynomials in $\mathcal{P}_{1,1,2}$.

For $k, m, n \in \mathbb{N}$, [1] extends the results of [3] and [2] by characterizing the critical points of polynomials in $\mathcal{P}_{k,m,n}$. When m = n, similar to [3], the unit disk contains a single desert region, and a critical point almost always determines a polynomial uniquely. When $m \neq n$,

^{*} Corresponding author

similar to [2], the unit disk contains two desert regions, and each *c* is the critical point of at most two polynomials in $\mathcal{P}_{k,m,n}$.

For $k, m, n \in \mathbb{N}$, this paper investigates a variation of [1] by characterizing the critical points of the family of polynomials

$$P(k, m, n) = \left\{ p : \mathbb{C} \to \mathbb{C} \mid p(z) = z^k (z - r_1)^m (z - r_2)^n \text{ with } |r_1| = |r_2| = 1 \right\}.$$

As motivating examples, we investigate P(1,1,1) and P(1,1,2), and then use those results to characterize the critical points of polynomials in P(k, m, m) and P(k, m, n).

2. Critical Points

We begin our discussion by introducing some notation. For $\alpha > 0$, we let $O(\alpha)$ represent the circle centered at the origin with radius α . That is,

$$\mathcal{O}(\alpha) = \{ z \in \mathbb{C} \mid |z| = \alpha \}.$$

A polynomial of the form

$$p(z) = z^k (z - r_1)^m (z - r_2)^n$$

with $|r_1| = |r_2| = 1$ and $k, m, n \in \mathbb{N}$ has k + m + n - 1 critical points. Differentiation gives

$$p'(z) = z^{k-1}(z-r_1)^{m-1}(z-r_2)^{n-1}q(z)$$

with

$$q(z) = (k + m + n)z^{2} - (k(r_{1} + r_{2}) + nr_{1} + mr_{2})z + kr_{1}r_{2}$$

There are k - 1 critical points at z = 0, m - 1 critical points at r_1 , n - 1 critical points at r_2 , and two additional critical points in the unit disk.

Definition 2.1. Given $p \in P(k, m, n)$ we say *c* is a *nontrivial* critical points of *p* if q(c) = 0. We call the remaining critical points *trivial*.

This paper will characterize the nontrivial critical points of polynomials in P(k, m, n). We begin with an example.

Example 2.2. Let $p \in P(k, m, n)$ have a nontrivial critical point at $c \in O(1)$. By the Gauss Lucas Theorem, *c* must lie in the convex hull of the roots of $p(z) = z(z - r_1)^n (z - r_2)^m$. That is, $c \in O(1)$ is in the convex hull of a set containing two points on the unit circle and the origin. This can only happen if $c = r_1$ or $c = r_2$. Furthermore, as *c* is a nontrivial critical point, we have $c = r_1 = r_2$.

Therefore, $p \in P(k, m, n)$ has a nontrivial critical point at $c \in O(1)$ if and only if $p(z) = z^k(z-c)^{m+n}$. In this case, q(z) = (z-c)((k+m+n)z-kc), and one can calculate that the second nontrivial critical point is $\frac{kc}{k+m+n} \in O(\frac{k}{k+m+n})$. To summarize, $c \in O(1)$ is a nontrivial critical points of $p \in P(k, m, n)$ if and only if $r_1 = r_2$.

A similar argument shows that c = 0 will never be a nontrivial critical point of a polynomial in P(k, m, n). We can say even more.

Theorem 2.3. No polynomial in P(k, m, n) has a nontrivial critical point inside $O(\frac{k}{k+m+n})$.

Proof. Suppose c_1 and c_2 are nontrivial critical point of $p(z) = z^k (z - r_1)^m (z - r_2)^n$. Then, c_1 and c_2 are roots of $q(z) = (k + m + n)z^2 - (k(r_1 + r_2) + nr_1 + mr_2)z + kr_1r_2$ and it follows that $c_1c_2 = \frac{kr_1r_2}{k+m+n}$. As $|r_1| = |r_2| = 1$, $|c_1| \le 1$ and $|c_2| \le 1$, we have

$$|c_1| \ge |c_1c_2| = \frac{k}{k+m+n}$$

and the result follows.

To characterize the nontrivial critical points of a polynomial in P(k, m, n), we investigate the relationship between its roots and nontrivial critical points. Suppose *c* is a nontrivial critical point of $p(z) = z^k(z - r_1)^m(z - r_2)^n \in P(k, m, n)$. Then,

$$0 = q(c) = (k + m + n)c^{2} - (k(r_{1} + r_{2}) + nr_{1} + mr_{2})c + kr_{1}r_{2}$$

and it follows that

$$r_1 = \frac{(k+m)cr_2 - (k+m+n)c^2}{kr_2 - c(k+n)}$$
 and $r_2 = \frac{(k+n)cr_1 - (k+m+n)c^2}{kr_1 - c(k+m)}$

Definition 2.4. Given $c \in \mathbb{C} \setminus \{0\}$, define

$$f_{c,1}(z) = \frac{(k+m)cz - (k+m+n)c^2}{kz - c(k+n)} \text{ and } f_{c,2}(z) = \frac{(k+n)cz - (k+m+n)c^2}{kz - c(k+m)}$$

and let $S_1 = f_{c,1}(\mathcal{O}(1))$ and $S_2 = f_{c,2}(\mathcal{O}(1))$.

The functions $f_{c,1}$ and $f_{c,2}$ are fractional linear transformations with $f_{c,1}(r_2) = r_1$ and $f_{c,2}(r_1) = r_2$. The above work has established the following result.

Theorem 2.5. Suppose $c \in \mathbb{C} \setminus \{0\}$. Then, $p(z) = z^k (z - r_1)^m (z - r_2)^n \in P(k, m, n)$ has a nontrivial critical point at c if and only if $f_{c,1}(r_2) = r_1$ and $f_{c,2}(r_1) = r_2$.

When $c \neq 0$, $f_{c,1}$ and $f_{c,2}$ are invertible with $(f_{c,1})^{-1} = f_{c,2}$. Since $f_{c,1}(z)$ and $f_{c,2}(z)$ are fractional linear transformations, they send circles and lines to circles and lines. Therefore, S_1 and S_2 are either circles or lines. An additional result concerning fractional linear transformations [2, page 491], will be of interest.

Theorem 2.6. A fractional linear transformation T sends the unit circle to the unit circle if and only if

$$T(z) = \frac{\overline{\alpha}z - \overline{\beta}}{\beta z - \alpha}$$

for some $\alpha, \beta \in \mathbb{C}$ with $|\frac{\alpha}{\beta}| \neq 1$.

Example 2.7. For $c \neq 0$,

$$f_{c,1}(z) = \frac{(k+m)cz - (k+m+n)c^2}{kz - c(k+n)} = \frac{(k+m)z - (k+m+n)c}{\frac{k}{c}z - (k+n)},$$

We recall that $f_{c,1}$ is a fractional linear transformation such that $f_{c,1}(\mathcal{O}(1)) = S(1)$ and Theorem 2.6 implies $S_1 = \mathcal{O}(1)$ if and only if

$$\overline{(k+n)} = u(k+m)$$
 and $\overline{k}/\overline{c} = u(k+m+n)c$

for some $u \in \mathbb{C}$ with |u| = 1. Since $k, m, n \in \mathbb{N}$, we then get k+n = u(k+m) which implies $u \in (0, \infty)$. Therefore, u = 1 and it follows that m = n. The right equation gives $c\overline{c} = \frac{k}{u(k+m+n)}$, so that $|c|^2 = \frac{k}{u(k+m+n)} = u \frac{k}{k+m+n}$. Then $|c|^2 \in \mathbb{R}$ so the right hand side is real-valued as well which implies $u \in \mathbb{R}$. This gives that $|c| = \sqrt{\frac{k}{K+m+n}}$ which is equivalent to $c \in \mathcal{O}(\frac{k}{k+m+n})$. Therefore, $S_1 = \mathcal{O}(1)$ if and only if m = n and $c \in \mathcal{O}(\sqrt{\frac{k}{k+2m}})$. Similar calculations yield, $S_2 = \mathcal{O}(1)$ if and only if m = n and $c \in \mathcal{O}(\sqrt{\frac{k}{k+2m}})$.

Given $c \in \mathbb{C}\setminus\{0\}$, there are associated circles (or lines) $S_1 = f_{c,1}(\mathcal{O}(1))$ and $S_2 = f_{c,2}(\mathcal{O}(1))$. Since $r_1, r_2 \in \mathcal{O}(1)$, $f_{c,1}(r_2) = r_1$ and $f_{c,2}(r_1) = r_2$, it follows that $r_1 \in S_1 \cap \mathcal{O}(1)$ and $r_2 \in S_2 \cap \mathcal{O}(1)$. The sets $S_1 \cap \mathcal{O}(1)$ and $S_2 \cap \mathcal{O}(1)$ give candidates for the roots of polynomials in P(k, m, n) with nontrivial critical points at c. When m = n, $f_{c,1} = f_{c,2}$ so that $S_1 = S_2$. In this case, Lemma 2.8 provides a relationship between $|S_1 \cap \mathcal{O}(1)|$ and the number of polynomials in P(k, m, m) with a nontrivial critical point at c.

Lemma 2.8. Suppose m = n and $c \in \mathbb{C} \setminus \{0\}$.

- (1) If $S_1 \cap \mathcal{O}(1) = \emptyset$, then no polynomial in P(k, m, m) has a nontrivial critical point at c.
- (2) If $S_1 = \mathcal{O}(1)$, then $p(z) = z^k (z r)^m (z f_{c,1}(r))^m \in P(k, m, m)$ has a nontrivial critical point at c for each $r \in \mathcal{O}(1)$.
- (3) If $|S_1 \cap O(1)| \in \{1, 2\}$, then c is the nontrivial critical point of a unique polynomial in P(k, m, m).

Proof. Let $c \in \mathbb{C} \setminus \{0\}$.

- (1) If $S_1 \cap \mathcal{O}(1) = \emptyset$, then no point in \mathbb{C} is eligible to be r_1 or r_2 . Therefore, no polynomial in P(k, m, m) has a nontrivial critical point at *c*.
- (2) If $S_1 = \mathcal{O}(1)$, Theorem 2.5 implies that *c* is a nontrivial critical point of $p(z) = z^k (z-r)^m (z-f_{c,1}(r))^m \in P(k,m,m)$ has a nontrivial critical point at *c* for each $r \in \mathcal{O}(1)$.
- (3) If $S_1 \cap \mathcal{O}(1) = \{a\}$, then $f_{c,1}(a) = a$ and Theorem 2.5 implies $p(z) = z^k (z a)^{2m}$ is the only polynomial in P(k, m, m) with a nontrivial critical point at *c*.

Suppose $S_1 \cap \mathcal{O}(1) = \{a, b\}$ with $a \neq b$. If $f_{c,1}(a) = a$, the definitions of $f_{c,1}$ and S_1 imply $f_{c,1}(b) = b$. Then, by Theorem 2.5, c is a nontrivial critical point of $p(z) = z^k(z-a)^{2m}$ and $p(z) = z^k(z-b)^{2m}$, which contradicts the Gauss-Lucas Theorem. Therefore, $f_{c,1}(a) = b$ so that $f_{c,1}(b) = a$ and Theorem 2.5 implies $p(z) = z^k(z-a)^m(z-b)^m \in P(k,m,m)$ has a nontrivial critical point at c. Furthermore, as $S_1 \cap \mathcal{O}(1) = \{a, b\}$, no other polynomial in P(k,m,m) has a nontrivial critical point at c.

When $m \neq n$, $S_1 \neq S_2$. Extensions of results in [2] (Lemmas 10 and 11 on page 493) imply that $|S_1 \cap \mathcal{O}(1)| = |S_2 \cap \mathcal{O}(1)|$ (our Lemma 2.9) and that $|S_1 \cap \mathcal{O}(1)|$ is the number of polynomials in P(k, m, n) having a nontrivial critical point at *c* (our Lemma 2.10).

Lemma 2.9. Let $c \in \mathbb{C} \setminus \{0\}$ and $m \neq n$. Then $|S_1 \cap \mathcal{O}(1)| = |S_2 \cap \mathcal{O}(1)| \in \{0, 1, 2\}$.

Lemma 2.10. Let $c \in \mathbb{C} \setminus \{0\}$ and $m \neq n$.

- (1) If $S_1 \cap \mathcal{O}(1) = \emptyset$, then no polynomial in P(k, m, n) has a nontrivial critical point at c.
- (2) If $|S_1 \cap O(1)| = 1$, then c is the nontrivial critical point of exactly one polynomial in P(k, m, n).
- (3) If $|S_1 \cap O(1)| = 2$, then c is the nontrivial critical point of exactly two polynomials in P(k, m, n).

2.1. Center and Radius of S_1 . To characterize the nontrivial critical points of polynomials in P(k, m, n), Lemmas 2.8, 2.9 and 2.10 suggest that we need to further understand S_1 .

Example 2.11. For $c \neq 0$, $S_1 = f_{c,1}(\mathcal{O}(1))$ is either a circle or a line. Thinking of a line as a circle with a point at infinity, we observe that $S_1 = f_{c,1}(\mathcal{O}(1))$ is a line whenever there exists a $z_o \in \mathcal{O}(1)$ that makes the denominator of $f_{c,1}(z_o)$ equal to zero. This occurs whenever $kz_o - (n+k)c = 0$. In this case, $\frac{c}{z_o} = \frac{k}{n+k}$. Take the modulus of both sides and note that $|z_o| = 1$ and it follows that $|c| = \left|\frac{k}{n+k}\right|$. Therefore, S_1 is a line if and only if $c \in \mathcal{O}(\frac{k}{k+n})$.

For $c \in \mathcal{O}(\alpha)$ with $\alpha \neq \frac{k}{k+n}$, S_1 is a circle. We use methods from [2] to determine the center and radius of S_1 . Since $S_1 = f_{c,1}(\mathcal{O}(1))$, $z \in S_1$ if and only if there exists some $w \in \mathcal{O}(1)$ with $f_{c,1}(w) = z$. Furthermore, as $(f_{c,1})^{-1} = f_{c,2}$, $z \in S_1$ if and only if $|f_{c,2}(z)| = 1$. That is,

$$\left|\frac{-c(k+n)z + (k+m+n)c^2}{-kz + (k+m)c}\right| = 1.$$

Therefore, $z \in S_1$ if and only if

$$\left|\frac{c(k+n)}{k}\right|\left|z-\frac{(k+m+n)c}{k+n}\right| = \left|z-\frac{(k+m)c}{k}\right|.$$

From introductory complex analysis, when $d \neq 1$, the solution set of

d|z - v| = |z - u|

is a circle with center $C = \frac{d^2v-u}{d^2-1}$ and radius $R = |v - u||\frac{d}{d^2-1}|$. Direct calculations establish the following result.

Lemma 2.12. Suppose $c \in O(\alpha)$ with $\alpha \neq \frac{k}{k+n}$. Then, S_1 is a circle with center C and radius R given by

$$C = \frac{\left[(k+n)(k+m+n)\alpha^2 - (k+m)k \right] c}{(k+n)^2 \alpha^2 - k^2} \quad and \quad R = \frac{mn\alpha^2}{|\alpha^2(k+n)^2 - k^2|}.$$
 (1)

3. Determining the Desert Regions

When $S_1 \cap \mathcal{O}(1) = \emptyset$, Lemmas 2.8 and 2.10 imply that *c* lies in a desert region. As S_1 varies continuously with *c*, *c* will lie on the boundary of a desert region when S_1 is tangent to $\mathcal{O}(1)$. This proves to be an interesting case!

FIGURE 1. If S_1 is internally tangent to $\mathcal{O}(1)$, then |C| + R = 1.

We begin by determining when S_1 is internally tangent to $\mathcal{O}(1)$. For $c \neq 0$, if S_1 is internally tangent to $\mathcal{O}(1)$, then

$$|C| + R = 1.$$
 (2)

See Figure 1. Substituting *C* and *R* from (1) into (2) and setting c = x + iy gives

$$x^{2} + y^{2} = \left(\frac{(k+n)^{2}\alpha^{2} - k^{2}}{(k+n)(k+n+m)\alpha^{2} - (k+m)k}\right)^{2} \left(1 - \frac{mn\alpha^{2}}{|\alpha^{2}(k+n)^{2} - k^{2}|}\right)^{2}$$
$$= \frac{\left(|\alpha^{2}(k+n)^{2} - k^{2}| - mn\alpha^{2}\right)^{2}}{((k+n)(k+n+m)\alpha^{2} - (k+m)k)^{2}}$$

For $c \in \mathcal{O}(\alpha)$, S_1 is internally tangent to $\mathcal{O}(1)$ if and only if $|c| = \alpha$ satisfies

$$\alpha^{2} = \left(\frac{(k+n)^{2}\alpha^{2} - k^{2}}{(k+n)(k+n+m)\alpha^{2} - (k+m)k}\right)^{2} \left(1 - \frac{mn\alpha^{2}}{|\alpha^{2}(k+n)^{2} - k^{2}|}\right)^{2}.$$
(3)

As $\mathcal{O}(\alpha)$ and (3) are circles centered at the origin, we have established the following result.

Lemma 3.1. Let $c \in O(\alpha)$ with $\alpha \in (0,1]$. Then, S_1 is internally tangent to O(1) if and only if α satisfies (3).

In order to proceed, we investigate the m = n and $m \neq n$ cases separately.

3.1. P(k, m, m). We begin the m = n discussion by analyzing the P(1, 1, 1) case. When k = m = n = 1, (3) implies

$$x^{2} + y^{2} = \frac{1}{4(3\alpha^{2} - 1)^{2}} \left((4\alpha^{2} - 1) - \frac{\alpha^{2}(4\alpha^{2} - 1)}{|4\alpha^{2} - 1|} \right)^{2}.$$
 (4)

According to Lemma 3.1, S_1 is internally tangent to O(1) whenever (3), and therefore (4), is satisfied. Because of the $|4\alpha^2 - 1|$ in (4), we consider 3 cases.

(1) If $\alpha \in (0, \frac{1}{2})$, then $\frac{4\alpha^2 - 1}{|4\alpha^2 - 1|} = -1$ and (4) becomes

$$x^{2} + y^{2} = \frac{1}{4(3\alpha^{2} - 1)^{2}} \left((4\alpha^{2} - 1) - \alpha^{2}(-1) \right)^{2} = \frac{(5\alpha^{2} - 1)^{2}}{4(3\alpha^{2} - 1)^{2}}.$$

Therefore, (3) is satisfied when

$$\alpha^2 = \frac{(5\alpha^2 - 1)^2}{4(3\alpha^2 - 1)^2}$$

To find α that satisfy this equation, we observe that $\alpha = \pm 1$ are solutions. Then, algebraic manipulation and polynomial long division lead to the solutions $\alpha = \pm \frac{1}{3}, \pm \frac{1}{2}, \pm 1$. For $\alpha \in (0, \frac{1}{2})$, Lemma 3.1 implies S_1 is internally tangent to $\mathcal{O}(1)$ only when $\alpha = \frac{1}{3}$.

(2) If $\alpha \in (\frac{1}{2}, 1]$, then $\frac{4\alpha^2 - 1}{|4\alpha^2 - 1|} = 1$ and (4) becomes $x^2 + y^2 = \frac{1}{4(3\alpha^2 - 1)^2}(4\alpha^2 - 1 - \alpha^2)^2 = \frac{1}{4}.$

Therefore, for $\alpha \in (\frac{1}{2}, 1]$, (3) is not satisfied and Lemma 3.1 implies S_1 is not internally tangent to $\mathcal{O}(1)$.

(3) If $\alpha = \frac{1}{2}$, then S_1 is a line. Furthermore, as m = n, $S_1 = S_2$ and it follows that $\{r_1, r_2\} \subseteq S_1 \cap \mathcal{O}_1$. Therefore, S_1 is tangent to $\mathcal{O}(1)$ if and only if $r_1 = r_2$. However, according to Example 2.2, when $r_1 = r_2$, $c \notin \mathcal{O}(\frac{1}{2})$, and S_1 is not tangent to $\mathcal{O}(1)$.

Our analysis of Lemma 3.1 has established the following result.

Lemma 3.2. The circle S_1 is internally tangent to $\mathcal{O}(1)$ if and only if $c \in \mathcal{O}(\frac{1}{3})$.

Furthermore, S_1 will be externally tangent to O(1) if and only if |C| - R = 1. A similar analysis leads to the following result.

Lemma 3.3. The circle S_1 is externally tangent to $\mathcal{O}(1)$ if and only if $c \in \mathcal{O}(1)$.

The following lemma will be needed to finish the characterization of critical points of polynomials in P(1, 1, 1).

Lemma 3.4. If $c \in \mathcal{O}(\alpha)$ with $\alpha \in (\frac{1}{3}, 1) \setminus \{\sqrt{\frac{1}{3}}\}$, then $|S_1 \cap \mathcal{O}(1)| = 2$.

Proof. For $0 \neq c \in \mathcal{O}(\alpha)$, define $L = \{tc \mid t \in \mathbb{R}\}$ and let v, w be the points of intersection of L and $\mathcal{O}(1)$. See Figure 2. Direct calculations give

$$v = \frac{1}{\alpha}c$$
 and $w = \frac{-1}{\alpha}c$.

Since $v, w \in \mathcal{O}(1)$, $\{f_{c,1}(v), f_{c,1}(w)\} \subseteq S_1$. As $f_{c,1}$ is a fractional linear transformation, $f_{c,1}(L)$ is a circle or line. For $z_o \in L$, $z_o = t_o c$ for some $t_o \in \mathbb{R}$ and

$$f_{c,1}(z_o) = \frac{2c(t_oc) - 3c^2}{t_oc - 2} = \frac{2t_o - 3}{t_o - 2}c \in L.$$

Therefore, $f_{c,1}(L) = L$. Letting $t_o = \pm \frac{1}{\alpha}$ gives

$$f_{c,1}(w) = \frac{\frac{2}{\alpha} - 3}{\frac{1}{\alpha} - 2}c = \frac{2 - 3\alpha}{1 - 2\alpha}c \in \mathcal{O}(\left|\frac{2\alpha - 3\alpha^2}{1 - 2\alpha}\right|)$$

and

$$f_{c,1}(v) = \frac{\frac{-2}{\alpha} - 3}{\frac{-1}{\alpha} - 2}c = \frac{2 + 3\alpha}{1 + 2\alpha}c \in \mathcal{O}(\frac{2\alpha + 3\alpha^2}{1 + 2\alpha}).$$

Comparing the graphs of $f(\alpha) = \left|\frac{2\alpha - 3\alpha^2}{1 - 2\alpha}\right|$ and $g(\alpha) = \frac{2\alpha + 3\alpha^2}{1 + 2\alpha}$ in Figure 2, shows that when $\alpha \in \left(\frac{1}{3}, \sqrt{\frac{1}{3}}\right) \cup \left(\sqrt{\frac{1}{3}}, 1\right)$, exactly one of $f_{c,1}(w)$ and $f_{c,1}(v)$ lies inside the unit circle. Therefore, $|S_1 \cap \mathcal{O}(1)| = 2$.

FIGURE 2. Left: $f_{c,1}(w) \in \mathcal{O}(f(\alpha))$ and $f_{c,1}(v) \in \mathcal{O}(g(\alpha))$. Right: $L = \{tc \mid t \in \mathbb{R}\}$.

We are now able to describe the critical points of polynomials in P(1, 1, 1). See Figure 3.

Theorem 3.5. Let $c \in \mathcal{O}(\alpha)$.

- (1) If $\alpha \in [0, \frac{1}{3}) \cup (1, \infty)$, then no polynomial in P(1, 1, 1) has a nontrivial critical point at c.
- (2) If $\alpha = \sqrt{\frac{1}{3}}$, then $p(z) = z(z-r)(z-f_{c,1}(r)) \in P(1,1,1)$ has a nontrivial critical point at c for each $r \in O(1)$.

FIGURE 3. Critical points of polynomials in P(1,1,1) cannot occur in the white regions.

(3) If $\alpha \in [\frac{1}{3}, 1] \setminus \{\sqrt{\frac{1}{3}}\}$, then c is the nontrivial critical point of a unique polynomial in P(1, 1, 1).

Proof. Let $c \in \mathcal{O}(\alpha)$.

- (1) If $\alpha \in (1, \infty)$, the Gauss-Lucas Theorem implies that *c* is not the critical point of a polynomial in P(1, 1, 1). If $\alpha \in [0, \frac{1}{3})$, Theorem 2.3 implies no polynomial in P(k, m, n) has a nontrivial critical point at *c*.
- (2) If $\alpha = \sqrt{\frac{1}{3}}$, then Example 2.7 implies $S_1 = \mathcal{O}(1)$. By Lemma 2.8, $p(z) = z(z-r)(z f_{c,1}(r)) \in P(1,1,1)$ has a nontrivial critical point at *c* for each $r \in \mathcal{O}(1)$.
- (3) Supposed $\alpha \in (\frac{1}{3}, 1) \setminus \{\sqrt{\frac{1}{3}}\}$. Then, by Lemma 3.4, $|S_1 \cap \mathcal{O}(1)| = 2$ and Lemma 2.8 implies that a unique polynomial in P(1, 1, 1) has a nontrivial critical point at *c*. If $\alpha \in \{\frac{1}{3}, 1\}$, Lemmas 3.2 and 3.3 imply that S_1 is tangent to $\mathcal{O}(1)$, and Lemma 2.8 implies that *c* is the nontrivial critical point of a unique polynomial in P(1, 1, 1).

The analysis of P(1, 1, 1) generalizes to P(k, m, m).

When m = n, equation (3) becomes $\alpha^2 = \frac{(k+m)^2 \alpha^2 - k^2 + m^2 \alpha^2}{(k+m)^2 ((k+2m)\alpha^2 - k)^2}$ and has roots $\pm 1, \pm \frac{k}{k+m}, \pm \frac{k}{k+2m}$.

Theorem 3.5 restated for P(k, m, m) is as follows.

Theorem 3.6. Let $c \in \mathcal{O}(\alpha)$.

(1) If $\alpha \in [0, \frac{k}{k+2m}) \cup (1, \infty)$, then no polynomial in P(k, m, m) has a nontrivial critical point at c.

- (2) If $\alpha = \sqrt{\frac{k}{k+2m}}$, then $p(z) = z^k (z-r)^m (z-f_{c,1}(r))^m \in P(k,m,m)$ has a nontrivial critical point at c for each $r \in \mathcal{O}(1)$.
- (3) If $\alpha \in \left[\frac{k}{k+2m}, 1\right] \setminus \left\{\sqrt{\frac{k}{k+2m}}\right\}$, then *c* is a nontrivial critical point of a unique polynomial in *P*(*k*, *m*, *m*).

4. Polynomials in P(k, m, n) with $m \neq n$

To begin the $m \neq n$ case, we analyze the critical points of polynomials in P(1, 1, 2). For k = m = 1 and n = 2, (3) becomes

$$x^{2} + y^{2} = \left(\frac{9\alpha^{2} - 1}{12\alpha^{2} - 2}\right)^{2} \left(1 - \frac{2\alpha^{2}}{|9\alpha^{2} - 1|}\right)^{2}.$$
 (5)

According to Lemma 3.1, S_1 in internally tangent to O(1) whenever (3) and therefore (5) is satisfied. Because of the $|9\alpha^2 - 1|$ in (5), we consider 3 cases.

(1) If $\alpha \in (0, \frac{1}{3})$, then $\frac{9\alpha^2 - 1}{|9\alpha^2 - 1|} = -1$, and (5) becomes

$$x^{2} + y^{2} = \left(\frac{1 - 11\alpha^{2}}{12\alpha^{2} - 2}\right)^{2}.$$

Therefore, (3) is satisfied whenever

$$\alpha^2 = \left(\frac{1-11\alpha^2}{12\alpha^2 - 2}\right)^2.$$

Observing that $\alpha = \pm 1$ are solutions and using polynomial division leads to $\alpha = \pm \frac{1}{4}, \pm \frac{1}{3}, \pm 1$. Therefore, for $\alpha \in (0, \frac{1}{3})$, S_1 is internally tangent to $\mathcal{O}(1)$ when $\alpha = \frac{1}{4}$.

(2) If $\alpha \in (\frac{1}{3}, 1]$, then $\frac{9\alpha^2 - 1}{|9\alpha^2 - 1|} = 1$, and (5) becomes

$$x^{2} + y^{2} = \left(\frac{7\alpha^{2} - 1}{12\alpha^{2} - 2}\right)^{2}.$$
 (6)

Therefore, (3) is satisfied whenever

$$\alpha^2 = \left(\frac{7\alpha^2 - 1}{12\alpha^2 - 2}\right)^2.$$

In order to solve for α we manipulate algebraically and use the rational roots test to find that $\alpha = \pm \frac{1}{3}$ are solutions. Polynomial division leads to the remaining solutions $\alpha = \frac{\pm \sqrt{17} \pm 1}{8}$. Therefore, for $\alpha \in (\frac{1}{3}, 1]$, S_1 is internally tangent to $\mathcal{O}(1)$ when $\alpha = \frac{\sqrt{17} \pm 1}{8}$.

(3) If $c \in \mathcal{O}(\frac{1}{3})$, then S_1 is a line. Similar to the P(1, 1, 1) case, S_1 is not tangent to $\mathcal{O}(1)$. The analysis of (3) and $\mathcal{O}(\alpha)$ has established the following result. **Lemma 4.1.** Let $c \in \mathcal{O}(\alpha)$. Then, S_1 is internally tangent to $\mathcal{O}(1)$ if and only if $\alpha \in \left\{\frac{1}{4}, \frac{\sqrt{17}\pm 1}{8}\right\}$.

A similar analysis determines when S_1 is externally tangent to $\mathcal{O}(1)$.

Lemma 4.2. Let $c \in O(\alpha)$. Then, S_1 is externally tangent to O(1) if and only if $\alpha = 1$.

We are now able to describe the second desert region.

Theorem 4.3. No polynomial in P(1,1,2) has a nontrivial critical point on $\mathcal{O}(\alpha)$ with $\alpha \in \left(\frac{\sqrt{17}-1}{8}, \frac{\sqrt{17}+1}{8}\right)$.

Proof. Let $c \in \mathcal{O}(\alpha)$ with $\alpha \in \left(\frac{\sqrt{17}-1}{8}, \frac{\sqrt{17}+1}{8}\right)$. Then, $\alpha^2 < \left(\frac{7\alpha^2 - 1}{12\alpha^2 - 2}\right)^2$

and (2) and (6) imply |C| + |R| < 1. Therefore, for $\alpha \in \left(\frac{\sqrt{17}-1}{8}, \frac{\sqrt{17}+1}{8}\right)$, $S_1 \cap \mathcal{O}(1) = \emptyset$ and Lemma 2.10 implies that no polynomial in P(1,1,2) has a nontrivial critical point on $\mathcal{O}(\alpha)$.

The following lemma will be needed to characterize the nontrivial critical points of polynomials in P(1,1,2). The proof is similar to that of Lemma 3.4. For the line $L = \{tc \mid t \in \mathbb{R}\}$ and v, w as defined in Lemma 3.4, it can be shown that $f_{c,1}(L) = L$ and that exactly one of $f_{c,1}(w) \in S_1$ and $f_{c,1}(v) \in S_1$ lie inside the unit circle. This leads to the following result.

Lemma 4.4. If $c \in \mathcal{O}(\alpha)$ with $\alpha \in (\frac{1}{4}, \frac{\sqrt{17}-1}{8}) \cup (\frac{\sqrt{17}+1}{8}, 1)$, then $|S_1 \cap \mathcal{O}(1)| = 2$.

We are now able to characterize the nontrivial critical points of polynomials in P(1,1,2). See Figure 4.

Theorem 4.5. Let $c \in \mathcal{O}(\alpha)$.

- (1) If $\alpha \in [0, \frac{1}{4}) \cup \left(\frac{\sqrt{17}-1}{8}, \frac{\sqrt{17}+1}{8}\right) \cup (1, \infty)$, then no polynomial in P(1, 1, 2) has a nontrivial critical point at c.
- (2) If $\alpha \in \left\{\frac{1}{4}, \frac{\sqrt{17}\pm 1}{8}, 1\right\}$, then c is the nontrivial critical point of a unique polynomial in P(1, 1, 2).
- (3) If $\alpha \in \left(\frac{1}{4}, \frac{\sqrt{17}-1}{8}\right) \cup \left(\frac{\sqrt{17}+1}{8}, 1\right)$, then *c* is the nontrivial critical point of exactly two polynomials in P(1, 1, 2).

Proof. Let $c \in \mathcal{O}(\alpha)$

- (1) If $\alpha > 1$, the Gauss-Lucas Theorem implies *c* is not the critical point of a polynomial in *P*(1,1,2). If $\alpha \in (0, \frac{1}{4}) \cup \left(\frac{\sqrt{17}-1}{8}, \frac{\sqrt{17}+1}{8}\right)$, Theorems 2.3 and 4.3 imply no polynomial in *P*(1,1,2) has a nontrivial critical point at *c*.
- (2) If $\alpha \in \left\{\frac{1}{4}, \frac{\sqrt{17}\pm 1}{8}, 1\right\}$, Lemmas 2.10, 4.1, and 4.2 imply that *c* is the nontrivial critical point of a unique polynomial in *P*(1, 1, 2).
- (3) Suppose $\alpha \in \left(\frac{1}{4}, \frac{\sqrt{17}-1}{8}\right) \cup \left(\frac{\sqrt{17}+1}{8}, 1\right)$. Lemma 4.4 implies $|S_1 \cap \mathcal{O}(1)| = 2$, and by Lemma 2.10, *c* is a nontrivial critical point of exactly two polynomials in *P*(1,1,2).

FIGURE 4. Critical points of polynomials in P(1,1,2) do not occur in the white regions.

The analysis of P(1,1,2) can be extended to P(k,m,n) with $m \neq n$. The analysis includes finding the values of α that satisfy (3) and extending the lemmas used in the P(1,1,2) case.

To conveniently state the main result we set

$$\alpha_{\pm} = \frac{\sqrt{(m-n)^2 + 4k(k+m+n)} \pm |m-n|}{2(k+m+n)}.$$

Theorem 4.6. Let $c \in \mathcal{O}(\alpha)$.

- (1) If $\alpha \in \left[0, \frac{k}{k+m+n}\right) \cup (\alpha_{-}, \alpha_{+}) \cup (1, \infty)$, then no polynomial in P(k, m, n) has a nontrivial critical point at c.
- (2) If $\alpha \in \left\{\frac{k}{k+m+n}, \alpha_{\pm}, 1\right\}$, then c is the nontrivial critical point of a unique polynomial in P(k, m, n).
- (3) If $\alpha \in \left(\frac{k}{k+m+n}, \alpha_{-}\right) \cup (\alpha_{+}, 1)$, then c is the nontrivial critical point of exactly two polynomials in P(k, m, n).

5. Conclusion

This concludes our characterization of the nontrivial critical point of polynomials in P(k, m, n). However, there is still more to be discovered. For example, as a consequence of Theorem 2.3, if $p \in P(k, m, n)$ has nontrivial critical points $c_1 \in \mathcal{O}(\alpha)$ and $c_2 \in \mathcal{O}(\beta)$, then $\mathcal{O}(\alpha)$ is the inversion of $\mathcal{O}(\beta)$ across the circle $\mathcal{O}(\sqrt{\frac{k}{k+m+n}})$. What other structure is associated with the nontrivial critical points of polynomials in P(k, m, n)? Additionally, for *c* in the unit disk, is it possible to determine the polynomial(s) in P(k, m, n) with a nontrivial critical point at *c*? Many interesting and open questions remain.

References

- [1] Christopher Frayer, *Geometry of Polynomials with Three Roots*, Missouri Journal of Mathematical Sciences **29** (2017), no. 2, 161–175.
- [2] Christopher Frayer and Landon Gauthier, A Tale of Two Circles: Geometry of a Class of Quartic Polynomials, Involve: A Journal of Mathematics **11** (2018), no. 3, 489-500.
- [3] Christopher Frayer, Miyeon Kwon, Christopher Schafhauser, and James A. Swenson, *The Geometry of Cubic Polynomials*, Math. Magazine **87** (2014), no. 2, 113–124.
- [4] Morris Marden, Geometry of polynomials, Second edition. Mathematical Surveys, No. 3, American Mathematical Society, Providence, R.I., 1966. MR0225972 (37 #1562)
- [5] E.B Saff and A.D Snider, *Fundamentals of Complex Analysis for Mathematics, Science, and Engineering,* Prentice-Hall, Anglewood Cliffs, New Jersey, 1993.

Student biographies

Camille Felton: (*Corresponding author:* camille.felton@uky.edu) Camille graduated from the University of Wisconsin Platteville with Bachelor's degree in mathematics. She is currently a PhD student at the University of Kentucky. Her main interest is in analysis.