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Abstract. Every four years, elite athletes gather at the Summer Olympic Games, aiming
to be crowned as the world’s best. Audiences are spoiled with fantastic performances from
competitors such as Michael Phelps and Usain Bolt, and watch each event to see not only
who will win a gold medal, but whether any world records will be set in the process. But
how frequent are those records? This paper aims to answer that question for the track
sprinting events. First we construct a cumulative distribution function to model the prob-
ability that an Olympic sprinter will be able to race within a certain range of times. After
estimating parameter values for the model, we use techniques from probability theory to
determine the likelihood than an elite athlete will be able to break a current world record.

1. Introduction

The Olympic Games have been the venue for numerous world record achievements in
track sprinting races. The world watches these elite sprinters, hoping to see an athlete
sprint faster than any man or women in history. The current world record times remain in
the bottom corner of the television screen, tantalizing audiences. This begs the question
of whether our expectations of world records is too high. The goal of this paper is to
determine the probability that a fan at the Olympics will witness a single sprinting world
record, multiple world records, or no record at all.

The models constructed for this paper only apply to elite Olympic sprinters, as those are
the individuals that will break the existing world records and who have done so in the
past. In the context of this paper, sprinting events are defined to be the 100 meter and 200
meter dashes for both men and women, yielding four separate events. The data used [4]
were collected prior to the 2016 Rio Summer Olympic Games and include times for each
of those events. These data sets are in descending order, from the fastest recorded times
in an official event to the slowest. Each set for the men’s sprints contain nearly 3000 data
entries, whereas the data sprints comprises nearly 2000 entries.
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2. Distribution Function

To interpret the data from [4], it is necessary to create a model that to determine the
probability than an event will occur. One way this can be accomplished is through con-
struction of a cumulative distribution function (CDF), which is a function of ordered
cumulative event probabilities for a particular data set. This is used because it allows for
the ease of calculation for the probability that an event will occur (e.g. a sprinter whose
time is the fastest in history).

To construct a CDF, we choose a lower bound y0, which represents an impossibly fast
time, and an upper bound y1, which is so high that we are certain the sprinters will
complete the race within that time. The interval [y0, y1] of finishing times between is then
scaled to [0,1], yielding the following CDF:

F(y) =


0 if y ≤ y0(
y−y0
y1−y0

)α
if y0 < y < y1

1 if y ≥ y1

(1)

where α is a shape parameter which alters the shape of the distribution. This CDF will be
used to determine the probability that a sprinter will finish a race within a certain time.
The probability of a sprinter finishing in a time equal to or less than y0 is 0, but by time y1
the sprinter will have finished with probability 1. Equation (1) will allow us to compute
the probability of the sprinter finishing with a time less than or equal to y for y0 < y < y1,
which then enables us to calculate the probability of world records being set.

3. Estimating Alpha

The CDF in (1) has a single parameter, α. The effect of changing α on the shape of the
distribution will be more thoroughly understood once the relationship between y0, y1, and
α is established. First, one must estimate the value of α, which may be done through the
method of moments. This method begins by taking the derivative of the CDF to obtain
the probability density function, or PDF. The PDF is used to calculate the expected value
of the distribution, E(X), as follows:

For a continuous random variable X with CDF F(x), the expected value of X is defined as

µ = E(X) =
∫ ∞
−∞
xf (x)dx

where F′(x) = f (x), and µ can be estimated by x̄ which is the mean time of the data set.
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Taking the derivative of F(x):

d
dx
F(x) =

d
dx

(
x − y0

y1 − y0

)α
f (x) = α

(
x − y0

y1 − y0

)α−1

· 1
y1 − y0

Substituting f (x) into E(X) and integrating with respect to x:

µ = E(X) =
∫ y1

y0

xα(
x − y0

y1 − y0
)α−1 1

y1 − y0
dx

=
∫ y1

y0

α
(y1 − y0)α

(x − y0 + y0)(x − y0)α−1dx

=
∫ y1

y0

α
(y1 − y0)α

(
(x − y0)α + y0(x − y0)α−1

)
dx

=
α

(y1 − y0)α

∫ y1

y0

(x − y0)αdx+
αy0

(y1 − y0)α

∫ y1

y0

(x − y0)α−1dx

=
α

(y1 − y0)α

∫ y1

y0

(x − y0)αd(x − y0) +
αy0

(y1 − y0)α

∫ y1

y0

(x − y0)α−1d(x − y0)

=
α

(y1 − y0)α
(x − y0)α+1

α + 1

∣∣∣∣∣∣
y1

y0

+
αy0

(y1 − y0)α
(x − y0)α

α

∣∣∣∣∣∣
y1

y0

=
α

α + 1
(y1 − y0) + y0

= (1− 1
α + 1

)(y1 − y0) + y0

= y1 −
1

α + 1
(y1 − y0)

Rearranging for α yields

1
α + 1

(y1 − y0) = y1 −E(x)

α + 1 =
y1 − y0

y1 −E(x)

α =
y1 − y0

y1 −E(x)
− 1.

Finally, using x̄ as an estimate for µ = E(X) gives our estimate for the parameter α:

α̂ =
y1 − y0

y1 − x̄
− 1. (2)
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Thus from (2), the estimate of α̂ is dependent upon the bounds of the distribution and the
average time from the data set. Since x̄ is a constant value calculated from each sprinting
event’s data set, to change α̂ one must change the bounds of the distribution, ie. y0 and y1.
Thus, following the determination of these bounds, a sensitivity analysis testing a range
of different values for y0 and y1 will establish an understanding of how these different
values affect α̂, and the individual and cumulative event probabilities of a world record
being broken. Moreover, this will allow for the bounds to accurately represent past data
in the likelihood of a world record being broken.

4. Obtaining Unknown Values: y0, y1, and x̄

Before calculating the probability that an elite Olympic sprinter will break the world
record in a particular race, we must choose bounds y0 and y1 for the event. For y0, we
used the theoretical fastest times for each race, calculated in [1]. For the Men’s 100m
Dash, y0 = 9.51, which is 0.07 less than the current men’s world record. For the Women’s
100m Dash, y0 = 10.33, a -0.16 difference from the current women’s world record. Taking
twice these differentials and adding them to their respective sex’s 200m world record
time yields the remaining two lower bounds. This is done because the world record for
both the Men’s and Women’s 200m Dash are approximately twice that of their respective
100m races, yielding y0 = 19.05 for the men and y0 = 21.02 for the women.

To determine y1, take the positive differential between the world record and y0, and add
this number to the last distinct time in the main list from [4]. For example, the Men’s
100m Dash times from [4] range from 9.58 to 10.09. Taking positive 0.07 added to the
last distinct time of 10.09 yields an upper bound of 10.16.

Thus, the last remaining unknown value required to estimate α̂ is x̄. To obtain this value
for each event, take the sum of all times recorded for the specific race from [4] and divide
by the total number of race times listed. This process is repeated for each of the three
remaining events.

Table 1. The unknown values used to calculate specific event probabilities.

5. Individual Event Probabilities

To compute the probabilities for each individual event, one must first substitute the ob-
tained values for y0, y1, and x̄ into (2) and solve, to estimate for α̂. Subsequently, y0, y1,
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and α̂ are substituted into (1). By replacing y with the current world record w, of the
event corresponding to the values of y0, y1, and x̄ used, the general formula is

F(w) =
(
w −w0

w1 −w0

)α̂
(3)

where w0 = y0 and w1 = y1.

Solving (3) for each event yields the probability that an elite Olympic sprinter will break
the world record of that specific event. The results are presented in Table 2.

Table 2. The probabilities of a new world record by an elite Olympic
sprinter, F(w), in each specific event, along with the probability of no new
world record in that same event, 1−F(w).

6. Sensitivity Analysis

Although the results of section 4 provide reasonable estimates for y0 and y1 because the
conclusions by [1] are considered to be the fastest possible times for each race, an analysis
is in order to test how different bound values affect the results.

The values to be chosen for y0 and y1 are those which best emulate real-world results
of the probability that a world record will be broken. These results can be computed
through [4] by determining the number of times a world record was broken, and dividing
this total by the cumulative number of data points listed in the data set. This analysis
ensures that the bounds of each model properly match current results, and can be con-
sidered accurate in predicting the likelihood of future world records.

As mentioned in section 3, the mean time for each data set from [4] does not change
without additional race times; thus, changes of α̂ are dependent upon y0 and y1 only.
One must then consider each possible scenario in which the values of y0 and y1, either
increase, decrease, or remain the same, resulting in 9 possible combinations of changes.
Taking the initial values for y0 and y1 as the reference case, there are 8 general cases to
compare against the reference for each race. The process for each of these comparisons
occurs is as follows:
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a.: Choose an ε > 0 that will be used as the difference margin for each comparison
(ie. ε = 0.05).

b.: Determine w0 = y0 ± ε and w1 = y1 ± ε, for each sprinting event. This yields the
values necessary to compute each general case: y0 stays the same, decreases, or
increases, and separately y1 stays the same, decreases, or increases.

c.: Determine the α0 corresponding to each general case, and note whether it is
greater or less than the base case α̂.

d.: Compute (3) using α0 and the corresponding w0 and w1. Identify how this new
α0 affects the probability of a world record being achieved.

As observed from (3),
(
w−w0
w1−w0

)
< 1, for all w0 < w < w1 and w0,w1 positive real numbers,

resulting in the expectation that increasing α̂ would yield a smaller F(w) and decreasing
α̂ would yield a greater F(w). However, this is not always true because the values of y0
and y1 are changing along with α̂. This is shown empirically in Table 3 and graphically
in Figures 1 and 2 through a subset of comparisons computed for the Men’s 100m Dash.

Following the computation of all 8 general cases for each sprinting event, it was deter-
mined that values of α̂, both above and below the baseline α̂, produce world record prob-
abilities greater and less than the baseline value. This holds true for each event and thus,
it cannot be concluded that specific values of α̂ alone, yield greater or lower world record
probabilities.

Additionally, setting ε = 0.05 and ε = 0.10 for the 100m and 200m events respectively,
resulted in a range of probabilities from 1.58× 10−6% and 2.5%, with much of the lower
values originating from the men’s events and the higher values from the women’s.

However, in each of the events, there resulted a general case that matched the world
record probability of the real-world data, as shown in Table 4. This allowed for a model
comparison between the original model from section 4 (denoted Model 1) and the near
perfect model (denoted Model 2), in which the world record probabilities from each
model are evaluated empirically against the real-world results. The model that pro-
duced the probabilities closest to that of the past data was chosen to be the best predictive
model.
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Table 3. The baseline case and 4 of the 8 general cases are shown for the
Men’s 100m sprint. Changes made to the bounds are specified in the first
column where ε is an arbitrary value that is added or subtracted from the
bounds (ε = 0.05).

Figure 1. The effects of the sensitivity analysis on the cumulative distribu-
tion function. The cases described in Table 3 are shown. As the dataset does
not contain values near the upper bound, the distributions presented will
progress towards a probability of 1 as the race times increase, reaching this
value in correspondence with the data in Table 3.
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Figure 2. The effects of the sensitivity analysis on the probability density
function. Cases described in Table 3 are shown.
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Table 4. The values for Model 2 yield near identical world record proba-
bilities when compared with the real world data from [4].

7. Cumulative Probabilities

Using each event’s world record probability, it is now possible to determine the proba-
bility that a world record will be broken in zero, one, or any combination of the events.
These probabilities are obtained using the Law of Total Probability and the binomial co-
efficient,

(n
Y

)
, where n represents the number of events (ie. n = 4), and Y represents the

number of world records observed, for Y = 0,1,2,3,4. This accounts for each scenario in
which Y world records are broken.

7.1. Probability Formulae. Determining the formulae for the cumulative probabilities
allowed for a model comparison of the final results for Model 1 and Model 2 against the
real-world data.

Denote F(w)i = Pi where each F(w)i corresponds to an event for i = 1,2,3,4 (where 1 =
100m Men, 2 = 200m Men, 3 = 100m Women, 4 = 200m Women).

7.2. Results. Using the formulae from Subsection 7.1, the cumulative probabilities are
obtained for both models and the real-world data from [4]. See Table 4.

Thus, one can conclude that Model 2 represents a reasonably accurate prediction of future
world record probabilities, as it is within 0.5% of the real world data for the probability
of no world record being broken and is subsequently closer for each of the remaining
probabilities.

7.3. Meaning Behind the Numbers. These probabilities indicate the challenge, even for
the elite Olympic sprinters, in achieving a world record. As the calculations show, there
is approximately a 1.9±0.4% chance that one may observe a single world record in any
of the four events, and an incredibly small 0.01% chance of witnessing two of the four
world records broken. The probabilities for three and four world records being broken
simultaneously are virtually negligible. Perhaps the most glaring result is the probability
that one will not witness a single new world record in these events is approximately
98±0.5%.
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World Records Equation Conditions

0 P (Y = 0) =
4∏
s=1

(1− Ps) where s ∈ Z

1 P (Y = 1) =
4∑
i=1

Pi

4∏
s=1

(1− Ps) where i, s ∈ Z and i , s

2 P (Y = 2) =
4∑
i=1

PiPj

4∏
s=1

(1− Ps) where i, j, s ∈ Z and i , j , s

3 P (Y = 3) =
4∑
i=1

PiPjPk

4∏
s=1

(1− Ps) where i, j,k, s ∈ Z and i , j , k , s

4 P (Y = 4) =
4∏
s=1

Ps where s ∈ Z

Table 5. The equations used to determine the probability that a world
record will be observed Y times.

Table 6. Cumulative probabilities for Model 1, Model 2, and the real-world data.

8. Conclusion

Many studies and research projects have been conducted in an effort to determine the
fastest possible race time, or the probability of breaking a world record, especially for the
100-meter dash. Even with different approaches being applied to these tasks, the conclu-
sions often identify that breaking a world record in a sprinting event is a tremendously
difficult feat. Indeed, some world records can remain unbroken for decades. Although it
is nearly a universal desire to witness an athlete run faster than any human prior to his
or her time, it rarely happens. This rarity is what makes a new world record so special,
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for if its occurrence was routine, these events would have reduced excitement and antic-
ipation. Thus, during the next Summer Olympics, if one or more new world records are
observed, appreciate the truly rare moment. However, in the most likely, yet disappoint-
ing circumstance that no new world records are set, it is what the world should have been
expecting.

9. Nota Bene

The data from [4] used in this paper preceded the 2016 Rio Summer Olympic Games. It
is of interest to note that there were no new world records broken in either of the Men’s
or Women’s 100 and 200 meter races at the 2016 Summer Games.

This model does not take into consideration that athletic achievement is improving over
time. The model gives equal weight to race times achieved from the past as it does current
race times, thus resulting in potentially lower world record probabilities. A future study
or improvement to this modelling method would be to systematically account for the
aging effect of past race times.
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