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Abstract. The phenomenon of noise-induced stabilization occurs when an unstable deter-
ministic system of ordinary differential equations is stabilized by the addition of random-
ness into the system. In this paper, we investigate under what conditions one-dimensional,
autonomous stochastic differential equations are stable, where we take the notion of stabil-
ity to be that of global stochastic boundedness. Specifically, we find the minimum amount
of noise necessary for noise-induced stabilization to occur when the drift and noise coeffi-
cients are power, polynomial, exponential, or logarithmic functions.

1. Introduction

Noise-induced stabilization occurs when the addition of randomness to an unstable de-
terministic system of ordinary differential equations (ODEs) results in a stable system of
stochastic differential equations (SDEs). Noise-induced stabilization is quite an intrigu-
ing and surprising phenomenon as one’s first intuition is often that noise will only serve
to further destabilize the system. Moreover, it is typically the case that the more noise
present, the stronger the stabilizing effect.

We are particularly focused on the minimum amount of noise required for noise-induced
stabilization to occur for one-dimensional, autonomous SDEs of the form

dX(t) = b(X(t))dt + σ (X(t))dB(t). (1)

Here b(x) is the drift coefficient, which pushes the solution deterministically in some
direction, σ (x) is the noise coefficient, which controls the strength of the noise, and B(t) is
standard one-dimensional Brownian motion. We restrict our attention to the case where
b(x) and σ (x) are continuous functions. We also assume that b(x) and σ (x) are locally
Lipschitz in order to ensure that there exists a unique solution to (1) up until the possible
time of explosion [1, 4].

∗ Corresponding author
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There are many different notions of stability in the literature, but our sense of stability
comes from that of global stochastic boundedness, where there exists a bound such that
X(t) is bounded with arbitrarily high probability for all time. The notion of stability is
defined more formally below [3].

Definition 1.1. X(t) is stable if for all initial conditions and all ε > 0, there exists some
bound R such that

P (|X(t)| ≤ R) > 1− ε
for all t ≥ 0.

In the deterministic setting when σ (x) = 0 and X(t) is a solution to an ODE, the definition
of stability reduces to that of boundedness. Hence, the unstable deterministic systems
that we consider either blow up in finite time or wander off to infinity, for at least some
initial conditions. We say that noise-induced stabilization occurs when the addition of
noise to an unstable ODE results in a stable SDE, where the definition of stable is as
given in Definition 1.1.

A classic example of noise-induced stabilization involves geometric Brownian motion,
which is the solution to the SDE

dX(t) = rX(t)dt + aX(t)dB(t)

where r and a are constants. While most SDEs cannot be solved explicitly, the explicit
solution for geometric Brownian motion is

X(t) = X(0)e(r− a22 )t+aB(t).

When a = 0 and the solution is deterministic, X(t) is stable for r ≤ 0 since the solution is
bounded by |X(0)|, but is unstable for r > 0 since the solution converges to either plus or
minus infinity as t→∞. However, when a , 0 and the solution is stochastic, X(t) is stable
for a2 > 2r since the solution converges to zero with probability one as t→∞. When a2 <
2r, the solution converges to plus or minus infinity with probability one, and when a2 =
2r, the solution fluctuates between arbitrary large and arbitrary small values [4]. Thus in
the stochastic setting, X(t) is unstable when a2 ≤ 2r. Hence, noise-induced stabilization
occurs for geometric Brownian motion when r > 0 and a2 > 2r since this is when the
deterministic solution is unstable, but the addition of the stochastic term has a stabilizing
effect. Note that in order to obtain noise-induced stabilization, the noise coefficient needs
to be sufficiently large in order to overcome the deterministic drift towards infinity.

Previous work by Scheutzow [5] has shown sufficient conditions for the occurrence of
noise-induced stabilization in one-dimensional diffusions. In this paper, we find neces-
sary and sufficient conditions for noise-induced stabilization to occur when the drift and
noise coefficients are restricted to certain forms. Section 2 discusses useful background
information on the techniques that we use to prove noise-induced stabilization. Sec-
tions 3, 4, 5, and 6 present and prove our results concerning noise-induced stabilization
for when the drift and noise coefficients are general power functions, polynomials, ex-
ponential functions, and logarithmic functions, respectively. In particular, our theorem
in Section 4 regarding polynomial stabilization encompasses the example of geometric
Brownian motion described previously since the drift coefficient, b(x) = rx, and noise
coefficient, σ (x) = ax, are polynomials for geometric Brownian motion.
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2. Background

In this section, we discuss preliminary information on the methods used to find our re-
sults. In particular, our work uses a well-known result from [2] to determine the stability
of SDEs, and specifically whether noise-induced stabilization occurs. For ease, we will
refer to this result as the “Stochastic Stability Theorem.”

Stochastic Stability Theorem. Consider a one-dimensional, autonomous SDE of the form

dX(t) = b(X(t))dt + σ (X(t))dB(t)

where b(x) and σ (x) are continuous, locally Lipschitz functions and there exists `0 ≥ 0
such that σ (x) , 0 for all |x| ≥ `0.

Define the following quantities:

s(x) =


exp

[∫ x

`

−2b(z)
σ2(z)

dz

]
for x > `

exp
[∫ x

−`

−2b(z)
σ2(z)

dz

]
for x < −`

(2)

S(x) =


∫ x

`
s(y)dy for x > `∫ x

−`
s(y)dy for x < −`

(3)

m(x) =
1

s(x)σ2(x)
(4)

M(x) =


∫ x

`
m(y)dy for x > `∫ x

−`
m(y)dy for x < −`.

(5)

The SDE is stable if and only if there exists ` ≥ `0 such that

S(∞) =∞, S(−∞) = −∞, |M(∞)| <∞, |M(−∞)| <∞.

Note that since the lower limit of integration does not affect the convergence or diver-
gence of these integrals, ` can be any real number greater than or equal to `0.

The formula for S(x) is obtained by choosing the function that enables the drift term of
dS(X(t)) to be identically equal to zero. Hence, by Ito’s formula [4], S(x) is the solution to
the ODE

dS(x)
dx

b(x) +
1
2
d2S(x)
dx2 σ2(x) = 0.

S(x) is often referred to as the natural scale of the SDE and it is precisely the conditions
S(∞) =∞ and S(−∞) = −∞ than ensure that the solution to the SDE returns to the interval
[−`0, `0] with probability one. M(x) is often referred to as the speed measure of the SDE
and the additional conditions |M(∞)| <∞ and |M(−∞)| <∞ ensure that the expected time
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to return to the interval [−`0, `0] is finite, which is equivalent to our notion of stability
[1, 2].

The conditions in the “Stochastic Stability Theorem” for an SDE to be stable all involve
the convergence or divergence of deterministic integrals. Most of the integrals we en-
counter based upon our forms for b(x) and σ (x) cannot be evaluated explicitly; rather we
employ standard calculus techniques, such as the comparison theorem or limit compari-
son theorem, to determine the convergence or divergence [6].

The power of the “Stochastic Stability Theorem” is that it is an if and only if statement,
and hence allows us to determine precisely when noise-induced stabilization occurs,
given explicit forms for the drift and noise coefficients, b(x) and σ (x). In particular, we
utilize the theorem in order to determine for a given b(x) corresponding to an unstable
ODE and a given class of noise coefficients specified by a few free parameters, what the
minimum parameter values are in order for σ (x) to have a stabilizing effect. We seek
the minimum values rather than the maximum since the formulas for s(x) and m(x) given
by equations (2) and (4) demonstrate that when the noise coefficient σ (x) grows more
quickly, the conditions for stability are more easily obtained.

3. Power Function Stabilization

In this section, we consider ODEs where the drift coefficient is a general power function,
i.e.

dX(t) = b(X(t))dt

where

b(x) =
{
r |x|q for |x| ≥ 1
r for |x| < 1

with r and q any real numbers. The absolute value of x is used in b(x) so that the solution
is well-defined for both positive and negative initial conditions, since q is not restricted
here to integer values. In addition, b(x) is defined piecewise with a constant value for
|x| < 1 in order to preserve the local Lipschitz condition for x near zero for all values of
q. Note that since our definition of stability is that of global stochastic boundedness, the
behavior of b(x) and σ (x) for x near zero does not affect the stability of the SDE; rather,
only the behavior of b(x) and σ (x) as x→±∞ affects the stability.

The ODEs defined above are unstable for any r , 0. In particular, the solutions to the
ODEs blow up in finite time for q > 1 and wander off to infinity for q ≤ 1, for at least
some initial conditions. We consider perturbing the ODEs by adding a noise term that
also takes the form of a general power function, i.e.

dX(t) = b(X(t))dt + σ (X(t))dB(t)

where

σ (x) =
{
a|x|p for |x| ≥ 1
a for |x| < 1

with a and p any real numbers.
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Our goal was to determine for given values of r and q, what are necessary and sufficient
conditions on the values of a and p in order for noise-induced stabilization to occur. These
conditions are given in Theorem 3.1. In particular, there exist critical values for a and p
such that for all values of a and p above these critical values, noise-induced stabilization
occurs, and for values of a and p below these critical values, noise-induced stabilization
does not occur. Hence, we view these critical values as “minimal” conditions for noise-
induced stabilization.

Theorem 3.1. Consider the SDE

dX(t) = b(X(t))dt + σ (X(t))dB(t)

where

b(X(t)) =
{
r |X(t)|q for |X(t)| ≥ 1
r for |X(t)| < 1.

and

σ (X(t)) =
{
a|X(t)|p for |X(t)| ≥ 1
a for |X(t)| < 1.

with r, q, a, and p any real numbers. Noise-induced stabilization occurs if and only if
r , 0 and one of the following sets of conditions is met:

• p >max
{1

2
,
q+ 1

2

}
and a , 0, or

• p =
q+ 1

2
and

{
a2q > 2|r | for q ≤ 1
a2 ≥ 2|r | for q > 1.

The condition of r , 0 is necessary for noise-induced stabilization because when r = 0, the
deterministic solution is already stable. When q > 1, Theorem 3.1 implies that the critical
values for noise-induced stabilization are

p =
q+ 1

2
and |a| =

√
2|r |.

When 0 < q ≤ 1, the critical values are

p =
q+ 1

2
and |a| =

√
2|r |
q
.

When q ≤ 0, the critical values are p = 1
2 and |a| = 0. Note that in some of these cases,

noise-induced stabilization occurs at the critical values, whereas in other cases, noise-
induced stabilization only occurs above the critical values, with the strict inequalities in-
dicated in Theorem 3.1. Stabilization is most dependent upon the powers in the general
power functions, where for any p above its critical value, noise-induced stabilization oc-
curs regardless of the magnitude of the coefficient a (as long as it is non-zero). However,
magnitudes of the coefficient a above its critical value will not produce noise-induced
stabilization unless the power p is at or above its critical value.

Figure 1 shows three separate graphs depicting the phenomenon of noise-induced stabi-
lization in the case where the drift and noise coefficients are general power functions. The
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Figure 1. Solution to unstable power ODE (left), along with simulations
of corresponding SDE without sufficient noise for stabilization (center) and
SDE with sufficient noise for stabilization (right).

graph on the far left shows the solution to the ODE dX(t) = |X(t)|2dt with initial condition
X(0) = 1, which explodes in finite time and is thus unstable. The center graph depicts a
simulation of the corresponding SDE where the noise term has a =

√
2 and p = 1, which

is insufficient for stabilization since 1 = p < q+1
2 = 3

2 . The final image depicts a simulation
of the SDE where the noise term has a =

√
2 and p = 3

2 . This SDE is stable and, in fact,
exhibits “minimal” noise-induced stabilization since p = q+1

2 and a2 = 2r.

Proof of Theorem 3.1. If Y (t) = −X(t), then Y (t) must have the same stability classification
as X(t) since they have the same magnitude and our definition of stability is that of sto-
chastic boundedness. Now Y (t) is the solution to the same SDE as X(t), but with r and a
replaced with −r and −a. Thus, when proving Theorem 3.1, it suffices to prove the case
with r > 0 and a , 0.

From the “Stochastic Stability Theorem” conditions, evaluation of the s(x) term with ` = 1
gives

s(x) =

exp
[
−2r
a2

∫ x
1
zq−2pdz

]
for x > 1

exp
[
−2r
a2

∫ x
−1

(−z)q−2pdz
]

for x < −1

where the integration depends upon the value of q − 2p.

Case 1: q − 2p+ 1 , 0 . Let n = q − 2p+ 1 and c = −2r
a2n

. Then

s(x) =
{

exp[c(xn − 1)] for x > 1
exp[−c((−x)n − 1)] for x < −1
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and therefore

S(∞) = exp[−c]
∫ ∞

1
exp[cxn]dx

S(−∞) = exp[c]
∫ −∞
−1

exp[−c(−x)n]dx

= −exp[c]
∫ ∞

1
exp[−cxn]dx

M(∞) =
1
a2 exp[c]

∫ ∞
1
x−2p exp[−cxn]dx

M(−∞) =
1
a2 exp[−c]

∫ −∞
−1

(−x)−2p exp[c(−x)n]dx

= − 1
a2 exp[−c]

∫ ∞
1
x−2p exp[cxn]dx.

Hence, we observe that S(∞) and S(−∞) both diverge if and only if n < 0, which corre-
sponds to p > q+1

2 . When n < 0, M(∞) and M(−∞) both converge if and only if 2p > 1.
Therefore, by the “Stochastic Stability Theorem,” when p , q+1

2 , X(t) is stable if and only
if p >max(1

2 ,
q+1

2 ).

Case 2: q − 2p+ 1 = 0 . In this case, the s(x) term takes the form

s(x) =

exp
[
−2r
a2

∫ x
1
z−1dz

]
= x

−2r
a2 for x > 1

exp
[
−2r
a2

∫ x
−1

(−z)−1dz
]

= (−x)
2r
a2 for x < −1

Evaluation of the other terms in the “Stochastic Stability Theorem” gives

S(∞) =
∫ ∞

1
x
−2r
a2 dx

S(−∞) =
∫ −∞
−1

(−x)
2r
a2 dx = −

∫ ∞
1
x

2r
a2 dx

M(∞) =
1
a2

∫ ∞
1
x

2r
a2
−2p
dx

M(−∞) =
1
a2

∫ −∞
−1

(−x)
−2r
a2
−2p
dx = − 1

a2

∫ ∞
1
x
−2r
a2
−2p
dx.

Now S(∞) and S(−∞) both diverge if and only if 2r
a2 ≤ 1, which is equivalent to a2 ≥ 2r.

Similarly, M(∞) and M(−∞) both converge if and only if 2r
a2 −2p < −1, which is equivalent

to a2q > 2r. Hence when p = q+1
2 , in order for X(t) to be stable, we must have a2 ≥ 2r

and a2q > 2r. When q > 1, the stricter condition is a2 ≥ 2r and when q ≤ 1, the stricter
condition is a2q > 2r. �
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Figure 2. Solution to unstable polynomial ODE (left), along with simula-
tions of corresponding SDE without sufficient noise for stabilization (cen-
ter) and SDE with sufficient noise for stabilization (right).

4. Polynomial Stabilization

In this section, we investigate stabilizing ODEs of the form

dX(t) = b(X(t))dt,

where b(x) is any polynomial of degree q. If r is the coefficient of the highest degree term
of b(x), this ODE is unstable when q is even for any r , 0 and when q is odd for any r > 0.
The unstable solution wanders off to infinity when q = 0 or q = 1 and blows up in finite
time when q ≥ 2. We again consider adding a noise coefficient that takes the same general
form as the drift coefficient.

Theorem 4.1. Consider the SDE

dX(t) = b(X(t))dt + σ (X(t))dB(t)

where b(x) is any polynomial of degree q, where the coefficient of the highest degree term
is r, and σ (x) is any polynomial of degree p, where the coefficient of the highest degree
term is a , 0. If q is even, assume r , 0, and if q is odd, assume r > 0. Then noise-induced
stabilization occurs if and only if one of the following sets of conditions is met:

• p > q+1
2 or

• p = q+1
2 and

{
a2 > 2r for q = 1
a2 ≥ 2r for q ≥ 3

.

Note that the conditions for noise-induced stabilization to occur in this case where the
drift and noise coefficients are polynomials are exactly equivalent to the conditions when
b(x) and σ (x) are general power functions.

Figure 2 shows three separate graphs depicting the phenomenon of noise-induced stabi-
lization in the case where the drift and noise coefficients are polynomials. The graph on
the far left shows the solution to the ODE dX(t) = (X(t)3+X(t)−1)dt with initial condition
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X(0) = 1, which diverges off to infinity and is thus unstable. The center graph depicts a
simulation of the corresponding SDE with noise coefficient σ (X(t)) =

√
2X(t), which is

insufficient for stabilization since 1 = p < q+1
2 = 2. The final image depicts a simulation of

the SDE where the noise term
√

2X(t)2dB(t) is added to the original unstable ODE. This
SDE is stable and, in fact, exhibits “minimal” noise-induced stabilization since p = q+1

2
and a2 = 2r.

Proof of Theorem 4.1. Without loss of generality, we assume r > 0.

Case 1: q − 2p+ 1 , 0 . Since b(x) is a polynomial of degree q with leading coefficient r > 0

and σ2(x) is a polynomial of degree 2p with leading coefficient a2 > 0, there exist positive
constants k1, k2, and ` such that

k1x
q−2p ≤ b(x)

σ2(x)
≤ k2x

q−2p

for all x ≥ `. Let n = q − 2p+ 1. Then for x ≥ `,

exp
[
−2k2

n
(xn − `n)

]
≤ s(x) ≤ exp

[
−2k1

n
(xn − `n)

]
.

Hence, we observe that S(∞) diverges if and only if n < 0, which corresponds to p > q+1
2 .

In addition, for x ≥ `,

m(x) ≤ 1
σ2(x)

exp
[
2k2

n
(xn − `n)

]
.

Hence, when n < 0, M(∞) converges as long as the degree of σ2(x) is strictly greater than
one. This condition of 2p > 1 is guaranteed since n < 0 implies 2p > q+ 1 and the smallest
possible value of q is zero. The proofs for S(−∞) and M(−∞) follow similarly. Therefore,
by the “Stochastic Stability Theorem,” when p , q+1

2 , X(t) is stable if and only if p > q+1
2 .

Case 2: q − 2p+ 1 = 0 . Since b(x) is a polynomial of degree q with leading coefficient r > 0

and σ2(x) is a polynomial of degree 2p with leading coefficient a2 > 0, there exist positive
constants c1, c2, k, and ` such that

r

a2x
−1 − kx−2 ≤ b(x)

σ2(x)
≤ r

a2x
−1 + kx−2

and
c1x

2p ≤ σ2(x) ≤ c2x
2p

for all x ≥ `. Then for x ≥ `,(x
`

)−2r
a2 exp

[
2k(x−1 − `−1)

]
≤ s(x) ≤

(x
`

)−2r
a2 exp

[
−2k(x−1 − `−1)

]
.

Hence, S(∞) diverges if and only if 2r
a2 ≤ 1, which is equivalent to a2 ≥ 2r. Because of the

bounds on s(x) and σ2(x), we obtain that

x
2r
a2
−2p exp

[
2k(x−1 − `−1)

]
c2`

2r
a2

≤m(x) ≤
x

2r
a2
−2p exp

[
−2k(x−1 − `−1)

]
c1`

2r
a2
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for x ≥ `. Thus,M(∞) converges if and only if 2r
a2 −2p < −1, which is equivalent to a2q > 2r.

The proofs for S(−∞) and M(−∞) follow similarly. Therefore, by the “Stochastic Stability
Theorem,” X(t) is stable when p = q+1

2 if and only if a2 ≥ 2r and a2q > 2r. When q = 1, the
stricter condition is a2 > 2r, and when q ≥ 3, the stricter condition is a2 ≥ 2r. �

While the stability classification in the case where b(x) and σ (x) are polynomials is iden-
tical to the case where b(x) and σ (x) are general power functions, it is not true that any
continuous functions b(x) and σ (x) with asymptotic behavior equal to rxq and axp, re-
spectively, will have the same stability classification. For example, consider the SDE with
b(x) = rx3 and σ (x) =

√
2rx2 where r > 0. Then by Theorem 4.1, the SDE exhibits noise-

induced stabilization since a2 = 2r and p = q+1
2 . However, consider instead the SDE with

the same b(x), but with

σ (x) =
√

2rx2
(
1 +

2
ln(|x|)

)− 1
2

(6)

for |x| ≥ 2 (σ (x) can be anything nonzero for |x| < 2 such that the function is continuous
and locally Lipschitz). Note that the asymptotic behavior of σ (x) is indeed

√
2rx2. Setting

` = 2, for x ≥ `,

s(x) = exp
[∫ x

2

−1
z

+
−2

z ln(z)
dz

]
= exp[− ln(x) + ln(2)− 2ln(ln(x)) + 2ln(ln(2))]

=
2(ln(2))2

x(ln(x))2 .

Hence,

S(∞) =
∫ ∞

2

2(ln(2))2

x(ln(x))2dx = 2ln(2) <∞

and the SDE is unstable by the “Stochastic Stability Theorem.” Thus, the reason that
an SDE where b(x) and σ (x) are any polynomials has the same stability classification as
the corresponding SDE where b(x) and σ (x) are replaced with just their leading terms
is because the difference between a polynomial and its leading term is bounded by a
function whose leading term is one degree less. This fact was essential to the proof of
Theorem 4.1 in the critical case where p = q+1

2 , but this property did not hold for the
example σ (x) defined by (6).

5. Exponential Function Stabilization

This section considers ODEs where the drift coefficient is an exponential function, i.e.

dX(t) = r(exp[X(t)])qdt

where r and q are any real numbers. These ODEs are unstable for any r , 0. We consider
the addition of a noise coefficient that is also an exponential function and determine
under which conditions the resulting SDEs are stable.
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Figure 3. Solution to unstable exponential ODE (left), along with simula-
tions of corresponding SDE without sufficient noise for stabilization (cen-
ter) and SDE with sufficient noise for stabilization (right).

Theorem 5.1. Consider the SDE

dX(t) = r(exp[X(t)])qdt + a(exp[X(t)])pdB(t)

where r, q, a,and p are real numbers. Noise-induced stabilization occurs if and only if
r , 0, a , 0 and one of the following sets of conditions is met:

• r > 0 and p >max{0, q2 } or
• r < 0 and −p >max{0, −q2 }.

Figure 3 shows three separate graphs depicting the phenomenon of noise-induced sta-
bilization in the case where the drift and noise coefficients are exponential functions.
The graph on the far left shows the solution to the ODE dX(t) = 0.05exp(3X(t))dt with
initial condition X(0) = 1, which diverges off to infinity and is thus unstable. The cen-
ter graph depicts a simulation of the corresponding SDE with noise coefficient σ (X(t)) =
0.05exp(X(t)), which is insufficient for stabilization since 1 = p < q

2 = 3
2 . The final image

depicts a simulation of the SDE where the noise term 0.05exp(4X(t))dB(t) is added to the
original unstable ODE. This SDE is stable since 4 = p > q

2 = 3
2 .

Proof of Theorem 5.1. If Y (t) = −X(t), then Y (t) must have the same stability classification
as X(t) since they have the same magnitude. Now

dY (t) = −dX(t)

= −r(exp[X(t)])qdt − a(exp[X(t)])pdB(t)

= −r(exp[−Y (t)])qdt − a(exp[−Y (t)])pdB(t)

= −r(exp[Y (t)])−qdt − a(exp[Y (t)])−pdB(t).

Hence, the stability of X(t) with −r must be equivalent to the stability with r, but with
−q, −p, and −a substituted for q, p, and a, respectively. Thus, when proving Theorem 5.1,
it suffices to prove the case with r > 0.
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With ` = 1, the s(x) term from the “Stochastic Stability Theorem” takes the form

s(x) =

exp
[
−2r
a2

∫ x
1

exp[(q − 2p)z]dz
]

for x > 1

exp
[
−2r
a2

∫ x
−1

exp[(q − 2p)z]dz
]

for x < −1.

Case 1: q − 2p = 0 . Integrating yields

s(x) =

exp
[
−2r
a2 (x − 1)

]
for x > 1

exp
[
−2r
a2 (x+ 1)

]
for x < −1.

Hence, S(∞) converges and X(t) is unstable when p = q
2 .

Case 2: q − 2p , 0 . Integrating yields

s(x) =


c1 exp

[
−2r

a2(q−2p) exp[(q − 2p)x]
]

for x > 1

c2 exp
[
−2r

a2(q−2p) exp[(q − 2p)x]
]

for x < −1

where c1 = exp
[

2r
a2(q−2p) exp[q − 2p]

]
and c2 = exp

[
2r

a2(q−2p) exp[−q+ 2p]
]
. Hence, S(∞) and

S(−∞) both diverge if and only if q − 2p < 0. Plugging in our expression for s(x) gives

m(x) =


c1 exp[−2px]exp

[
2r

a2(q−2p) exp[(q − 2p)x]
]

for x > 1

c2 exp[−2px]exp
[

2r
a2(q−2p) exp[(q − 2p)x]

]
for x < −1.

If q − 2p < 0, then M(∞) and M(−∞) both converge if and only if p > 0. Hence, by the
“Stochastic Stability Theorem,” X(t) is stable when p >max(0, q2 ) and unstable otherwise.

�

6. Logarithmic Function Stabilization

In this section we investigate the stabilization of ODEs where the drift coefficient is a
logarithmic function and we perturb the systems by adding a noise coefficient that is also
logarithmic.

Theorem 6.1. Consider the SDE

dX(t) = b(X(t))dt + σ (X(t))dB(t)

where

b(x) =
{
r(ln |x|)q for |x| ≥ 2
r(ln2)q for |x| < 2

and

σ (x) =
{
a|x|m(ln |x|)p for |x| ≥ 2
a2m(ln2)p for |x| < 2

with r q, a, p, and m any real numbers. Noise-induced stabilization occurs if and only if
r , 0, a , 0, and one of the following conditions is met:

• m > 1
2 ,
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Figure 4. Solution to unstable logarithmic ODE (left), along with simula-
tions of corresponding SDE without sufficient noise for stabilization (cen-
ter) and SDE with sufficient noise for stabilization (right).

• m = 1
2 and p >max(1

2 ,
q+1

2 ), or

• m = 1
2 and p = q+1

2 and a2q > 2|r |.

Note that r , 0 is necessary since the ODE is already stable if r = 0. Whenm = 0, the noise
coefficient has the same exact form as the drift coefficient, but it is impossible for the SDE
to be stable in this case. Hence, when considering drift coefficients that have a logarithmic
form, we allow the noise coefficient to have a slightly more general form in order to obtain
noise-induced stabilization. The noise and drift coefficients are defined piecewise with a
constant value for |x| < 2 simply to avoid a discontinuity at x = 0; the precise behavior for
x near 0 does not affect the noise-induced stabilization as the stabilization depends on
the behavior of the noise and drift coefficients as x approaches infinity. The “minimum”
conditions necessary for noise-induced stabilization are m = 1

2 , p = q+1
2 , and a2q > 2|r |,

with stabilization being the most sensitive to the value of m, which is the power of |x|,
followed by the value of p, which is the power of ln |x|, and least sensitive to the value of
a.

Figure 4 shows three separate graphs depicting the phenomenon of noise-induced stabi-
lization in the case where the drift and noise coefficients are logarithmic functions. The
graph on the far left shows the solution to the ODE dX(t) = (ln |X(t)|)5dt with initial con-
dition X(0) = 3, which diverges off to infinity and is thus unstable. The center graph
depicts a simulation of the corresponding SDE with noise coefficient σ (X(t)) = (ln |X(t)|)3,
which is insufficient for stabilization since m = 0. The final image depicts a simulation
of the SDE where the noise term |X(t)| 12 (ln |X(t)|)3dB(t) is added to the original unstable
ODE. This SDE is stable since m = 1

2 , p = q+1
2 and a2q > 2r.

Proof of Theorem 6.1. If Y (t) = −X(t), then Y (t) must have the same stability classification
as X(t) since they have the same magnitude. Now Y (t) is the solution to the same SDE
as X(t), but with r and a replaced with −r and −a. Thus, when proving Theorem 6.1,
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it suffices to prove the case with r > 0 and a , 0. With ` = 2, the s(x) term from the
“Stochastic Stability Theorem,” is

s(x) =


exp

[
−2r
a2

∫ x
2

(ln |z|)q−2p

|z|2m dz
]

for x > 2

exp
[
−2r
a2

∫ x
−2

(ln |z|)q−2p

|z|2m dz
]

for x < −2.

Case 1: m > 1
2 . Then there exists a positive constant c1 such that (ln |x|)q−2p ≤ c1|x|m−

1
2 for

all x ≥ 2. Hence, for x > 2,

s(x) ≥ exp
[
−2rc1

a2

∫ x

2
|z|−m−

1
2dz

]
= exp

−2rc1(|x|−m+ 1
2 − 2−m+ 1

2 )

a2(−m+ 1
2 )

 .
Letting k1 = exp

[
2rc12−m+ 1

2

a2(−m+ 1
2 )

]
, we see that s(x) ≥ k1 for all x > 2 and hence, S(∞) =∞. By our

bound for s(x), we obtain that for x > 2,

m(x) ≤ 1
k1a2|x|2m(ln |x|)2p .

Since 2m > 1, M(∞) <∞. The results for S(−∞) and M(−∞) follow similarly, and hence
X(t) is stable whenever m > 1

2 .

Case 2: m < 1
2 . Then there exists a positive constant c2 such that (ln |x|)q−2p ≥ c2|x|m−

1
2 for

all x ≥ 2. Hence, for x > 2,

s(x) ≤ exp
[
−2rc2

a2

∫ x

2
|z|−m−

1
2dz

]
= exp

−2rc2(|x|−m+ 1
2 − 2−m+ 1

2 )

a2(−m+ 1
2 )

 .
Since −m+ 1

2 > 0, S(∞) <∞, and thus X(t) is unstable.

Case 3: m = 1
2 . Then s(x) takes the form

s(x) =


exp

[
−2r
a2

∫ x
2

(ln |z|)q−2p

|z| dz
]

for x > 2

exp
[
−2r
a2

∫ x
−2

(ln |z|)q−2p

|z| dz
]

for x < −2.

Case 3.1: q − 2p+ 1 , 0 . Integrating with a u-substitution where u = ln |z| and du = dz
z ,

we obtain

s(x) =


c1 exp

[
−2r(ln |x|)q−2p+1

a2(q−2p+1)

]
for x > 2

c2 exp
[

2r(ln |x|)q−2p+1

a2(q−2p+1)

]
for x < −2

where c1 and c2 are positive constants. When q − 2p+ 1 < 0, S(∞) =∞. In addition,

M(∞) =
∫ ∞

2

exp
[

2r(ln |x|)q−2p+1

a2(q−2p+1)

]
c1a2|x|(ln |x|)2p dx =

1
c1a2

∫ ∞
ln2

exp
[

2r
a2
uq−2p+1

q−2p+1

]
u2p du.
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This integral converges if and only if q − 2p + 1 < 0 and 2p > 1. The results for S(−∞) and
M(−∞) are analogous, and thus when m = 1

2 and q−2p+ 1 , 0, X(t) is stable if and only if
p >max(1

2 ,
q+1

2 ).

Case 3.2: q − 2p+ 1 = 0 . In this case,

s(x) =

c(ln |x|)
−2r
a2 for x > 2

c−1(ln |x|)
2r
a2 for x < −2

where c = (ln2)
2r
a2 . Hence, S(∞) =∞ for any value of a , 0. In addition,

M(∞) =
∫ ∞

2

(ln |x|)
2r
a2
−2p

ca2|x|
dx =

1
ca2

∫ ∞
ln2
u

2r
a2
−2p
.

This integral converges if and only if 2r
a2 − 2p < −1. The results for S(−∞) and M(−∞) are

analogous, and thus when m = 1
2 and p = q+1

2 , X(t) is stable if and only if a2q > 2r. �

7. Conclusion

In this paper we have investigated the phenomenon of noise-induced stabilization, in
which the addition of randomness to an unstable system of ODEs creates a system of
stable SDEs, where our notion of stability is that of global stochastic boundedness. In
particular, we have proven the precise minimum amount of noise necessary for stabiliza-
tion of one-dimensional diffusions when the drift and noise coefficients are general power
functions, polynomials, exponential functions, or logarithmic functions.

Future work could investigate when noise-induced stabilization occurs for other partic-
ular forms of the drift and noise coefficients. In addition, we could explore for a given
drift coefficient, what is the minimum amount of noise required for stabilization when
the noise coefficient is not restricted to a particular form. Other work could explore min-
imum noise requirements for noise-induced stabilization in two-dimensional or higher
systems, where proving stabilization is much more complex.
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