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Abstract. For k,m,n ∈N, let P (k,m,n) be the family of complex-valued polynomials of the
form p(z) = zk(z−r1)m(z−r2)n with |r1| = |r2| = 1. The Gauss-Lucas Theorem guarantees that
the critical points of p ∈ P (k,m,n) will lie in the unit disk. This paper further explores the
location and structure of these critical points. When m = n, the unit disk contains a desert
region, {z ∈ C : |z| < k

k+2m }, in which critical points do not occur, and a critical point almost
always determines a polynomial uniquely. When m , n, the unit disk contains two desert
regions, and each c is the critical point of at most two polynomials in P (k,m,n).

1. Introduction

The Gauss-Lucas Theorem guarantees that the critical points of a complex-valued poly-
nomial will lie in the convex hull of its roots [4]. For example, if p has three non-collinear
roots, then its critical points will lie in the triangle with vertices located at its roots. For
k,m,n ∈N ( 0 <N), several recent papers ([3], [2], [1]) have studied critical points of the
family of polynomials

Pk,m,n =
{
p : C→C | p(z) = (z − 1)k(z − r1)m(z − r2)n with |r1| = |r2| = 1

}
.

Critical points of polynomials in P1,1,1 are studied in [3]. For this family of polynomials,
the unit disk contains a desert region, {z ∈ C : |z − 2

3 | <
1
3 }, in which critical points do not

occur, and a critical point almost always (with the exception of two points) determines
a polynomial uniquely. Critical points of polynomials in P1,1,2 are characterized in [2].
Due to the loss of symmetry in the multiplicities of r1 and r2, the unit disk contains two
desert regions in which critical points do not occur: {z ∈ C : |z − 3

4 | <
1
4 } and the interior of

2x4−3x3 +x+4x2y2−3xy2 +2y4 = 0. Furthermore, each c in the unit disk and outside the
closure of the desert regions, is the critical point of exactly two polynomials in P1,1,2.

For k,m,n ∈N, [1] extends the results of [3] and [2] by characterizing the critical points
of polynomials in Pk,m,n. When m = n, similar to [3], the unit disk contains a single desert
region, and a critical point almost always determines a polynomial uniquely. Whenm , n,
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similar to [2], the unit disk contains two desert regions, and each c is the critical point of
at most two polynomials in Pk,m,n.

For k,m,n ∈ N, this paper investigates a variation of [1] by characterizing the critical
points of the family of polynomials

P (k,m,n) =
{
p : C→C | p(z) = zk(z − r1)m(z − r2)n with |r1| = |r2| = 1

}
.

As motivating examples, we investigate P (1,1,1) and P (1,1,2), and then use those results
to characterize the critical points of polynomials in P (k,m,m) and P (k,m,n).

2. Critical Points

We begin our discussion by introducing some notation. For α > 0, we let O(α) represent
the circle centered at the origin with radius α. That is,

O(α) = {z ∈C
∣∣∣ |z| = α}.

A polynomial of the form
p(z) = zk(z − r1)m(z − r2)n

with |r1| = |r2| = 1 and k,m,n ∈N has k +m+n− 1 critical points. Differentiation gives

p′(z) = zk−1(z − r1)m−1(z − r2)n−1q(z)

with
q(z) = (k +m+n)z2 − (k(r1 + r2) +nr1 +mr2)z+ kr1r2.

There are k − 1 critical points at z = 0, m− 1 critical points at r1, n− 1 critical points at r2,
and two additional critical points in the unit disk.

Definition 2.1. Given p ∈ P (k,m,n) we say c is a nontrivial critical points of p if q(c) = 0.
We call the remaining critical points trivial.

This paper will characterize the nontrivial critical points of polynomials in P (k,m,n). We
begin with an example.

Example 2.2. Let p ∈ P (k,m,n) have a nontrivial critical point at c ∈ O(1). By the Gauss
Lucas Theorem, c must lie in the convex hull of the roots of p(z) = z(z− r1)n(z− r2)m. That
is, c ∈ O(1) is in the convex hull of a set containing two points on the unit circle and the
origin. This can only happen if c = r1 or c = r2. Furthermore, as c is a nontrivial critical
point, we have c = r1 = r2.

Therefore, p ∈ P (k,m,n) has a nontrivial critical point at c ∈ O(1) if and only if p(z) =
zk(z − c)m+n. In this case, q(z) = (z − c)((k +m + n)z − kc), and one can calculate that the
second nontrivial critical point is kc

k+m+n ∈ O( k
k+m+n ). To summarize, c ∈ O(1) is a nontrivial

critical points of p ∈ P (k,m,n) if and only if r1 = r2.

A similar argument shows that c = 0 will never be a nontrivial critical point of a polyno-
mial in P (k,m,n). We can say even more.

Theorem 2.3. No polynomial in P (k,m,n) has a nontrivial critical point inside O( k
k+m+n ).
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Proof. Suppose c1 and c2 are nontrivial critical point of p(z) = zk(z− r1)m(z− r2)n. Then, c1
and c2 are roots of q(z) = (k +m+ n)z2 − (k(r1 + r2) + nr1 +mr2)z + kr1r2 and it follows that
c1c2 = kr1r2

k+m+n . As |r1| = |r2| = 1, |c1| ≤ 1 and |c2| ≤ 1, we have

|c1| ≥ |c1c2| =
k

k +m+n
and the result follows. �

To characterize the nontrivial critical points of a polynomial in P (k,m,n), we investigate
the relationship between its roots and nontrivial critical points. Suppose c is a nontrivial
critical point of p(z) = zk(z − r1)m(z − r2)n ∈ P (k,m,n). Then,

0 = q(c) = (k +m+n)c2 − (k(r1 + r2) +nr1 +mr2)c+ kr1r2
and it follows that

r1 =
(k +m)cr2 − (k +m+n)c2

kr2 − c(k +n)
and r2 =

(k +n)cr1 − (k +m+n)c2

kr1 − c(k +m)
.

Definition 2.4. Given c ∈C\{0}, define

fc,1(z) =
(k +m)cz − (k +m+n)c2

kz − c(k +n)
and fc,2(z) =

(k +n)cz − (k +m+n)c2

kz − c(k +m)
,

and let S1 = fc,1(O(1)) and S2 = fc,2(O(1)).

The functions fc,1 and fc,2 are fractional linear transformations with fc,1(r2) = r1 and
fc,2(r1) = r2. The above work has established the following result.

Theorem 2.5. Suppose c ∈C\{0}. Then, p(z) = zk(z− r1)m(z− r2)n ∈ P (k,m,n) has a nontrivial
critical point at c if and only if fc,1(r2) = r1 and fc,2(r1) = r2 .

When c , 0, fc,1 and fc,2 are invertible with (fc,1)−1 = fc,2. Since fc,1(z) and fc,2(z) are frac-
tional linear transformations, they send circles and lines to circles and lines. Therefore,
S1 and S2 are either circles or lines. An additional result concerning fractional linear
transformations [2, page 491], will be of interest.

Theorem 2.6. A fractional linear transformation T sends the unit circle to the unit circle if
and only if

T (z) =
αz − β
βz −α

for some α,β ∈C with |αβ | , 1.

Example 2.7. For c , 0,

fc,1(z) =
(k +m)cz − (k +m+n)c2

kz − c(k +n)
=

(k +m)z − (k +m+n)c
k
c z − (k +n)

,

We recall that fc,1 is a fractional linear transformation such that fc,1(O(1)) = S(1) and
Theorem 2.6 implies S1 = O(1) if and only if
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(k +n) = u(k +m) and k/ c = u(k +m+n)c

for some u ∈C with |u| = 1. Since k,m,n ∈N, we then get k+n = u(k+m) which implies u ∈
(0,∞). Therefore, u = 1 and it follows that m = n. The right equation gives cc = k

u(k+m+n) ,

so that |c|2 = k
u(k+m+n) = u k

k+m+n . Then |c|2 ∈ R so the right hand side is real-valued as well

which implies u ∈ R. This gives that |c| =
√

k
K+m+n which is equivalent to c ∈ O( k

k+m+n ).

Therefore, S1 = O(1) if and only if m = n and c ∈ O
(√

k
k+2m

)
. Similar calculations yield,

S2 = O(1) if and only if m = n and c ∈ O
(√

k
k+2m

)
.

Given c ∈ C\{0}, there are associated circles (or lines) S1 = fc,1(O(1)) and S2 = fc,2(O(1)).
Since r1, r2 ∈ O(1), fc,1(r2) = r1 and fc,2(r1) = r2, it follows that r1 ∈ S1 ∩ O(1) and r2 ∈
S2 ∩O(1). The sets S1 ∩O(1) and S2 ∩O(1) give candidates for the roots of polynomials
in P (k,m,n) with nontrivial critical points at c. When m = n, fc,1 = fc,2 so that S1 = S2.
In this case, Lemma 2.8 provides a relationship between |S1 ∩O(1)| and the number of
polynomials in P (k,m,m) with a nontrivial critical point at c.

Lemma 2.8. Suppose m = n and c ∈C\{0}.

(1) If S1 ∩O(1) = ∅, then no polynomial in P (k,m,m) has a nontrivial critical point at c.

(2) If S1 = O(1), then p(z) = zk(z − r)m
(
z − fc,1(r)

)m ∈ P (k,m,m) has a nontrivial critical
point at c for each r ∈ O(1).

(3) If |S1 ∩O(1)| ∈ {1,2}, then c is the nontrivial critical point of a unique polynomial in
P (k,m,m).

Proof. Let c ∈C\{0}.

(1) If S1 ∩O(1) = ∅, then no point in C is eligible to be r1 or r2. Therefore, no polyno-
mial in P (k,m,m) has a nontrivial critical point at c.

(2) If S1 = O(1), Theorem 2.5 implies that c is a nontrivial critical point of p(z) =
zk(z−r)m(z−fc,1(r))m ∈ P (k,m,m) has a nontrivial critical point at c for each r ∈ O(1).

(3) If S1 ∩O(1) = {a}, then fc,1(a) = a and Theorem 2.5 implies p(z) = zk(z − a)2m is the
only polynomial in P (k,m,m) with a nontrivial critical point at c.

Suppose S1∩O(1) = {a,b}with a , b. If fc,1(a) = a, the definitions of fc,1 and S1 imply
fc,1(b) = b. Then, by Theorem 2.5, c is a nontrivial critical point of p(z) = zk(z−a)2m

and p(z) = zk(z − b)2m, which contradicts the Gauss-Lucas Theorem. Therefore,
fc,1(a) = b so that fc,1(b) = a and Theorem 2.5 implies p(z) = zk(z − a)m(z − b)m ∈
P (k,m,m) has a nontrivial critical point at c. Furthermore, as S1 ∩O(1) = {a,b}, no
other polynomial in P (k,m,m) has a nontrivial critical point at c.

�
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When m , n, S1 , S2. Extensions of results in [2] (Lemmas 10 and 11 on page 493)
imply that |S1 ∩O(1)| = |S2 ∩O(1)| (our Lemma 2.9) and that |S1 ∩O(1)| is the number of
polynomials in P (k,m,n) having a nontrivial critical point at c (our Lemma 2.10).

Lemma 2.9. Let c ∈C\{0} and m , n. Then |S1 ∩O(1)| = |S2 ∩O(1)| ∈ {0,1,2}.

Lemma 2.10. Let c ∈C\{0} and m , n.

(1) If S1 ∩O(1) = ∅, then no polynomial in P (k,m,n) has a nontrivial critical point at c.

(2) If |S1 ∩ O(1)| = 1, then c is the nontrivial critical point of exactly one polynomial in
P (k,m,n).

(3) If |S1 ∩O(1)| = 2, then c is the nontrivial critical point of exactly two polynomials in
P (k,m,n).

2.1. Center and Radius of S1. To characterize the nontrivial critical points of polynomi-
als in P (k,m,n), Lemmas 2.8, 2.9 and 2.10 suggest that we need to further understand
S1.

Example 2.11. For c , 0, S1 = fc,1(O(1)) is either a circle or a line. Thinking of a line as a
circle with a point at infinity, we observe that S1 = fc,1(O(1)) is a line whenever there exists
a zo ∈ O(1) that makes the denominator of fc,1(zo) equal to zero. This occurs whenever
kzo − (n + k)c = 0. In this case, c

zo
= k

n+k . Take the modulus of both sides and note that

|zo| = 1 and it follows that |c| =
∣∣∣ k
n+k

∣∣∣. Therefore, S1 is a line if and only if c ∈ O( k
k+n ).

For c ∈ O(α) with α , k
k+n , S1 is a circle. We use methods from [2] to determine the center

and radius of S1. Since S1 = fc,1(O(1)), z ∈ S1 if and only if there exists some w ∈ O(1) with
fc,1(w) = z. Furthermore, as (fc,1)−1 = fc,2, z ∈ S1 if and only if |fc,2(z)| = 1. That is,∣∣∣∣∣−c(k +n)z+ (k +m+n)c2

−kz+ (k +m)c

∣∣∣∣∣ = 1.

Therefore, z ∈ S1 if and only if∣∣∣∣∣c(k +n)
k

∣∣∣∣∣∣∣∣∣∣z − (k +m+n)c
k +n

∣∣∣∣∣ =
∣∣∣∣∣z − (k +m)c

k

∣∣∣∣∣.
From introductory complex analysis, when d , 1, the solution set of

d|z − v| = |z −u|

is a circle with center C = d2v−u
d2−1 and radius R = |v − u|| d

d2−1 |. Direct calculations establish
the following result.

Lemma 2.12. Suppose c ∈ O(α) with α , k
k+n . Then, S1 is a circle with center C and radius R

given by

C =

[
(k +n)(k +m+n)α2 − (k +m)k

]
c

(k +n)2α2 − k2 and R =
mnα2

|α2(k +n)2 − k2|
. (1)
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3. Determining the Desert Regions

When S1∩O(1) = ∅, Lemmas 2.8 and 2.10 imply that c lies in a desert region. As S1 varies
continuously with c, c will lie on the boundary of a desert region when S1 is tangent to
O(1). This proves to be an interesting case!

Figure 1. If S1 is internally tangent to O(1), then |C|+R = 1.

We begin by determining when S1 is internally tangent toO(1). For c , 0, if S1 is internally
tangent to O(1), then

|C|+R = 1. (2)

See Figure 1. Substituting C and R from (1) into (2) and setting c = x+ iy gives

x2 + y2 =
(

(k +n)2α2 − k2

(k +n)(k +n+m)α2 − (k +m)k

)2(
1− mnα2

|α2(k +n)2 − k2|

)2

=

(
|α2(k +n)2 − k2| −mnα2

)2

((k +n)(k +n+m)α2 − (k +m)k)2

For c ∈ O(α), S1 is internally tangent to O(1) if and only if |c| = α satisfies

α2 =
(

(k +n)2α2 − k2

(k +n)(k +n+m)α2 − (k +m)k

)2(
1− mnα2

|α2(k +n)2 − k2|

)2

. (3)

AsO(α) and (3) are circles centered at the origin, we have established the following result.

Lemma 3.1. Let c ∈ O(α) with α ∈ (0,1]. Then, S1 is internally tangent to O(1) if and only if
α satisfies (3).

In order to proceed, we investigate the m = n and m , n cases separately.
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3.1. P (k,m,m). We begin the m = n discussion by analyzing the P (1,1,1) case. When
k =m = n = 1, (3) implies

x2 + y2 =
1

4(3α2 − 1)2

(
(4α2 − 1)− α

2(4α2 − 1)
|4α2 − 1|

)2

. (4)

According to Lemma 3.1, S1 is internally tangent to O(1) whenever (3), and therefore (4),
is satisfied. Because of the |4α2 − 1| in (4), we consider 3 cases.

(1) If α ∈ (0, 1
2 ), then 4α2−1

|4α2−1| = −1 and (4) becomes

x2 + y2 =
1

4(3α2 − 1)2

(
(4α2 − 1)−α2(−1)

)2
=

(5α2 − 1)2

4(3α2 − 1)2 .

Therefore, (3) is satisfied when

α2 =
(5α2 − 1)2

4(3α2 − 1)2 .

To find α that satisfy this equation, we observe that α = ±1 are solutions. Then,
algebraic manipulation and polynomial long division lead to the solutions α =
±1

3 ,±
1
2 ,±1. For α ∈ (0, 1

2 ), Lemma 3.1 implies S1 is internally tangent to O(1) only
when α = 1

3 .

(2) If α ∈ (1
2 ,1], then 4α2−1

|4α2−1| = 1 and (4) becomes

x2 + y2 =
1

4(3α2 − 1)2 (4α2 − 1−α2)2 =
1
4
.

Therefore, for α ∈ (1
2 ,1], (3) is not satisfied and Lemma 3.1 implies S1 is not inter-

nally tangent to O(1).

(3) If α = 1
2 , then S1 is a line. Furthermore, as m = n, S1 = S2 and it follows that

{r1, r2} ⊆ S1 ∩O1. Therefore, S1 is tangent to O(1) if and only if r1 = r2. However,
according to Example 2.2, when r1 = r2, c < O(1

2 ), and S1 is not tangent to O(1).

Our analysis of Lemma 3.1 has established the following result.

Lemma 3.2. The circle S1 is internally tangent to O(1) if and only if c ∈ O(1
3 ).

Furthermore, S1 will be externally tangent to O(1) if and only if |C| − R = 1. A similar
analysis leads to the following result.

Lemma 3.3. The circle S1 is externally tangent to O(1) if and only if c ∈ O(1).

The following lemma will be needed to finish the characterization of critical points of
polynomials in P (1,1,1).

Lemma 3.4. If c ∈ O(α) with α ∈ (1
3 ,1)\

{√
1
3

}
, then |S1 ∩O(1)| = 2.
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Proof. For 0 , c ∈ O(α), define L = {tc | t ∈R} and let v,w be the points of intersection of L
and O(1). See Figure 2. Direct calculations give

v =
1
α
c and w =

−1
α
c.

Since v,w ∈ O(1), {fc,1(v), fc,1(w)} ⊆ S1. As fc,1 is a fractional linear transformation, fc,1(L)
is a circle or line. For zo ∈ L, zo = toc for some to ∈R and

fc,1(zo) =
2c(toc)− 3c2

toc − 2,
=

2to − 3
to − 2

c ∈ L.

Therefore, fc,1(L) = L. Letting to = ± 1
α gives

fc,1(w) =
2
α − 3
1
α − 2

c =
2− 3α
1− 2α

c ∈ O(
∣∣∣2α − 3α2

1− 2α

∣∣∣)
and

fc,1(v) =
−2
α − 3
−1
α − 2

c =
2 + 3α
1 + 2α

c ∈ O(
2α + 3α2

1 + 2α
).

Comparing the graphs of f (α) =
∣∣∣2α−3α2

1−2α

∣∣∣ and g(α) = 2α+3α2

1+2α in Figure 2, shows that when

α ∈
(

1
3 ,

√
1
3

)
∪
(√

1
3 ,1

)
, exactly one of fc,1(w) and fc,1(v) lies inside the unit circle. Therefore,

|S1 ∩O(1))| = 2. �

Figure 2. Left: fc,1(w) ∈ O(f (α)) and fc,1(v) ∈ O(g(α)). Right: L = {tc | t ∈R}.

We are now able to describe the critical points of polynomials in P (1,1,1). See Figure 3.

Theorem 3.5. Let c ∈ O(α).

(1) If α ∈ [0, 1
3 )∪ (1,∞), then no polynomial in P (1,1,1) has a nontrivial critical point at c.

(2) If α =
√

1
3 , then p(z) = z(z − r)(z − fc,1(r)) ∈ P (1,1,1) has a nontrivial critical point at c

for each r ∈ O(1).
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Figure 3. Critical points of polynomials in P (1,1,1) cannot occur in the
white regions.

(3) If α ∈ [1
3 ,1]\

{√
1
3

}
, then c is the nontrivial critical point of a unique polynomial in

P (1,1,1).

Proof. Let c ∈ O(α).

(1) If α ∈ (1,∞), the Gauss-Lucas Theorem implies that c is not the critical point of
a polynomial in P (1,1,1). If α ∈ [0, 1

3 ), Theorem 2.3 implies no polynomial in
P (k,m,n) has a nontrivial critical point at c.

(2) If α =
√

1
3 , then Example 2.7 implies S1 = O(1). By Lemma 2.8, p(z) = z(z − r)(z −

fc,1(r)) ∈ P (1,1,1) has a nontrivial critical point at c for each r ∈ O(1).

(3) Supposed α ∈
(

1
3 ,1

)
\
{√

1
3

}
. Then, by Lemma 3.4, |S1 ∩O(1)| = 2 and Lemma 2.8

implies that a unique polynomial in P (1,1,1) has a nontrivial critical point at c. If
α ∈ {13 ,1}, Lemmas 3.2 and 3.3 imply that S1 is tangent to O(1), and Lemma 2.8
implies that c is the nontrivial critical point of a unique polynomial in P (1,1,1).

�

The analysis of P (1,1,1) generalizes to P (k,m,m).

When m = n, equation (3) becomes α2 = (k+m)2α2−k2+m2α2)2

(k+m)2((k+2m)α2−k)2 and has roots ±1,± k
k+m ,±

k
k+2m .

Theorem 3.5 restated for P (k,m,m) is as follows.

Theorem 3.6. Let c ∈ O(α).

(1) If α ∈ [0, k
k+2m ) ∪ (1,∞), then no polynomial in P (k,m,m) has a nontrivial critical

point at c.
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(2) If α =
√

k
k+2m , then p(z) = zk(z − r)m(z − fc,1(r))m ∈ P (k,m,m) has a nontrivial critical

point at c for each r ∈ O(1).

(3) If α ∈
[

k
k+2m ,1

]
\
{√

k
k+2m

}
, then c is a nontrivial critical point of a unique polynomial

in P (k,m,m).

4. Polynomials in P (k,m,n) with m , n

To begin the m , n case, we analyze the critical points of polynomials in P (1,1,2). For
k =m = 1 and n = 2, (3) becomes

x2 + y2 =
(

9α2 − 1
12α2 − 2

)2(
1− 2α2

|9α2 − 1|

)2

. (5)

According to Lemma 3.1, S1 in internally tangent to O(1) whenever (3) and therefore (5)
is satisfied. Because of the |9α2 − 1| in (5), we consider 3 cases.

(1) If α ∈ (0, 1
3 ), then 9α2−1

|9α2−1| = −1, and (5) becomes

x2 + y2 =
(

1− 11α2

12α2 − 2

)2

.

Therefore, (3) is satisfied whenever

α2 =
(

1− 11α2

12α2 − 2

)2

.

Observing that α = ±1 are solutions and using polynomial division leads to α =
±1

4 ,±
1
3 ,±1. Therefore, for α ∈ (0, 1

3 ), S1 is internally tangent to O(1) when α = 1
4 .

(2) If α ∈ (1
3 ,1], then 9α2−1

|9α2−1| = 1, and (5) becomes

x2 + y2 =
(

7α2 − 1
12α2 − 2

)2

. (6)

Therefore, (3) is satisfied whenever

α2 =
(

7α2 − 1
12α2 − 2

)2

.

In order to solve for α we manipulate algebraically and use the rational roots test
to find that α = ±1

3 are solutions. Polynomial division leads to the remaining

solutions α = ±
√

17±1
8 . Therefore, for α ∈ (1

3 ,1], S1 is internally tangent to O(1)

when α =
√

17±1
8 .

(3) If c ∈ O(1
3 ), then S1 is a line. Similar to the P (1,1,1) case, S1 is not tangent to O(1).

The analysis of (3) and O(α) has established the following result.
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Lemma 4.1. Let c ∈ O(α). Then, S1 is internally tangent to O(1) if and only if α ∈
{

1
4 ,
√

17±1
8

}
.

A similar analysis determines when S1 is externally tangent to O(1).

Lemma 4.2. Let c ∈ O(α). Then, S1 is externally tangent to O(1) if and only if α = 1.

We are now able to describe the second desert region.

Theorem 4.3. No polynomial in P (1,1,2) has a nontrivial critical point on O(α) with α ∈(√
17−1
8 ,

√
17+1
8

)
.

Proof. Let c ∈ O(α) with α ∈
(√

17−1
8 ,

√
17+1
8

)
. Then,

α2 <

(
7α2 − 1

12α2 − 2

)2

and (2) and (6) imply |C| + |R| < 1. Therefore, for α ∈
(√

17−1
8 ,

√
17+1
8

)
, S1 ∩ O(1) = ∅ and

Lemma 2.10 implies that no polynomial in P (1,1,2) has a nontrivial critical point on
O(α). �

The following lemma will be needed to characterize the nontrivial critical points of poly-
nomials in P (1,1,2). The proof is similar to that of Lemma 3.4. For the line L = {tc | t ∈R}
and v,w as defined in Lemma 3.4, it can be shown that fc,1(L) = L and that exactly one of
fc,1(w) ∈ S1 and fc,1(v) ∈ S1 lie inside the unit circle. This leads to the following result.

Lemma 4.4. If c ∈ O(α) with α ∈ (1
4 ,
√

17−1
8 )∪ (

√
17+1
8 ,1), then |S1 ∩O(1)| = 2.

We are now able to characterize the nontrivial critical points of polynomials in P (1,1,2).
See Figure 4.

Theorem 4.5. Let c ∈ O(α).

(1) If α ∈ [0, 1
4 )∪

(√
17−1
8 ,

√
17+1
8

)
∪ (1,∞), then no polynomial in P (1,1,2) has a nontrivial

critical point at c.

(2) If α ∈
{

1
4 ,
√

17±1
8 ,1

}
, then c is the nontrivial critical point of a unique polynomial in

P (1,1,2).

(3) If α ∈
(

1
4 ,
√

17−1
8

)
∪

(√
17+1
8 ,1

)
, then c is the nontrivial critical point of exactly two poly-

nomials in P (1,1,2).

Proof. Let c ∈ O(α)



MJUM Vol. 5 (2019-2020) Page 12

(1) If α > 1, the Gauss-Lucas Theorem implies c is not the critical point of a poly-

nomial in P (1,1,2). If α ∈ (0, 1
4 )∪

(√
17−1
8 ,

√
17+1
8

)
, Theorems 2.3 and 4.3 imply no

polynomial in P (1,1,2) has a nontrivial critical point at c.

(2) If α ∈
{

1
4 ,
√

17±1
8 ,1

}
, Lemmas 2.10, 4.1, and 4.2 imply that c is the nontrivial critical

point of a unique polynomial in P (1,1,2).

(3) Suppose α ∈
(

1
4 ,
√

17−1
8

)
∪

(√
17+1
8 ,1

)
. Lemma 4.4 implies |S1 ∩ O(1)| = 2, and by

Lemma 2.10, c is a nontrivial critical point of exactly two polynomials in P (1,1,2).

�

Figure 4. Critical points of polynomials in P (1,1,2) do not occur in the
white regions.

The analysis of P (1,1,2) can be extended to P (k,m,n) with m , n. The analysis includes
finding the values of α that satisfy (3) and extending the lemmas used in the P (1,1,2)
case.

To conveniently state the main result we set

α± =

√
(m−n)2 + 4k(k +m+n)± |m−n|

2(k +m+n)
.

Theorem 4.6. Let c ∈ O(α).

(1) If α ∈
[
0, k
k+m+n

)
∪ (α−,α+)∪ (1,∞), then no polynomial in P (k,m,n) has a nontrivial

critical point at c.

(2) If α ∈
{

k
k+m+n ,α±,1

}
, then c is the nontrivial critical point of a unique polynomial in

P (k,m,n).

(3) If α ∈
(

k
k+m+n ,α−

)
∪ (α+,1), then c is the nontrivial critical point of exactly two polyno-

mials in P (k,m,n).
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5. Conclusion

This concludes our characterization of the nontrivial critical point of polynomials in
P (k,m,n). However, there is still more to be discovered. For example, as a consequence
of Theorem 2.3, if p ∈ P (k,m,n) has nontrivial critical points c1 ∈ O(α) and c2 ∈ O(β), then

O(α) is the inversion of O(β) across the circle O(
√

k
k+m+n ). What other structure is associ-

ated with the nontrivial critical points of polynomials in P (k,m,n)? Additionally, for c in
the unit disk, is it possible to determine the polynomial(s) in P (k,m,n) with a nontrivial
critical point at c? Many interesting and open questions remain.

References

[1] Christopher Frayer, Geometry of Polynomials with Three Roots, Missouri Journal of Mathematical Sci-
ences 29 (2017), no. 2, 161–175.

[2] Christopher Frayer and Landon Gauthier, A Tale of Two Circles: Geometry of a Class of Quartic Polynomi-
als, Involve: A Journal of Mathematics 11 (2018), no. 3, 489-500.

[3] Christopher Frayer, Miyeon Kwon, Christopher Schafhauser, and James A. Swenson, The Geometry of
Cubic Polynomials, Math. Magazine 87 (2014), no. 2, 113–124.

[4] Morris Marden, Geometry of polynomials, Second edition. Mathematical Surveys, No. 3, American Math-
ematical Society, Providence, R.I., 1966. MR0225972 (37 #1562)

[5] E.B Saff and A.D Snider, Fundamentals of Complex Analysis for Mathematics, Science, and Engineering,
Prentice-Hall, Anglewood Cliffs, New Jersey, 1993.



MJUM Vol. 5 (2019-2020) Page 14

Student biographies

Camille Felton: (Corresponding author: camille.felton@uky.edu) Camille graduated from
the University of Wisconsin Platteville with Bachelor’s degree in mathematics. She is cur-
rently a PhD student at the University of Kentucky. Her main interest is in analysis.

mailto:camille.felton@uky.edu

	1. Introduction
	2. Critical Points
	2.1. Center and Radius of S1

	3. Determining the Desert Regions
	3.1. P(k,m,m)

	4. Polynomials in P(k,m,n) with m n
	5. Conclusion
	References
	Student biographies

