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Abstract. We explore the topological dynamics of a family of set-valued functions intro-
duced by W. T. Ingram in 2015. We focus on three particular properties associated with
chaotic behavior: Devaney chaos, the specification property, and positive topological en-
tropy. We show that for certain parameters, the function exhibits all three forms of chaos.
We also discuss interesting patterns that arise in the periodic points.

1. Introduction

There are numerous ways to define what it means for a topological dynamical system to
be chaotic. Perhaps the most widely used definition of chaos, now called Devaney chaos
(see Definition 2.4), is given by Devaney in [6]. Another is positive topological entropy,
a topological invariant introduced by Adler, Konheim, and McAndrew [1]. Stronger than
both of these is the specification property, introduced by Bowen in [3]. We study these
three properties in the context of a particular family of set-valued functions.

In 2004, Mahavier [12] began the study of inverse limits of upper semi-continuous, set-
valued functions. In recent years, there has been significant research in this area, pri-
marily focusing on the continuum theoretic properties of these inverse limits. Many of
the fundamental results concerning inverse limits of set-valued functions can be found in
[7]. In more recent years, there has been an increased focus on set-valued functions from
the perspective of topological dynamics. Raines and Tennant [14] give the definitions of
Devaney chaos, the specification property, and topological entropy for set-valued func-
tions, and topological entropy of set-valued functions is further explored by Kelly and
Tennant in [9]. Other recent work on the dynamics of set-valued functions can be found
in [13, 5, 10].

In this paper, we focus on a family of set-valued functions introduced by Ingram in [8].
The functions depend on one parameter, λ, and are defined on [0,1] by
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Figure 1. The graph of Fλ

Fλ(x) =


{2x} x ∈ [0, 1

2 )
[λ,1] x = 1

2
{2(1−λ)(x − 1) + 1} x ∈ (1

2 ,1]
(1)

where 0 ≤ λ ≤ 1. (The graph of Fλ is pictured in Figure 1.) Ingram studied the topology
of the inverse limits for these functions and noticed interesting properties emerged when
λ was of the form 2−n for some n ∈N. Our focus will be the topological dynamics of this
family of functions and their dependence on λ.

2. Background and Definitions

We begin by defining a metric on a set.

Definition 2.1. Let X be a set. A metric on X is a function d : X ×X → R satisfying the
following for all x,y,z ∈ X:

(1) d(x,y) ≥ 0,

(2) d(x,y) = 0 if and only if x = y,

(3) d(x,y) = d(y,x),

(4) d(x,z) ≤ d(x,y) + d(y,z).

A metric space is an ordered pair, (X,d), where X is a set and d is a metric on X. We say
that X is compact if every sequence in X has a subsequence converging to a point in X.
Given a compact metric space, X, we denote the set of all non-empty, compact subsets of
X by 2X .

If X and Y are compact metric spaces, a function F : X→ 2Y is upper semi-continuous at a
point x ∈ X if, for every open set U ⊆ Y containing F(x), there exists an open set, V ⊆ X,
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containing x such that F(v) ⊆U for all v ∈ V . If F is upper semi-continuous at every point
x ∈ X, we simply say that F is upper semi-continuous.

Any single-valued function f : X→ Y can be viewed as a set-valued function by defining
F : X→ 2Y to be F = {f (x)}. Note that in this case, F is upper semi-continuous if and only
if f is continuous.

This paper focuses on the topological dynamics of the family of set-valued functions Fλ
defined in Section 1. A topological dynamical system is an ordered pair, (X,F), where X
is a compact metric space set and F : X → 2X is upper semi-continuous. For the sake of
brevity, we will refer to a topological dynamical system as a dynamical system.

If X, Y , and Z are compact metric spaces with F : X→ 2Y and G : Y → 2Z then we define
the composition of G with F to be the function G ◦F : X→ 2Z given by

G ◦F(x) =
⋃
y∈F(x)

G(y).

Note that if F and G are upper semi-continuous then G ◦F is as well.

Let (X,F) be a dynamical system. We define the following for all x ∈ X:

F0(x) = {x}
F1(x) = F(x)

F2(x) = F ◦F(x)
...

Fn(x) = F ◦Fn−1(x)

for all n ∈N. Note that Fn+m(x) = Fn(x) ◦Fm(x) for all n,m ∈N.

An orbit of a point x is a sequence of points (x0,x1,x2, . . .) such that xi+1 ∈ F(xi) for all i ∈N
and x0 = x. Note that a point, x, may have more than one orbit. In this case we may choose
any particular orbit of interest. We denote the set of all orbits by Orb(X,F). We define the
first n terms of an orbit, called an n-orbit, as a finite sequence (x0, . . . ,xn−1) in X such that
for each i = 0, . . . ,n− 2, xi+1 ∈ F(xi). We denote the set of all n-orbits by Orbn(X,F).

(In this paper, sequences–both finite and infinite–will be written in bold, and their terms
will be written in italics.)

Let x ∈ X and (xi)∞i=0 be an orbit of x. The orbit is periodic if there is some n ∈N such that
(xi)∞i=0 = (xj)∞j=n. The smallest such n satisfying this condition is called the period of the
orbit. We say that a point x ∈ X is periodic if it has a periodic orbit. If (xi)∞i=1 is an orbit
and xi = xj for all i, j ≥ 0 then we call it a fixed orbit. A point is a fixed point if it has a fixed
orbit. Note again that a single point may have many orbits. For a point to be periodic (or
fixed), we require only that it have at least one such orbit.

In this paper we discuss our function and its potential chaotic behavior. In order to define
chaos, we must first define a dense set and a transitive function.

Definition 2.2. Let X be a metric space. A set A ⊆ X is dense in X if and only if for all
x ∈ X and ε > 0 there exists a ∈ A such that d(x,a) < ε.
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Definition 2.3. Let (X,F) be a dynamical system. We say F is topologically transitive if and
only if for all x,y ∈ X and any ε > 0 there exists z ∈ X and n ∈N such that d(z,y) < ε and
d(p,x) < ε for some p ∈ Fn(z).

There are a few unique definitions of chaos in mathematics. The first we introduce is
known as Devaney chaos.

Definition 2.4. A dynamical system, (X,F), is Devaney chaotic if and only if:

(1) it is topologically transitive,

(2) the set of periodic points is dense in X.

A way to quantify the chaos of a system is through another property, the topological
entropy. A system having positive topological entropy is another definition of chaos. In
order to define topological entropy we must first give a few preliminary definitions.

Definition 2.5. Let X be a compact metric space. A set S ⊆ X is ε-separated if for each
x,y ∈ S and x , y, d(x,y) ≥ ε.

Definition 2.6. Let (X,F) be a dynamical system and n ∈ N. We define a metric dn on
Orbn(X,F) as follows: if x = (x0, . . . ,xn−1) and y = (y0 . . . , yn−1) are n-orbits, then

dn(x,y) = max
0≤j≤n−1

d(xj , yj).

Given ε > 0, we define the number sn,ε(F) to be the largest cardinality of an ε-separated
subset of Orbn(X,F).

Definition 2.7. Let (X,F) be a dynamical system. The topological entropy of F is defined
to be

lim
ε→0

limsup
n→∞

1
n

logsn,ε(F)

where log represents the natural logarithm.

A third property associated with chaos is the specification property which is introduced
by Bowen in [3]. For continuous, single-valued functions, Sigmund showed in [15] that
every continuous function with the specification property is also Devaney chaotic, and
the same is shown for set-valued functions in [14] where the specification property is
first defined for set-valued functions. This property states that a single periodic orbit can
be used to approximate segments of arbitrarily many other orbits in the system. In the
context of continuous, single-valued functions, the specification property and its many
variations has been widely studied. A thorough presentation of the various forms of this
property and their implications is given in [11].

In this definition, we discuss a list of orbits y1,y2, . . . ,ys ∈ Orb(X,F). Given 1 ≤ n ≤ s, we
write yn = (yni )∞i=0. (Thus yni represents the ith term in the orbit yn.)

Definition 2.8. Let (X,F) be a dynamical system. We say F has the specification property
if for every ε > 0, there exists N ∈ N such that for any y1, . . . ,ys ∈ Orb(X,F), integers
0 = a1 ≤ b1 < a2 ≤ b2 < ... < as ≤ bs satisfying an+1−bn > N for n = 1, ..., s−1, and any natural
number P > bs +N , there exists a periodic orbit x ∈ Orb(X,F) with period P such that for
all n = 1, ..., s and an ≤ i ≤ bn, we have d(xi , y

n
i ) < ε.
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Recall that we study a parameterized family of set-valued functions Fλ : [0,1] → 2[0,1]

given by (1). We will often consider the three pieces of this function independently. For
convenience, we define φ : R → R and ψ : R → R respectively by φ(x) = 2x and ψ(x) =
2(1−λ)(x − 1) + 1.

3. Dynamics With λ ≥ 1
2

The dynamics of Fλ are relatively mundane when λ ≥ 1/2 . It is obvious that there are
at least two fixed points at x = 0 and x = 1. However, there are two distinct results
depending on if λ = 1/2 or λ > 1/2. The most immediate difference being that if λ > 1/2,
then x = 0 and x = 1 are the only fixed points, while for λ = 1/2 the entire interval [1/2,1]
is fixed. The following two theorems summarize the dynamics for λ ≥ 1/2 so we can focus
on λ < 1/2.

Theorem 3.1. Suppose λ > 1/2 and x ∈ (0,1]. If (xj)∞j=0 is any orbit of x, then xj → 1 as
j→∞.

Proof. Let {x0,x1, ...} be an orbit of x, and consider three cases.

Case 1: Suppose x > 1/2. Note that since x > 1/2, xj+1 = ψ(xj) for all j ∈ N. Because ψ
is continuous and ψ(y) > y for all y > 1/2, the orbit of x is also increasing and bounded
above by 1, so it converges to some z ∈ (1/2,1]. Thus we have that xj → z as j →∞ and
ψ(xj)→ ψ(z) as j→∞, but we also know that ψ(xj) = xj+1. It follows that xj+1→ ψ(z) and
xj+1→ z as j →∞, so ψ(z) = z. Therefore z is a fixed point, and the only fixed point of ψ
is 1, so xj → 1 as j→∞.

Case 2: Suppose x = 1/2. Then x1 ∈ Fλ(x) = [λ,1], so x1 ≥ λ > 1/2. Note that {x1,x2, . . .} is
an orbit of x1 > 1/2, so by Case 1, we have that xj → 1 as j→∞.

Case 3: Suppose x < 1/2. Then for any orbit (xj)∞j=0 of x, we have xj = 2jx0 for some finite
initial segment of the orbit. Then for some n ∈ N, we will have that xn ≥ 1/2, and the
sequence (xj)∞j=n is an orbit satisfying the conditions of either Case 1 or Case 2. Thus
xj → 1 as j→∞. �

Theorem 3.2. Suppose λ = 1/2 and x ∈ (0,1]. If {x0,x1, ...} is an orbit of x then both of the
following hold:

(1) There exists an integer N ≥ 0 such that xj ∈ [1/2,1] for all j ≥N .

(2) There exists an integer M ≥ 0 such that xj = xk for all j,k ≥M.

Proof. Let {x0,x1, . . .} be an orbit of x, and consider three cases:

Case 1: Assume x ∈ (1/2,1]. Then for all j ∈ N, xj = ψ(xj−1) = xj−1. Thus the orbit is a
fixed orbit, so we may choose N =M = 0.

Case 2: Assume x = 1/2. Then it follows that xj ≥ 1/2 for all j ≥ 0, so we may choose
N = 0. To choose M note that either xj = 1/2 for all j ≥ 0 in which case we may also
choose M = 0; or there exists M ∈ N such that xk > 1/2, so Case 1 applies to the orbit
(xj)∞j=M .
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Case 3: Assume x ∈ (0,1/2). Then just as in Theorem 3.1, we have that xj = 2jx until we
reach an integer k satisfying xk = 2kx ≥ 1/2. Then the orbit (xj)∞j=k satisfies the hypotheses
of either Case 1 or Case 2. �

4. Periodic Points

We now begin examining the dynamics of Fλ when λ < 1/2. A key component of both
Devaney chaos and the specification property is the density of the periodic points. We
highlight three specific forms of periodic points which exist.

Recall that we define φ : R→R and ψ : R→R by φ(x) = 2x and ψ(x) = 2(1−λ)(x − 1) + 1.

Theorem 4.1. Suppose λ < 1/2, and let x ∈ (1/2,1) be the solution to the equation ψ(x) = 1/2.
Then for all natural numbers n ≥ 2, x has a periodic orbit of period n.

Proof. Note that

x ∈
(1
2
,1

)
⊆ [λ,1] = Fλ

(1
2

)
,

so for any n ≥ 2, we may define a periodic orbit (xj)∞j=0 beginning with x0 = x; then for
j = 1, . . . ,n− 1, we let xj = 1/2, and for j ≥ n, let xj = xj−n. This orbit takes the formx,

1
2
, . . . ,

1
2︸  ︷︷  ︸

n-1

,x,
1
2
, . . . ,

1
2︸  ︷︷  ︸

n-1

,x,
1
2
, . . .

 .
�

We discuss topological entropy more thoroughly in Section 6; however this theorem pro-
vides a very simple argument that Fλ has positive topological entropy when λ < 1/2.
According to [9, Theorem 6.2], if there is a point with two different periodic orbits, then
the system has positive topological entropy. Thus the following corollary follows imme-
diately from Theorem 4.1 and [9, Theorem 6.2].

Corollary 4.2. If λ < 1/2, then h(Fλ) > 0.

The periodic orbits outlined in Theorem 4.1 all exist so long as λ < 1/2. The next two
results discuss periodic points whose existence depends even more on λ.

Theorem 4.3. Let λ ≤ 1/2n. Then x = 1/2n is a periodic point with period n.

Proof. Let x0 = 1/2n. For j = 1, . . . ,n − 1, let xj = 1/2n−j , so in particular xn−1 = 1/2. Since
λ ≤ 1/2n, we have that 1/2n ∈ Fλ(1/2), so we may set xn = 1/2n. Likewise, for j > n, let
xj = xj−n. The resulting orbit (xj)∞j=0 is periodic with period n. �

Theorem 4.4. Let λ < 1/2n. Then there exists a periodic point with period n of the form

xλ =
−1 + 2λ

2n(λ− 1) + 1
.
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Proof. First, if n = 1, then xλ = 1, and Fλ(1) = {1}, so 1 is a periodic point of period 1. For
the remainder of the proof we suppose that n ≥ 2.

By computation, we have that ψ ◦φn−1(xλ) = xλ. We must show that xλ ∈ Fnλ(xλ). To do
this, we show that 1/2n < xλ < 1/2n−1, so that it will follow that Fnλ(xλ) = {ψ ◦φn−1(xλ)}.

To do this, we will think of xλ as a function of λ. Observe that if we plug in λ = 1/2n,
then xλ = 1/2n. Also, if λ = 0, then xλ = 1/(2n − 1) < 1/2n−1. Thus to establish that 1/2n <
xλ < 1/2n−1 when 0 < λ < 1/2n, it is enough to show that xλ is a continuous, decreasing
function of λ when 0 < λ < 1/2n.

The only point of discontinuity for xλ is λ = (2n + 1)/2n which is greater than 1, so xλ is
continuous on 0 < λ < 1/2n. To see that it is decreasing, observe that

d
dλ
xλ =

2− 2n

(1− 2n + 2nλ)2 .

The denominator is positive, and the numerator is negative so long as n > 1. Thus we
have that xλ is decreasing on the interval 0 < λ < 1/2n. It follows that if λ < 1/2n, then
1/2n < xλ < 1/2n−1. Therefore xλ ∈ Fn(xλ). �

5. Devaney Chaos

Even when λ < 1/2, the function Fλ is not Devaney chaotic on its entire domain, but we
show in this section that when Fλ is restricted to the domain [λ,1], it is chaotic. To prove
the function is Devaney chaotic on that interval we must first show that the set of periodic
points is dense in [λ,1], and that Fλ restricted to [λ,1] is topologically transitive. Our first
step in doing this is to prove that the set of pre-images of x = 1/2 is dense in the interval.

In this lemma we discuss the diameter of an interval. If I ⊆R is an interval, we define the
diameter of I to be diam(I) = sup(I)− inf(I).

Lemma 5.1. Suppose λ < 1/2, and let ε > 0. There exists N ∈ N such that for any interval
I ⊂ [λ,1] with diam(I) ≥ ε, we have 1/2 ∈ f N (I).

Proof. Let I ⊆ [λ,1] be an interval with diam(I) ≥ ε. Recall that the slope of φ is 2, and the
slope of ψ is 2(1−λ). Since λ < 1/2, we have that 2(1−λ) > 1. Thus, we may choose N ∈N
such that

[2(1−λ)]Nε ≥ (1−λ) = diam([λ,1]).

Note that since 1/2 ∈ Fλ(1/2), it suffices to show that 1/2 ∈ Fn(I) for some n ≤N .

Now I is an interval, so if 1/2 < I , then we have that either I ⊆ [λ,1/2) or I ⊆ (1/2,1]. Thus
either F(I) = φ(I) or F(I) = ψ(I). Both φ and ψ are continuous functions, so F(I) is an
interval. Moreover, the diameter of F(I) is greater than the diameter of I by a factor of
either 2 or 2(1 − λ) (depending on whether F(I) = φ(I) or F(I) = ψ(I)). In either case we
have that

diam[F(I)] ≥ 2(1−λ)diam(I).
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It follows that

diam(FN (I)) ≥ [2(1−λ)]N diam(I)

≥ [2(1−λ)]Nε

≥ diam([λ,1]),

so 1/2 ∈ FN (I).

�

Corollary 5.2. Suppose λ < 1/2, and let

A = {x ∈ [λ,1] :
1
2
∈ Fnλ(x) for some n ∈N}.

Then A is dense in [λ,1].

Proof. Let x ∈ [λ,1], and let ε > 0. Choose N according to Lemma 5.1. Consider the
interval I = (x−ε,x+ε)∩[λ,1], and note that diam(I) ≥ ε. Then by Lemma 5.1, 1/2 ∈ FN (I),
so there exists a ∈ I such that 1/2 ∈ FN (a). Since a ∈ I , we have that d(x,a) < ε, and since
1/2 ∈ FN (a), we have that a ∈ A. Therefore A is dense in [λ,1]. �

Now we have the necessary prerequisite information to prove Fλ is Devaney chaotic on
[λ,1].

Theorem 5.3. If λ < 1/2, then Fλ is Devaney Chaotic on [λ,1].

Proof. By Corollary 5.2 we know that the set of points that contain 1/2 in their orbit is
dense in [λ,1]. These are also periodic points, because F(1/2) = [λ,1], so if x ∈ [λ,1], and
1/2 ∈ Fn(x), then x ∈ Fn+1(x), so x has a periodic orbit. Adding the periodic points not
already contained in the set will make the already dense set even more dense. Therefore
the set of periodic points is dense in [λ,1].

Assume x,y ∈ [λ,1]. By Corollary 5.2, for any ε > 0 there exists z within ε of x such
that 1/2 ∈ Fnλ(z) for some n ∈ N. Then [λ,1] ⊆ Fn+1

λ (z). In particular, y ∈ Fn+1
λ (z), so Fλ

restricted to [λ,1] is topologically transitive.

Combining these facts we have that Fλ is Devaney chaotic on [λ,1]. �

6. The Specification Property

The Specification Property is a strong result that implies a function is Devaney chaotic
and has positive topological entropy. Here we prove that Fλ has this property when re-
stricted to the domain [λ,1].

Theorem 6.1. Fλ has the Specification Property on [λ,1].

Proof. Let ε > 0. Choose N ∈ N according to Lemma 5.1. Let y1, . . . ,ys ∈ Orb([λ,1],Fλ),
and let 0 = a1 ≤ b1 < · · · < as ≤ bs such that an+1 − bn > N for all n = 1, . . . , s − 1. We now
begin the process of defining the periodic orbit, x. We will define the orbit first in the bn
coordinate for each n ∈N.
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Case 1: Suppose (ynbn , y
n
bn

+ε) ∈ [λ,1]. According to Lemma 5.1, we have 1/2 ∈ FNλ ((ynbn , y
n
bn

+

ε)). Therefore we may choose xbn ∈ (ynbn , y
n
bn

+ ε) such that 1/2 ∈ FNλ (xbn). We define the
remaining terms of x between the an and bn coordinates as follows:

Suppose xj is defined for some an < j ≤ bn so that |xj − ynj | < ε. Since yn is an orbit,
ynj = 2ynj−1, ynj = 2(1−λ)(ynj−1 − 1) + 1, or ynj−1 = 1/2. Consider three sub-cases:

Sub-case (a): Suppose ynj−1 = 1/2. Let xj−1 = 1/2. Clearly, |xj − ynj | < ε.

Sub-case (b): Suppose ynj−1 , 1/2 and ynj = 2(1−λ)(ynj−1 − 1) + 1. Define

xj−1 =
1

2(1−λ)
(xj − 1) + 1.

Then ∣∣∣∣xj−1 − ynj−1

∣∣∣∣ =

∣∣∣∣∣∣ (xj − 1)

2(1−λ)
+ 1−

 ynj − 1

2(1−λ)
+ 1

∣∣∣∣∣∣
=

1
2(1−λ)

∣∣∣∣xj−1 − ynj−1

∣∣∣∣
<

1
2(1−λ)

ε.

Note that because λ < 1/2,1/[2(1−λ)] < 1, so |xj−1 − ynj−1| < ε.

Sub-case (c): Suppose ynj−1 , 1/2 and ynj−1 = 1/2ynj . Define xj−1 = 1/2xj . Then |xj − ynj−1| =
1/2|xj − ynj | < 1/2ε < ε.

Note that each xj must be chosen from [λ,1]. In this sub-case, it is important that xbn ∈
(ynbn , y

n
bn

+ ε), so for all an ≤ j ≤ bn, xj ≥ ynj . Thus, if ynj /2 ≥ λ, then xj /2 ≥ λ as well.

The next case deals with the possibility that xbn cannot be chosen to be greater than ynbn .

Case 2: Suppose ynbn + ε > 1.

Subcase (a): Suppose ynj−1 = 1/2. Let xj−1 = 1/2. Clearly, |xj − ynj | < ε.

Subcase (b): Suppose ynj−1 , 1/2 and ynj = 2(1−λ)(ynj−1 − 1) + 1. Define

xj−1 =
1

2(1−λ)
(xj − 1) + 1.

Then just as in Sub-case (b) of Case 1, it follows that |xj−1 − ynj−1| < ε.

Sub-case (c): Suppose ynj−1 , 1/2 and ynj−1 = 1/2ynj . If ynk−1 = ψ−1(ynk ) for all k = j + 1, . . . , bn,
then define xj−1 = 1/2. Otherwise define xj−1 = xj /2.

Since λ < 1/2, we know thatψ(x) ≤ x so in the case that ynk−1 = ψ−1(ynk ) for all k = j+1, . . . ,bn
we know that ynj ≥ y

n
j+1 ≥ . . . ≥ y

n
bn

so in particular |ynj − 1| < ε. In this case we define
xj−1 = 1/2 so ∣∣∣∣xj−1 − ynj−1

∣∣∣∣ =
1
2

∣∣∣∣1− ynj−1

∣∣∣∣ < 1
2

∣∣∣∣1− ynj ∣∣∣∣ < 1
2
ε < ε.
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Otherwise define xj−1 = xj /2, so

∣∣∣∣xj−1 − ynj−1

∣∣∣∣ =
1
2

∣∣∣∣xj − ynj ∣∣∣∣ < 1
2
ε < ε

Note that once xj−1 = 1/2, xj−1 > y
n
j−1, so we may revert to the processes of Case 1.

To connect each of these orbit fragments, for each n = 1, . . . , s − 1, recall 1/2 ∈ FNλ (xbn),
so for bn < j ≤ bn + N , choose xj so that xbn+N = 1/2. If there are any integers j with
bn +N < j < an+1, let xj = 1/2. This method is valid because Fλ(1/2) = [λ,1], so we have
that xan+1

= Fλ(xan+1−1) = Fλ(1/2).

Similarly, xbs was chosen so that 1/2 ∈ FNλ (xbs), so we may define xj for all bs < j ≤ bs +N
so that xbs+N = 1/2. If there are any integers j such that bs +N < j < P , let xj = 1/2.

Finally, to ensure x is periodic with period P , for all j ≥ P , define xj = xj−P . In doing this,
we have defined xj for all j ≥ 0, so that x = (xj)∞j=0 is a periodic orbit with period P , and
for each n = 1, . . . , s, and each an ≤ j ≤ bn, we have |xj − ynj | < ε. �

7. Pre-images of
1
2

In the previous two sections, we relied heavily on the pre-images of 1/2 to prove that Fλ
is Devaney chaotic and has the specification property on [λ,1] when λ < 1/2. In studying
these pre-images of 1/2 we notice an interesting property concerning the number of them.
If we count the number of pre-images of 1/2 of order 1, order 2, and so on, the resulting
sequence satisfies a basic Fibonacci-like recurrence relation.

In Example 7.1 and Theorem 7.2, we use absolute value bars to denote the cardinality of
a finite set.

Example 7.1. Let λ = 1/4. Let A0 = {1/2}, and for each n ∈N, define

An =
{
x ∈

(1
4
,1

]
:

1
2
∈ Fn1/4(x) and

1
2
< Fn−1

1/4 (x)
}
.

If for each n ≥ 0 we let an = |An|, then the sequence (an)∞n=0 is the standard Fibonacci
sequence with a0 = a1 = 1, and an+2 = an+1 + an for all n ≥ 0.

(Note that the collection {An : n ≥ 0} forms a partition of all the pre-images of 1/2 in the
interval (1/4,1]. Some texts would describe the elements of An as those pre-images for
which the first hitting time is n.)

Proof. Note that the elements of An are pre-images of the elements of An−1. More specif-
ically, let n ∈N, and let x ∈ An. Since 1/2 ∈ Fn(x), there is an element y ∈ F(x) such that
1/2 ∈ Fn−1(y), so y ∈ An−1. Since x , 1/2, this element y is either φ(x) = 2x or ψ(x), so we
know that either x ∈ ψ−1(y) or x = y/2. This means we can inductively construct the sets
An from the preceding set An−1 using two types of elements.
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For each n ≥ 1, define

Bn =
{
x ∈ An : there exists y ∈ An−1 where x = ψ−1(y)

}
Cn =

{
x ∈ An : there exists y ∈ An−1 where x =

1
2
y
}
.

For each n ∈N, let bn = |Bn| and cn = |Cn|.

By definition A0 = {1/2}, so a0 = 1. The two pre-images of 1/2 (besides 1/2 itself) are 1/4
and ψ−1(1/2) = 2/3. Since the sets An are restricted to the interval (1/4,1], the number 1/4
is not included in A1. That means B1 = {2/3}, and C1 = ∅, so A1 = B1 ∪C1 = {2/3}. Thus
a1 = 1.

To construct the set A2, we look at the pre-images of 2/3. We have 7/9 = ψ−1(2/3) ∈ B2,
and 1/3 = 1/2(2/3) ∈ C2, so A2 = B2 ∪ C2 = {1/3,7/9}. Hence we have that a2 = 2. Next
we construct A3 by looking at the pre-images of 1/3 and 7/9. Recall that each set An is
restricted to the interval (1/4,1], so we cannot include 1/6 = 1/2(1/3) in C3, but we can
include 7/18 = 1/2(7/9) in C3. In addition, we have 5/9 = ψ−1(1/3) ∈ B3 and 23/27 =
ψ−1(7/9) ∈ B3. Thus A3 = B3 ∪C3 = {7/18,5/9,23/27}, so a3 = 3.

Now to prove this pattern holds, note that for n ≥ 1, we have

an = bn + cn. (2)

Observe that ψ−1((1/4,1]) = (1/2,1] ⊆ (1/4,1]. This means that for any element x ∈ An, we
have that ψ−1(x) ∈ Bn+1, so

an = bn+1. (3)

However, as we observed in the construction of A1,A2, and A3, only some elements of An
may be divided by two and remain in the desired interval (1/4,1]. Specifically, x/2 ∈ Cn+1
if and only if x ∈ Bn, so

bn = cn+1. (4)

Putting Equations (2), (3), and (4) together yields

an+2 = bn+2 + cn+2

= bn+2 + bn+1

= an+1 + an.

Therefore, the sequence (an)∞n=0 is the standard Fibonacci sequence. �

A visual description of how the elements of An are constructed from elements of An−1 is
given in Figure 2.

There is a natural generalization of this result for all values λ of the form 1/2k.

Theorem 7.2. Assume λ = 1
2k

for some k ∈N. Let A0 = {1/2}, and for each n ∈N define

An =
{
x ∈ (λ,1] :

1
2
∈ Fnλ(x) and

1
2
< Fn−1

λ (x)
}
.
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C1 B1

A1

C2 B2

A2

C3 B3

A3

C4 B4

A4

ψ−1

ψ−1

ψ−1

ψ−1
· · ·

φ−1

φ−1

φ−1

φ−1
· · ·

Figure 2. Construction of An

If for each n ≥ 0, we let an = |An|, then the sequence (an)∞n=0 satisfies the recurrence relation

an+k =
k−1∑
j=0

an+j .

Proof. For each 1 ≤ n < k − 1 and each j = 0, . . . ,n− 1, define

Bn,j =
{
x ∈ An : there exists y ∈ An−j−1 where x =

1
2j
ψ−1(y)

}
.

For 1 ≤ n < k − 1, we also define

Bn,n =
{ 1

2n+1

}
.

For each n ≥ k − 1 and each j = 0, . . . , k − 2, we define

Bn,j =
{
x ∈ An : there exists y ∈ An−j−1 where x =

1
2j
ψ−1(y)

}
,

and for n ≥ k − 1, we also define

Bn,k−1 =
{
x ∈ An : there exists y ∈ An−k+1 where x =

1
2k−1

y
}
.

We denote the cardinality of each set Bn,j by bn,j .

For any n ≥ 1, if x ∈ Bn,0 then x/2 ∈ Bn+1,1, x/4 ∈ Bn+2,2, . . .x/2j ∈ Bn+j,j . This holds for all
j = 1, . . . , k − 1, so we have that for all n ≥ 1 and all j = 1, . . . , k − 1, bn,0 = bn+j,j . We also
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know that for all n ≥ 0, an = bn+1,0. Putting these together yields that for all n ≥ 0,

an+k =
k−1∑
j=0

bn+k,j

=
k−1∑
j=0

bn+k−j,0

=
k∑
i=1

bn+i,0

=
k∑
i=1

an+i−1

=
k−1∑
l=0

an+l

which is our intended result. �

8. Topological Entropy

Now that we know Fλ has the specification property on [λ,1] when λ < 1/2, it follows from
a theorem due to Raines and Tennant [14], that the system also has positive topological
entropy. We will demonstrate a method of calculating a more precise lower bound for the
topological entropy of the system for specific values of λ.

First, we will consider the entropy when λ ≥ 1/2. Topological entropy is a measure of
how spread out orbits can get. We showed in Theorem 3.1 that if λ > 1/2, then every orbit
(other than the 0 orbit) is limiting to 1. It follows that the topological entropy of Fλ is
zero when λ > 1/2. Similarly, if λ = 1/2, then by Theorem 3.2, every orbit is eventually
fixed, so the entropy must be zero.

For the rest of this section, we will consider the case that λ < 1/2. By Theorem 6.1, Fλ
has the specification property on [λ,1], so we know that the topological entropy of the
system is positive. (We also showed this in Corollary 4.2.) When λ is of the form 1/2n for
some n ∈N, we may be more precise and calculate a lower bound for the entropy. This is
because, in this case, Fλ is a generalized Markov function.

For traditional, single-valued functions, we say that a function f : [0,1] → [0,1] is a
Markov map if there exists a partition 0 = a0 < a1 < · · · < an = 1 such that for each
j = 0, . . . ,n, f (aj) is in the partition, and f is strictly increasing or strictly decreasing on
each interval of the form (aj , aj+1). In [2], Banič and Lunder generalize this definition to
accommodate set-valued functions. In this more general definition, f (aj) does not need
to be a single element of the partition, but rather, it can be a closed interval whose end-
points are partition elements. This allows for vertical lines in the graph, such as we have
in the graph of Fλ.



MJUM Vol. 3 (2017-2018) Page 14

Markov maps are very nice to work with, because much of their dynamics can be deter-
mined by witnessing how the function moves the intervals of the form (aj , aj+1). This
pattern may be encoded in what is called a transition matrix. The process for relating
a Markov map to its corresponding transition matrix is described in [4, pp. 212-213].
Then, by [4, Theorem 9.2.7], if ρ is the largest eigenvalue (in modulus) of the transition
matrix, then the topological entropy of the system is logρ.

We adapt this process so that it may apply it to set-valued functions. We illustrate this
first through the following example.

Example 8.1. Let λ = 1/8. Then we partition the interval [0,1] with

a0 = 0

a1 =
1
8

a2 =
1
4

a3 =
1
2

a4 = 1.

This gives 4 open intervals which we denote by

P1 =
(
0,

1
8

)
P2 =

(1
8
,
1
4

)
P3 =

(1
4
,
1
2

)
P4 =

(1
2
,1

)
.

The graph of F1/8 with the partition elements and intervals labeled is pictured in Figure 3.

We have 5 partition elements and 4 intervals, so our transition matrix will be 9× 9. Each
row and each column is associated with a particular partition element or interval. Each
entry is either a 0 or a 1. If the item (either a partition element or interval) associated
with a row is contained in the image of the item associated with a column, then we put a
1 in that entry; otherwise we put a 0.

For example, P3 is a subset of F1/8(P2), F1/8(a3), and F1/8(P4). Thus, the row associated
with P3 will have 1s in the columns associated with P2, P4, and a3, and it will have 0s
everywhere else. The full transition matrix for F1/8 is pictured in Figure 4.

The largest eigenvalue of this matrix is approximately 2.87561. We may conclude that
h(F1/8) ≥ log2.87561.

As we construct the transition matrix for more values of λ = 1/2n, a clear pattern emerges.



MJUM Vol. 3 (2017-2018) Page 15

0 1
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0
1
8

1
4

1
2

1
8

1
4

1
2

P1 P2 P3 P4

P1

P2

P3

P4

Figure 3. The graph of Fλ



P1 P2 P3 P4 a0 a1 a2 a3 a4

P1 1 0 0 0 0 0 0 0 0
P2 1 0 0 1 0 0 0 1 0
P3 0 1 0 1 0 0 0 1 0
P4 0 0 1 1 0 0 0 1 0
a0 0 0 0 0 1 0 0 0 0
a1 1 0 0 0 0 0 0 1 0
a2 0 0 0 1 0 1 0 1 0
a3 0 0 0 1 0 0 1 1 0
a4 0 0 0 0 0 0 0 1 1


Figure 4. Transition matrix for F1/8

Example 8.2. Let n be a natural number greater than or equal to 2, and let λ = 1/2n. Then
the partition is

a0 = 0

a1 =
1
2n

...

an =
1
2

an+1 = 1,

and for each j = 1, . . . ,n+ 1, we define Pj = (aj−1, aj). The transition matrix will have 2n+ 3
rows and 2n+ 3 columns, and we may describe the rows as follows:

(1) The P1 row will contain a 1 in the P1 column.
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(2) For j = 2, . . . ,n + 1, the Pj row will have a 1 in the Pj−1 column, the Pn+1 column,
and the an column.

(3) The a0 row will have a 1 in the a0 column.

(4) The a1 row will have a 1 in the P1 column and the an column.

(5) For j = 2, . . . ,n, the aj row will have a 1 in the Pn+1 column, the aj−1 column, and
the an column.

(6) The an+1 row will have a 1 in the an column and the an+1 column.

(7) All other entries are 0.

While this does not give us an explicit formula for the topological entropy of Fλ, for each
individual value λ = 1/2n, we may use this description to construct the transition matrix
then calculate the largest eigenvalue to find the topological entropy.

We may also use a transition matrix to calculate a lower bound for the entropy when
λ = 0.

Example 8.3. Let λ = 0. In this case we may use the partition a0 = 0, a1 = 1/2, and a2 = 1.
Then we have P1 = (0,1/2), and P2 = (1/2,1). The transition matrix is



P1 P2 a0 a1 a2

P1 1 1 0 1 0
P2 1 1 0 1 0
a0 0 0 1 0 0
a1 1 1 1 1 1
a2 0 0 0 0 1


which has its largest eigenvalue of 3. Thus h(F0) ≥ log3.
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