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Abstract. We consider the following guessing game: fix positive integers k, m, and n.
Player A (“Ann”) chooses a (uniformly) random integer α from the set {1,2,3, . . . ,n}, but
does not reveal α to Player B (“Gus”). Gus then presents Ann with a k-option multiple
choice question about which number she chose, to which Ann responds truthfully. After
m such questions have been asked, Gus must attempt to guess the number chosen by Ann.
Gus wins if he guesses α. The purpose of this note is to find all “canonical” m-question
algorithms which maximize the probability of Gus winning the game. An analysis of a
natural extension of this game is also presented.

1. Introduction

Suppose I tell you that I’m thinking of a number between 1 and 3000, and your goal is to
correctly guess my number. If I provide you with no additional information, you have a

1
3000 probability of guessing correctly, which does not allow for much strategy. Thus, to
make things more interesting, I will allow you to present me with one 3-option multiple
choice question about my number, to which I will respond truthfully. In order for me to
be able to answer your question though, I require one (and only one) of your options to
be true regardless of the number I chose.

Next, consider the following potential questions you could ask me:

Q1: (a) Your number is 1; (b) Your number is 2; (c) Your number is between 3 and 3000.

Q2: (a) Your number is 1 or 2; (b) Your number is 3, 4, or 5; (c) Your number is between
6 and 3000.

Q3: (a) Your number is 1, 2, or 3; (b) Your number is 4, 5, or 6; (c) Your number is
between 7 and 3000.

Q4: (a) Your number is between 1 and 1000; (b) Your number is between 1001 and
2000; (c) Your number is between 2001 and 3000.

∗ Corresponding author
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Here and below, “between” is understood to be in the inclusive sense. Which of these
questions, if any, would (upon my answering the question) yield the greatest probability
of you guessing my number? Would you be surprised to discover that each question
delivers the same probability that you’ll guess my number? Indeed, the probabilities that
you will guess my number correctly, assuming you guess rationally after I’ve delivered
my response to any of these questions, are all equal to 3

3000 . For example, the probability
of guessing correctly if you decided to use Q1 is given by

1
3000

· 1 +
1

3000
· 1 +

2998
3000

· 1
2998

=
3

3000
.

Compare this with the probability of winning if you decide to use Q4, which is likely the
question you were inclined to ask:

1000
3000

· 1
1000

+
1000
3000

· 1
1000

+
1000
3000

· 1
1000

=
3

3000
.

Thus Q4 equips you with the same probability of guessing correctly as Q1! Should you
choose Q2 or Q3, the same probability occurs. Also, note that by asking any of the 3-
option questions presented above, your probability of winning improves by a factor of 3
over guessing blindly.

Things change considerably if I allow you to present me a second 3-option question after
my answer to your initial query. Let us suppose you asked me Q1. For the readers’
convenience, we restate it below:

Q1: (a) Your number is 1; (b) Your number is 2; (c) Your number is between 3 and 3000.

If I happen to choose “1,” then a second question doesn’t provide any further information
since you already know which number I picked. The same is true if I chose “2.” How-
ever, if my response comes back “(c),” then a suitably-chosen second question would be
profitable. Let us consider asking the following second question:

Q′1: (a) Your number is 3; (b) Your number is 4; (c) Your number is between 5 and 3000.

Now the probability you will win has increased to

1
3000

· 1 +
1

3000
· 1 +

2998
3000

( 1
2998

· 1 +
1

2998
· 1 +

2996
2998

· 1
2996

)
=

5
3000

.

We remark that this sequence of two 3-option multiple choice questions does not maxi-
mize your probability of correctly guessing my number. In fact, it is not hard to find a
sequence of two 3-option multiple choice questions which gives you a probability of 8

3000
of guessing correctly and another such sequence which yields a 9

3000 probability.

The purpose of this note is to determine the maximum probability of winning the more
general version of the game detailed in the abstract, and then to delineate all strategies
for achieving this maximum probability, in analogy to the binary version of the game
considered by Hammett and Oman in [3]. We also provide a natural extension of this
game, and give similar results in this setting as well.
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2. Preliminaries

The goal of this section is to formalize the sketch of the game presented in the intro-
duction. We begin by fixing some notation. Throughout, we will let Z+ denote the set
{1,2,3, . . .} of positive integers. In addition, for n ∈ Z

+, the set {1,2,3, . . . ,n} will be de-
noted by [n].

Next, let k,m,n ∈ Z+ and let X ⊆ Z
+ have cardinality n. The set X will be presented to

both the answerer, “Ann,” and the guesser, “Gus.” Ann will then pick a number α ∈ X
uniformly at random (known only to Ann). Gus presentsm “questions” sequentially, with
each question consisting of k “options,” exactly one of which is correct. Ann responds to
each of thesem questions in sequence by indicating which of the k options is correct. Both
m and k are known by Ann and Gus before the game commences. After Gus presents all
m questions and receives Ann’s subsequent answers, he must then attempt to guess the
number chosen by Ann. Gus wins if he guesses α; otherwise, Ann wins. This game shall
be denoted by G(k,m,X). When X = [n], however, we shall simply write G(k,m,n).

We now attempt to rigorously define how Gus is allowed to structure his questions, with
our primary concern being to ensure that the game eventually ends in a winner and mod-
els the rules described in the introduction. To kick things off, consider the following
scenario.

Example 2.1. Suppose that Gus presents the following question to Ann in the game
G(2,1,1):

Q: (a) P =NP ; (b) P ,NP .

Of course, whether or not P = NP is currently one of the biggest unsolved problems in
computer science. So Ann has no choice but to guess what the answer to the question is,
violating the spirit of the game.

In light of this example, we idealize Ann as follows:

Assumption 1. Ann has perfect knowledge, that is, Ann knows the truth value of every
proposition.

To understand a few other possible difficulties, consider the example below.

Example 2.2. In the game G(3,1,1000), Gus considers presenting one of the following
questions to Ann:

Q1: (a) Your number is between 1 and 9; (b) Your number is between 10 and 19; (c)
Your number is between 20 and 30.

Q2: (a) Your number is between 1 and 400; (b) Your number is between 300 and 600;
(c) Your number is between 500 and 1000.

Q3: (a) The capital of Colorado is Denver; (b) 4 is a prime number; (c) The Earth is flat.

Each ofQ1 orQ2, if chosen by Gus to present, will cause a dilemma for Ann. In fact, as we
will see below in a more thorough discussion, no matter how Ann responds to either of
these questions, her response will either provide Gus an extra option per question (so that
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he’s effectively playing the game G(4,1,1000)), or cause the game to end in a stalemate.
Thus, we want to rule out questions analogous to these two, on the grounds that the game
is negatively or unfairly influenced.

Next, although Q3 is not very helpful to Gus, it does not cause the same sort of trouble
as Q1 or Q2 since there are no overlapping references between options and exactly one of
them is true. These seemingly unrelated statements can be translated into options that
reflect the fact that Ann chose a unique number in [1000]:

Q′3: (a) Your number is a member of [1000]; (b) Your number is a member of the empty
set; (c) Your number is a member of the empty set.

Notice that, in regards to Gus’s knowledge about Ann’s choice, presenting Q′3 rather than
Q3 puts Gus in the same position. Both Q3 and Q′3 effectively ask “Have you picked a
number between 1 and 1000?” We will see below that it is always possible to transform
a question Q in the game G(k,m,X) into an equivalent question Q′ of k logical disjunc-
tives on the set X. Ann’s choosing a unique element of X is a critical ingredient of this
equivalence.

We need to carefully consider Example 2.2, as this will form the basis for our remaining
assumptions about how the game is played. First, we offer some further explanation
concerning the ill-conceived questions Q1 and Q2.

The question Q1 is problematic because the interval (30,1000] is not included, and so the
options are inexhaustive. Indeed, if Ann’s choice α > 30 then she will be forced into a
predicament. She may choose to reveal that none of the options in Q1 are true, but this
would effectively indicate Ann’s affirmation of a hidden fourth option: “Your number
is between 31 and 1000.” So this would permit Gus to play as if he were in the game
G(4,1,1000), and not the game we intended! On the other hand, should Ann refuse to
answer, then the game ends in a stalemate. Either way the game has been compromised,
and consequently “inexhaustive options” like those in Q1 ought to be disallowed.

A similar problem arises should Gus present Q2 to Ann. Indeed, if there are multiple
options correct then Ann will once again face a dilemma. If Gus presents Q2 and Ann’s
choice α ∈ [300,400], she could either indicate that both (a) and (b) are true, once again
affirming a hidden fourth option (“Your number is between 300 and 400.”), or she could
refuse to answer due to ambiguity, and the game will end in a stalemate. Either outcome
is bad, so “overlapping options” like those in Q2 should be disallowed as well. Thus, we
arrive at our second assumption:

Assumption 2. All “questions” presented by Gus consist of “options” that are proposi-
tions, precisely one of which is true no matter which α ∈ X Ann chose.

At its core Assumption 2 prohibits Gus from presenting questions like Q1 and Q2, thus
preserving the integrity of the game. Henceforth we shall refer to questions that adhere
to Assumption 2 as “allowable.” Before turning to the problems implicit in question Q3,
we need to take a brief detour into the propositional logic. The reason for the foray into
logic that follows is to rigorously delineate the sorts of options that we may assume Gus
will present in his questions, and we will show that disjunctive propositions like “Your
number is 1 or 2 or 3.” are without loss of generality the best Gus can do in terms of
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extracting information from Ann. In other words, outlandish, esoteric options within an
allowable (Assumption 2) question are always equivalent to an allowable question whose
options are simple disjunctives!

Suppose we are in the game G(k,m,X), let X = {x1, . . . ,xn} and let’s imagine that Gus
presents as a question option a proposition P in the literals `1, . . . , `n ∈ {0,1}. Ann then
responds to the option P by setting `i = 1 (indicating “true”) and the other `j = 0 (in-
dicating “false”) precisely if her choice α = xi . She then returns the truth value of P to
Gus under her literal assignment. Importantly, since Ann chose a unique α ∈ X, we have
α = xi if and only if `i = 1 and `j = 0 for all j , i.

A bit more formally, for each i ∈ [n] letting ei ∈ {0,1}n denote the n-dimensional binary
vector with ith entry 1 and 0s elsewhere, we have ` := (`1, . . . , `n) = ei if and only if α = xi .
Letting E := {ei : i ∈ [n]}, note that in this setting two propositions are logically equivalent
precisely if they agree for all n special literal assignments belonging to E; let’s denote this
special logical equivalence by “≡E”. Let G := {i ∈ [n] : P is true if ` = ei}. Then it is
straightforward to see that the disjunctive proposition P ′ := ∨i∈G `i is such that P ≡E P ′.
Indeed, P ′ as we’ve defined it is true exactly when ` = ei with i ∈ G, and these are by
definition exactly the literal assignments in E for which P is true. An illustration of this
equivalence where n = 5 is provided in Table 1, and we implore the interested reader to
work through it carefully.

` P := ((`1 ∧¬`4)∨ `5)⇒ (¬`2 ∧ `3) P ′ := `2 ∨ `3 ∨ `4

e1 0 0
e2 1 1
e3 1 1
e4 1 1
e5 0 0
Table 1. Truth table showing that P ≡E P ′ when n = 5.

Importantly, the logical equivalence of P and P ′ is only guaranteed valid for literal assign-
ments belonging to E. In our n = 5 example, for instance, the assignment `1 = `2 = `5 = 1
and `3 = `4 = 0 shows that the equivalence P ≡E P ′ does not necessarily extend to all pos-
sible literal assignments. Ponder for a moment what we have just shown in this example:
Gus presenting the complicated question option “If your number is 1 and not 4, or your
number is 5, then your number is not 2 and your number is 3.” is E-equivalent to his
simply presenting “Your number is 2 or 3 or 4.”

Why all the fuss over logical formalities here? In essence, this discourse rigorously justi-
fies something that our intuition says must be the case: any option presented by Gus in a
question may as well be a proposition that is a logical disjunctive in the literals `1, . . . , `n.
Moreover (Assumption 2), in aggregate these propositional disjunctives must be exclu-
sive (no two options can be simultaneously true) and exhaustive (precisely one option is
true for any given choice α ∈ X by Ann). Indeed, even if an option is initially presented
as a seemingly unrelated statement like in Q3 above, this option can be transformed into
an equivalent proposition P in the literals `1, . . . , `n, which in turn can be transformed
into an E-equivalent proposition P ′ of the disjunctive type just described. This was at the
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heart of our Example 2.2 reasoning that Gus could have presented question Q′3 instead,
and gleaned the same information from Ann. We formalize this in the next assumption:

Assumption 3. All “options” presented by Gus are propositions of the form “Your number
is a member of G.” for some G ⊆ X.

Notice that we allow for the possibilities that G = ∅ or G = X in Assumption 3. In fact,
this occurred in our question Q′3 of Example 2.2. Clearly, Gus’s presenting the propo-
sition “Your number is a member of G.” to Ann for her evaluation is equivalent to Gus
presenting her with the logical disjunctive ∨i∈G `i , to which Ann returns the truth value.

Assumption 3 should not be misunderstood to mean that every manifestation of the game
will involve a highbrow presentation of symbolic disjunctives by Gus. Rather, Assump-
tions 2–3 are meant to delineate the sorts of options that we may assume Gus will present
in his questions, and we have managed to show that disjunctive propositions like “Your
number is 1 or 2 or 3.” are without loss of generality the best Gus can do for the purposes
of extracting information from Ann.

3. Setting the Stage

With most of the technical preliminaries out of the way, we now set up notation which
will move us toward the formalized game. First, we establish a probabilistic paradigm.
Recall that the game G(k,m,X) begins with Ann choosing, uniformly at random, an inte-
ger α ∈ X. The game concludes with Gus making a guess γ ∈ X based upon the answers
he receives from Ann to his m questions, and Gus wins the game if and only if γ = α.
Throughout the remainder of this paper, we shall denote Ann’s choice by α and Gus’s
guess by γ . In this setting, we regard X as a probability space endowed with the uniform
distribution

P (x) =
1
|X |

for all x ∈ X.

We formalize Gus’s presentation of questions with the following definition.

Definition 3.1. Let Qr denote the rth question presented by Gus, 1 ≤ r ≤ m, and let Gr,i
denote the event “Ann selects option i in Qr” on the probability space X, 1 ≤ i ≤ k.

Notice that by Assumption 3, any option in Qr must be a proposition of the form “Your
number is a member of G.” for some G ⊆ X. Thus, it follows that the events Gr,i as we’ve
defined them are precisely the subsets of X such that the ith option ofQr is “Your number
is a member of Gr,i .” The following example further clarifies this relationship.

Example 3.2. Consider the game G(3,1,5) in which Gus asks the following question:

Q1: (a) Your number is 1 or 5; (b) Your number is 2 or 4; (c) Your number is 3.

The options of Gus’s question correspond to the respective events G1,1 = {1,5}, G1,2 =
{2,4}, and G1,3 = {3}. So, if α = 4, G1,2 would occur. Furthermore, we can say that
P

(
G1,1

)
= 2

5 , P
(
G1,2

)
= 2

5 , and P

(
G1,3

)
= 1

5 .
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In light of Assumptions 1–3 above, we can now establish an upper bound on the proba-
bility of Gus winning G(k,m,X). This is accomplished by using Assumption 2 to ensure
the km events that could result in a winning game are mutually exclusive. Then, we use
conditional probability to show that the likelihood of any such winning event is at most
1/ |X |.

Theorem 3.3. The probability that Gus wins the game G(k,m,X) is at most min(|X |,km)
|X | .

Proof. Gus will win G(k,m,X) with probability at most 1 = |X |
|X | . Thus it suffices only to

prove that the probability of Gus winning is at most k
m

|X | . Let’s assume that Ann has chosen
α ∈ X uniformly at random, and fix an arbitrary m-tuple (Q1, . . . ,Qm) of questions to be
presented by Gus (in this order). Let W denote the event “Gus’s guess γ is equal to α.” In
other words, W is the event “Gus wins the game.”

Recall from Definition 3.1 above that for any question Qr (r ∈ [m]), we let Gr,i (i ∈ [k])
denote the event “Ann selects option i in Qr” on the probability space X. Thus, W
occurs if and only if G1,i1 ∩ G2,i2 ∩ · · · ∩ Gm,im ∩W occurs for some (i1, i2, . . . , im) ∈ [k]m.
Since Assumption 2 guarantees a unique event Gr,i occurs for each Qr , it follows that
for (i1, . . . , im) , (j1, . . . , jm) the events G1,i1 ∩ · · · ∩Gm,im ∩W and G1,j1 ∩ · · · ∩Gm,jm ∩W are
mutually exclusive. Hence, we obtain

P(W ) =
∑

(i1,...,im)∈[k]m
P(i1, . . . , im,W ), (1)

where (i1, . . . , im,W ) is the vector naming the eventG1,i1∩· · ·∩Gm,im∩W . Since there are km

such vectors, it suffices to show that P(v) ≤ 1
|X | for any such vector v. Thus define G ⊆ X

as the “guessing set” from which Gus guesses γ uniformly at random after presenting all
m questions. Then let v := (i1, . . . , im,W ) be arbitrary. Observe that

v occurs if and only if α ∈ A := G1,i1 ∩ · · · ∩Gm,im and Gus’s guess γ equals α. (2)

Thus if A = ∅, then v cannot occur, and P(v) = 0 < 1
|X | . Assume now that A , ∅. Then

P(v) = P (α ∈ A) ·PG (γ = α | α ∈ A)

=
|A|
|X |
· |A∩G|
|A| · |G|

=
|A∩G|
|G|

· 1
|X |
≤ 1
|X |

;
(3)

here, PG (γ = α | α ∈ A) denotes the conditional probability that γ = α given that α ∈ A and
Gus’s guess is uniform on G. To conclude the proof, we justify why PG (γ = α | α ∈ A) =
|A∩G|
|A|·|G| . Since Ann’s choice lies in A, there are a total of |A| · |G| equally likely pairs (α,γ)
of possible choices by Ann and Gus, respectively. Gus will win provided the pair (α,γ)
satisfies α = γ , and there are |A∩G| such pairs. The proof is now complete. �
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Of course, the numerator km appearing in the upper bound on P(W ) above is no coinci-
dence, as the “obvious” strategy is for Gus to continuously divide up the set he knows
contains α into k roughly equal parts. In this way, Gus can effectively improve his proba-
bility of winning by a factor of k with each of his m questions. This has clear conceptual
parallels with the binary search algorithm in computer science – but instead of bisect-
ing at each stage, we “k-sect” the set containing the element in question. For example,
consider searching for the number 2 in the array of numbers (1,2,3,4,5,6,7,8,9). If we
consider the k = 3 variation, we can divide this up into 3 contiguous subarrays of length
9
3 = 3. When we get back (1,2,3), we again divide this up into 3 separate length 3

3 = 1
subarrays and get back the subarray (2), and we have found our number.

Notice that from Theorem 3.3 the upper bound on the probability of winning with 2

queries if we are allowed to trisect at each query is min(9,32)
9 = 1, so it is no surprise that

only 2 stages are necessary to locate one of nine numbers if trisections are permitted. The
purpose of the next section is to show that even with much less stringent assumptions
(recall that Gus is free to ask Ann any allowable question (consisting of propositions); the
question need not even obviously relate to the game being played), Gus still cannot do
any better than he can by adopting a natural set of additional rules for game play. We
shall shortly introduce such a set of rules, and then find all strategies which maximize
Gus’s probability of winning in this modified setting. Our justification for Assumption 3
was the first major step in this direction, as it validates that this new set of rules elicits no
loss of generality.

We conclude this section with an interesting application of Theorem 3.3. Suppose we
are in the game G(3,1,4). Then in accordance with Theorem 3.3, the probability that

Gus will win the game is at most min(4,31)
4 = 3

4 . In other words, no matter how clever
Gus is with his 3-option question, he cannot guarantee ahead of time that he will be
able to correctly guess Ann’s number. Let’s see why this is reasonable in the setting of
propositional logic. Putting Assumption 3 aside for the moment, suppose by way of
contradiction that there is, in fact, an allowable question consisting of three (potentially
very complicated) propositions P1, P2, and P3 that will ensure Gus’s winning regardless
of the number Ann chose. Let S be the statement “Ann will choose a uniformly random
number α ∈ [4]” (observe that Gus knows S). For each i ∈ [3], let Si := Pi∧S. Then since we
are assuming Gus will be victorious, we must have S1⇒ “Ann chose a,” S2⇒ “Ann chose
b,” and S3 ⇒ “Ann chose c” for some subset {a,b,c} ⊆ [4]. It follows that S1 ∨ S2 ∨ S3 ⇒
“Ann chose a or b or c.” But by Assumption 2, S1∨S2∨S3 is true. So by the modus ponens
rule of inference, it follows that Ann’s choice is either a or b or c. But as |[4]| = 4, this
clearly need not be so!

A completely analogous argument to the above can be made in the game G(n− 1,1,n) for
any n ≥ 2. We refer the interested reader to [1], [2], and [4] for further reading on proba-
bility, logic, and algorithms.
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4. Main Results

We are now ready to introduce the canonical version of the game, with Definition 3.1
above governing our notation. Henceforth, we shall assume G(k,m,X) to be as defined
in Definition 4.1 below unless stated otherwise.

Definition 4.1 (The game G(k,m,X), canonical version). A finite, nonempty set X ⊆Z
+ is

presented to Ann and Gus. Ann randomly chooses a number α ∈ X known only to her.
Further, Gus is given positive integers m and k.

For each r ∈ [m], Gus will present to Ann an ordered k-tuple of disjoint subsets of X,
which we denote by Qr := (Gr,1,Gr,2, . . . ,Gr,k). Ann then responds by returning Ar := Gr,ar
if and only if ar ∈ [k] is such that α ∈ Gr,ar . To be clear, this all transpires sequentially
in the sense that Gus first presents Q1 to Ann, to which she responds with A1, at which
point Gus then presents Q2 to Ann, to which she responds with A2, and so on. After
Gus has presented all m “questions” (Q1, . . . ,Qm) to Ann, and subsequently received all
m responses (A1, . . . ,Am) from Ann, Gus then attempts to guess the number Ann chose.
Now set A0 := X. We further require the following:

(1) Gus’s question Qr = (Gr,1, . . . ,Gr,k) satisfies
⊔

1≤i≤kGr,i = Ar−1 for all r ∈ [m], and

(2) Gus’s guess γ is a random member of Am (that is, Am is Gus’s “guessing set,” as in
the proof of Theorem 3.3).

Gus wins if his guess γ = α.

Schematically, here is an effective way to visualize the canonical game:

α ∈ X = A0

Q1−→
⊇ A1

Q2−→
⊇ A2

Q3−→
⊇ · · ·

Qm−→
⊇ Am 3 α,γ. (4)

Indeed, (1) guarantees that A0 ⊇ A1 ⊇ · · · ⊇ Am 3 α, and (2) that Gus’s guess γ ∈ Am.

A few words of justification are in order, as we want it to be evident that the rules of
the canonical game really engender no loss of generality. First, we have already seen
(Assumptions 2–3) that any option within a given question is a proposition, and that this
proposition is equivalent to “Your number is a member of G.” for some G ⊆ X. Thus,
it is clear that we can codify any question Qr (r ∈ [m]) by its corresponding subsets of
X, namely Gr,1 ⊆ X corresponds to the first option, Gr,2 ⊆ X to the second, and so on.
We have formalized this in the canonical game by writing each question as a k-tuple
Qr = (Gr,1,Gr,2, . . . ,Gr,k), as these subsets of X are really all that matter.

Next, by Assumption 2 we see that for each r ∈ [m] question Qr must have precisely one
option that is true. This means that there is one (and only one) integer ar ∈ [k] such that
Ann answers “true” to the proposition “Your number is a member of Gr,ar .” Specifically,
this demands that these subsets of X be disjoint, and that Ann’s choice α belong to one
of them. We have codified this in Ann’s returning Ar = Gr,ar to Gus, the unique subset in
this rth question such that her choice α ∈ Gr,ar .

Finally, we justify the additional rules (1) and (2). To see why (1) is reasonable (and does
not endanger generality), assume that Gus is about to present question Qr to Ann, for
some r ∈ [m]. This means that Gus knows that Ann’s choice α ∈ Ar−1. So how ought he
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structure his question Qr = (Gr,1, . . . ,Gr,k)? In order to satisfy Assumption 2, it follows
that the disjoint union

⊔
1≤i≤kGr,i ⊇ Ar−1. Of course, Gus could in theory structure Qr so

that this containment is proper, but why? He would not glean any more information by
doing so, since such a question would include elements that Gus already knows are not
equal to α. Recalling that our aim is to maximize Gus’s probability of winning, we thus
impose (1) without apology.

And at the heart of our requirement (2) is the inequality (3) of Theorem 3.3. This in-
equality makes it clear that Gus cannot improve his probability of winning by including
elements in his guessing set that he knows do not equal α. In fact, (3) shows that doing so
causes Gus’s probability of winning to decrease. Thus, to make certain that Gus maximizes
this probability, we require (2).

At long last we have a rigorous, general, relatively simple framework in the canonical
game to aid our analysis. The primary goal of this section will be to utilize this frame-
work, exclusively, to deliver all possible algorithms Gus may deploy to maximize his
probability of winning the game. Moreover, we can rest easy knowing that there aren’t
other mysterious, probability-maximizing algorithms lurking beyond our analysis. In-
deed, even though this framework appears very rigid and specific, we have in fact shown
that if our goal is to maximize Gus’s probability of winning, then any manifestation of the
game doing so has an equivalent canonical game counterpart! Let’s leave the abstraction
for a moment to see the canonical game in action.

Example 4.2. Gus and Ann are playing the game G(3,3,300), and Ann has chosen α = 36.
Before starting, note that A0 = X = [300].

• Gus gives his first question Q1 =
(
G1,1,G1,2,G1,3

)
= ([1,42], [43,246], [247,300]).

Ann then returns A1 = G1,1 = [1,42] since α = 36 ∈ [1,42].
• Gus’s next question must follow (1) of Definition 4.1, and A1 = [1,42], so he de-

vises Q2 = ([1,7], [8,27], [28,42]), to which Ann returns A2 = G2,3 = [28,42].
• Gus crafts and presents his final questionQ3 = ([28,35], [36,37], [38,42]), to which

Ann returns A3 = G3,2 = [36,37].

Now that (Q1,Q2,Q3) have been submitted and (A1,A2,A3) returned, Gus must guess a
random member of A3 (as he is bound by (2) of Definition 4.1) – either 36 or 37. Gus
decides to guess γ = 36. Since γ = α, he wins.

As the disjoint union in (1) of Definition 4.1 is a rather cumbersome expression, for each
r ∈ [m] and question Qr = (Gr,1, . . . ,Gr,k) we introduce the notation⊔

Qr :=
⊔

1≤i≤k
Gr,i .

Observe that requirement (1) can now be written simply as
⊔
Qr = Ar−1. We need one

more definition before proceeding.

Definition 4.3. Let X be a finite, nonempty subset of Z
+, and let m,k ∈ Z

+. For each
r ∈ [m], suppose Qr := (Gr,1, . . . ,Gr,k) is a k-tuple of disjoint subsets of X. Lastly, let α,γ ∈
X. Then we call the sequence g := (α,Q1, . . . ,Qm,γ) a game vector of the game G(k,m,X).
Further, we say that g is allowable in the game G(k,m,X) provided that every Qr satisfies
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(1) of Definition 4.1 relative to α, and γ satisfies (2) of Definition 4.1. Lastly, g is winning
if g is allowable and γ = α.

The definition of a game vector should remind the reader of the visual schematic (4) above
in a more compact form. We can immediately tell if a game vector g = (α,Q1, . . . ,Qm,γ) is
“allowable” and/or “winning” in G(k,m,X). We summarize how in the following propo-
sition.

Proposition 4.4. Let g := (α,Q1, . . . ,Qm,γ) be a game vector of the game G(k,m,X), withQr :=
(Gr,1, . . . ,Gr,k) for each r ∈ [m]. Then g is “allowable” if and only if there exists (a1, . . . , am) ∈
[k]m such that

(a)
⊔
Q1 = X,

(b)
⊔
Qr = Gr−1,ar−1

for 1 < r ≤m, and

(c) α,γ ∈ Gm,am .

Moreover, g is “winning” if in addition we have γ = α.

Proof. Clearly, if g is “allowable,” then we have (a), (b), and (c) from Definition 4.1. For the
other direction, observe that (a) is the r = 1 requirement of (1) in Definition 4.1. Further,
note that Gr,ar = Ar , Ann’s rth response, for each 1 < r ≤ m, and hence (b) fulfills the rest
of (1). And lastly, (c) is equivalent to (2). Note well that

α,γ ∈ Gm,am ⊆ Gm−1,am−1
⊆ · · · ⊆ G1,a1

⊆ X,

which is reminiscent of (4) above. And since any allowable game vector with α = γ is
winning by Definition 4.3, we have the last statement. �

Proposition 4.4 enables us to correspond with an allowable game vector (α,Q1, . . . ,Qm,γ)
the options (a1, . . . , am) that were selected by Ann as “true” in the game G(k,m,X). Let’s
refer to this vector of option-selections (a1, . . . , am) as Ann’s “option vector.” To help the
reader intuit these matters, let’s pause for another example.

Example 4.5. Consider the game G(2,3,9); that is, Gus is allotted three 2-option questions
before guessing. Suppose that Ann chooses α = 1 ∈ [9]. Set Q1 := ({2,4,8}, {1,3,5,6,7,9}),
Q2 := ({1,3,5,9}, {6,7}), Q′2 := ({1,2,5,9}, {3,6,7}), and Q3 := ({1,5}, {3,9}). Then the game
vector g1 := (1,Q1,Q2,Q3,5) is allowable and g2 := (1,Q1,Q2,Q3,1) is winning, and each
has option vector (a1, a2, a3) = (2,1,1). However, the game vector g3 := (1,Q1,Q2,Q3,6)
is not allowable since γ = 6 <

⊔
Q3, nor is g4 := (1,Q1,Q2,Q3,3) allowable since α =

1 ∈ {1,5} and γ = 3 < {1,5}. Finally, g5 := (1,Q1,Q
′
2,Q3,1) is not allowable either, since⊔

Q′2 , {2,4,8} and
⊔
Q′2 , {1,3,5,6,7,9}.

We now establish a proposition which will be heavily utilized throughout the remainder
of the paper.

Proposition 4.6. Let X be a finite, nonempty subset of Z+, and let m,k ∈ Z
+ with m > 1.

For each r ∈ [m], suppose Qr := (Gr,1, . . . ,Gr,k) is a k-tuple of disjoint subsets of X. Finally, let
α,γ ∈ X. Then the following hold:
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(a) Let A1 be Ann’s response to Q1 in the game G(k,m,X). Then A1 is a finite subset of Z+

containing α. Thus the game G(k,m− 1,A1) is well-defined.

(b) (α,Q1, . . . ,Qm,γ) is an allowable game vector of the game G(k,m,X) if and only if
(α,Q2, . . . ,Qm,γ) is an allowable game vector of the game G(k,m− 1,A1).

(c) (α,Q1, . . . ,Qm,γ) is a winning game vector of the game G(k,m,X) if and only if
(α,Q2, . . . ,Qm,γ) is a winning game vector of the game G(k,m− 1,A1).

Proof. Assume that X is a finite, nonempty subset of Z+, that m,k ∈ Z+ with m > 1, and
that α,γ ∈ X. Further assume that for each r ∈ [m], Qr := (Gr,1, . . . ,Gr,k) is a k-tuple of
subsets of X. Finally, assume that α ∈ X is Ann’s choice, and that γ ∈ X also.

(a) By definition, α ∈ A1 ⊆ X, so A1 is a nonempty subset of Z
+. Also, since m > 1,

m− 1 ∈Z+. Therefore, the game G(k,m− 1,A1) is well-defined.

(b) Assume that (α,Q1, . . . ,Qm,γ) is an allowable game vector of the game G(k,m,X). Then
by Proposition 4.4, we ascertain an option vector (a1, . . . , am) ∈ [k]m such that:

(i)
⊔
Q1 = X;

(ii)
⊔
Qr = Gr−1,ar−1

:= Ar−1 3 α for 1 < r ≤m;

(iii) α,γ ∈ Gm,am := Am.

Now consider the game vector (α,Q2, . . . ,Qm,γ) in the game G(k,m−1,A1). By (ii) we have⊔
Q2 = A1 3 α, and by (ii)–(iii) we have that (a2, . . . , am) ∈ [k]m−1 is an option vector satis-

fying the last two requirements of Proposition 4.4. Thus, (α,Q2, . . . ,Qm,γ) is an allowable
game vector of G(k,m− 1,A1).

Conversely, assume that (α,Q2, . . . ,Qm,γ) is an allowable game vector of G(k,m − 1,A1).
The definition of A1 (Definition 4.1) implies

⊔
Q1 = X and that there exists a1 ∈ [k] with

A1 = G1,a1
. Moreover, (α,Q2, . . . ,Qm,γ) allowable means that there exists an option vector

(a2, . . . , am) ∈ [k]m−1 with:

(iv)
⊔
Q2 = A1 3 α;

(v)
⊔
Qr = Gr−1,ar−1

:= Ar−1 3 α for 2 < r ≤m;

(vi) α,γ ∈ Gm,am := Am.

Conditions (iv)–(vi) together with
⊔
Q1 = X and A1 = G1,a1

imply (a1, a2, . . . , am) ∈ [k]m is
the desired option vector of Proposition 4.4. So (α,Q1,Q2, . . . ,Qm,γ) is an allowable game
vector of G(k,m,X).

(c) This follows immediately from (b). �

At long last, our main result draws nigh! The proof will be by induction on m, the num-
ber of questions allotted to Gus. Since the base case is of independent interest, and pro-
vides the main idea for the general case, we present it first as a separate result. Recall
that by Theorem 3.3, the probability that Gus wins the game G(k,m,X) cannot exceed
min(|X |,km)
|X | . Moreover, as we are about to state probabilistic results it is necessary that our

language become even more precise. Recall that we are imagining Ann’s choice α and
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Gus’s guess γ as both being uniformly at random on the respective sets X and Am ⊆ X
in the game G(k,m,X). Thus, henceforth we shall also refer to random allowable game
vectors g = g(α,γ) = (α,Q1, . . . ,Qm,γ) in the game G(k,m,X). By this, we simply mean that
g = g(α,γ) is an allowable game vector, and that both Ann’s choice α and Gus’s ultimate
guess γ are random in the sense just described. Note well that once α has been randomly
selected by Ann, the intermediate portion of the game where Gus presents his questions
(Q1, . . . ,Qm) to Ann is non-random in the sense that Gus constructs his questions based
solely on the current information he has from Ann. Of course, Gus may choose different
ways to construct his questions, but we do not assume the construction itself to be ran-
dom. Gus’s guess γ is a random concluding feature of the game, and so α and γ are the
only random features of the game G(k,m,X).

Proposition 4.7. Let X be a finite, nonempty subset of Z+, and let k ∈ Z
+. Now let g =

g(α,γ) := (α,Q1,γ) be a random allowable game vector of the game G(k,1,X), with Q1 :=
(G1,1, . . . ,G1,k) satisfying

⊔
Q1 = X. Finally, let Wg be the event, “g is a winning vector of the

game G(k,1,X).” Then

(a) P(Wg) = min(|X |,k)
|X | if and only if

(b) min(1, |X | − k + 1) ≤ |G1,i | ≤max(1, |X | − k + 1) for each i ∈ [k].

Proof. To simplify matters, we introduce gi := |G1,i | for each i ∈ [k], and of course we have
|X | = n ∈Z+. So we have min(|X |,k)

|X | = min(n,k)
n and

g1 + g2 + · · ·+ gk = n. (5)

This last equation is interesting, because we can imagine the n integers in X as “balls,”
and the variables g1, . . . , gk as occupancy numbers for k (labeled) “bins” into which the n
balls will be placed.

This framework gives us a very natural way to look at the proof. First, it’s important to
know if we have more “bins” than “balls,” which motivates our choice of cases. Then
we can look at how many of these “bins” are nonempty (we call this |I | below), which
translates directly into knowledge about the probability we are concerned about. Thus,
we consider the following two cases.

Case 1: n < k. Let’s first show that (b) implies (a). In this case (b) is equivalent to the
requirement that gi ∈ {0,1} for each i ∈ [k]. So if Ann returns A1 = G1,a1

, then |A1| = 1.
Thus the random game vector g = (α,Q1,γ) is certain to be winning, since α,γ ∈ A1, a set
of cardinality 1. That is, P(Wg) = 1 = n

n = min(n,k)
n , and the reverse implication is proved.

We prove the forward implication by contraposition. The only way that (b) is violated in
this case is if there is some i1 ∈ [k] with gi1 > 1. Next, introduce the set

I := {i ∈ [k] : gi > 0}. (6)
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Then for i < I we have gi = 0, i.e. G1,i = ∅. Thus if i < I we cannot have A1 = G1,i = ∅ since
α ∈ A1, and so for i < I we have P(Wg ∩ {A1 = G1,i}) = 0. Therefore

P(Wg) =
∑
i∈[k]

P(Wg ∩ {A1 = G1,i}) =
∑
i∈I

P(Wg ∩ {A1 = G1,i})

=
∑
i∈I

P(A1 = G1,i) ·P(Wg |A1 = G1,i) =
∑
i∈I

gi
n
· 1
gi

=
|I |
n
,

(7)

so that the probability Gus wins is completely determined by |I |. Clearly i1 ∈ I and since
gi1 > 1 equation (5) says that box number i1 is occupied by multiple balls. Since there are
a total of n balls to distribute, this means that strictly less than n bins will contain a ball,
which is equivalent to the assertion that |I | < n since |I | counts the number of occupied
bins. So, in summary 1 ≤ |I | < n < k, and thus from (7) we get

P(Wg) =
|I |
n
<
n
n

=
min(n,k)

n
,

and the forward implication is proved. This completes the proof in the case n < k.

Case 2: n ≥ k. In this case (b) is equivalent to 1 ≤ gi ≤ n − k + 1 for each i ∈ [k]. We first
show that (b) implies (a). With the set I defined as in (6), the same argument given in (7)
shows that P(Wg) = |I |n . But here we have I = [k], and consequently P(Wg) = k

n = min(n,k)
n .

To prove the forward implication, we once again proceed by contraposition. Here, viola-
tion of (b) means that there exists i1 ∈ [k] such that either gi1 = 0 or gi1 > n − k + 1. Let’s
start by assuming that gi1 = 0. This means that i1 < I , and so |I | < k. Thus

P(Wg) =
|I |
n
<
k
n

=
min(n,k)

n
. (8)

It only remains to consider the case where gi1 > n− k + 1. Recall that |I | is the number of
i ∈ [k] with gi > 0, and so |I | ≤ k always. If it happened that |I | = k here, then we would
obtain

g1 + · · ·+ gi1 + · · ·+ gk > (k − 1) · 1 + (n− k + 1) = n,

which violates (5). Contradiction! Thus, we have |I | < k in this case also, and so the
argument in (8) may be repeated. This completes the proof in the case n ≥ k, and so the
proposition is proved. �

Let us pause to examine what we’ve shown, because it is quite surprising. Suppose we are
in the game G(4,1,8). Proposition 4.7 says that Gus maximizes his probability of winning
(which is 41

8 = 1
2 by Theorem 3.3) if and only if his question Q1 = (G1,1, . . . ,G1,4) satisfies

1 ≤ |G1,i | ≤ 5, i ∈ [4]. Of course, we must also have |G1,1| + · · · + |G1,4| = 8 by Assumption
2, but this affords Gus a huge degree of freedom in constructing his question. In fact,
we encourage the interested reader to show, using the principle of inclusion-exclusion to
count the number of ways to allocate 8 distinguishable “balls” into 4 labeled “bins” in
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accordance with these restrictions, that Gus has

48 −
(
4
1

)
38 +

(
4
2

)
28 −

(
4
3

)
18 = 40824 (9)

ways to maximize his probability of winning! Here,
(a
b

)
:= a!

b!(a−b)! is the binomial coeffi-
cient for integers a ≥ b ≥ 0. So the “intuitive” idea to divide the set [8] into 4 equal parts,
so that |G1,1| = · · · = |G1,4| = 2, accounts for just 8!

(2!)4 = 2520 of the 40824 total ways to op-
timize Gus’s strategy. Curiously, even if Gus chose a random allocation of these 8 “balls”
into the 4 “bins” from among all 48 = 65536 possible distributions, he would still have a
40824
65536 = 62.29% chance of selecting an optimal strategy!

We are just getting started. Now, for the main attraction!

Theorem 4.8. Let X be a finite, nonempty subset of Z+, and let k,m ∈ Z
+. Now let g =

g(α,γ) := (α,Q1, . . . ,Qm,γ) be a random allowable game vector of the game G(k,m,X), with
Qr := (Gr,1, . . . ,Gr,k) satisfying

⊔
Qr = Ar−1 for each r ∈ [m]. We remind the reader thatA0 := X

and for each r ∈ [m], Ar denotes Ann’s response to the question Qr presented by Gus. Finally,
let Wg(k,m,X) be the event, “g is a winning vector of the game G(k,m,X).” Then

(a) P(Wg(k,m,X)) = min(|X |,km)
|X | if and only if

(b) min(km−r , |Ar−1| − (k − 1)km−r) ≤ |Gr,i | ≤max(km−r , |Ar−1| − (k − 1)km−r)
for all i ∈ [k] and r ∈ [m].

Proof. We proceed by induction on m. Thus suppose the theorem is true for all ` < m.
If m = 1, then we are done by Proposition 4.7. Also, the theorem is obvious for k = 1,
since in this case we have G1,1 = G2,1 = · · · = Gm,1 = X and A0 = A1 = · · · = Am = X, and
so condition (a) reduces to P(Wg(1,m,X)) = 1

|X | and (b) to 1 ≤ |Gr,1| ≤ |X | for all r ∈ [m].
Therefore, we may suppose that k > 1 and m > 1.

Now set
g′ := (α,Q2, . . . ,Qm,γ),

which is a random allowable game vector of the game G(k,m − 1,A1) by Proposition 4.6.
As in the proof of Proposition 4.7, we introduce gr,i := |Gr,i | for all i ∈ [k] and r ∈ [m], and
write |X | = n ∈Z+. So by (1) of Definition 4.1 we have

gr,1 + gr,2 + · · ·+ gr,k = |Ar−1|, r ∈ [m], (10)

and condition (b) of Theorem 4.8 becomes

min(km−r , |Ar−1| − (k − 1)km−r) ≤ gr,i ≤max(km−r , |Ar−1| − (k − 1)km−r)

for all i ∈ [k] and r ∈ [m].
(11)

When it is convenient for our purposes, we shall once again invoke the “balls-in-bins”
interpretation of (10). Finally, also analogous to the proof of Proposition 4.7, for each
r ∈ [m] we define

Ir := {i ∈ [k] : gr,i > 0}. (12)
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Clearly, by (10) we have Ir , ∅ for each r ∈ [m]. Once again, as in the proof of Proposition
4.7, observe that

P(Wg(k,m,X)) =
∑
i∈I1

P(A1 = G1,i) ·P(Wg(k,m,X) |A1 = G1,i) (13)

=
∑
i∈I1

g1,i

n
·P(Wg′ (k,m− 1,G1,i)) (14)

≤
∑
i∈I1

g1,i

n
·

min(g1,i , k
m−1)

g1,i
=

∑
i∈I1

min(g1,i , k
m−1)

n
(15)

≤ min(n,km)
n

. (16)

Here, in the second equality (14) we have used Proposition 4.6, and in the first inequality
(15) we have applied Theorem 3.3; the second inequality (16) is patent from (10) with
r = 1. We are ready to establish the equivalence of (a) and (b). To avoid unnecessary
complications, we consider two cases.

Case 1: n ≤ km. Let’s start by assuming (b), which we have recast as (11). Here we have
n ≤ km−1 + (k − 1)km−1, and so n− (k − 1)km−1 ≤ km−1. Consequently, the r = 1 condition in
(11) becomes

max(n− (k − 1)km−1,0) ≤ g1,i ≤min(n,km−1), i ∈ [k]; (17)

here, the max/min on the left- and right-hand sides (resp.) come from the r = 1 “balls-
in-bins” requirement in (10). By the inductive hypothesis, the 2 ≤ r ≤ m conditions in
(11) guarantee that the inequality (15) is, in fact, an equality. Thus, to prove (a) we need
only show that the second inequality (16) is also an equality, which is clearly equivalent
to proving ∑

i∈[k]

g1,i =
∑
i∈I1

g1,i = n, (18)

since n ≤ km in this case, and (17) holds. But (18) is just the r = 1 “balls-in-bins” require-
ment in (10), and so the reverse implication is proved.

Now let us assume (a), so that P(Wg(k,m,X)) = min(n,km)
n = n

n = 1. This means that the
inequalities (15) and (16) are equalities. Since (15) is now equality, we know that

P(Wg′ (k,m− 1,G1,i)) =
min(g1,i , k

m−1)
g1,i

, i ∈ I1 , ∅.

Thus, by the inductive hypothesis, (11) holds for 2 ≤ r ≤ m. So it only remains to show
that (17) holds. To this end, observe that since (16) is now equality, we have∑

i∈[k]

min(g1,i , k
m−1) =

∑
i∈I1

min(g1,i , k
m−1) = n. (19)

We claim that (19) implies that g1,i ≤ km−1 for each i ∈ [k]. Indeed, if we had, say, g1,1 >
km−1, then we would have∑

i∈[k]

g1,i > k
m−1 +

∑
2≤i≤k

g1,i ≥
∑
i∈[k]

min(g1,i , k
m−1) = n,
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which contradicts (18). This, along with the fact that g1,i ≤ n, i ∈ [k], by (18), shows that
the right-hand inequality

g1,i ≤min(n,km−1), i ∈ [k], (20)

in (17) holds.

To prove the left-hand inequality in (17), observe that we clearly have g1,i ≥ 0, i ∈ [k].
Thus, it only remains to prove that g1,i ≥ n − (k − 1)km−1, i ∈ [k]. Indeed, if we had, say,
g1,1 < n− (k − 1)km−1, then since (20) holds we would have

g1,1 + g1,2 + · · ·+ g1,k < (n− (k − 1)km−1) + (k − 1)km−1 = n.

This contradicts (18), and so the left-hand inequality in (17) holds. This concludes the
proof in this case.

Case 2: n > km. Let us assume that (b) is true. Then n > (k − 1)km−1 + km−1, and the r = 1
condition in (11) becomes

km−1 ≤ g1,i ≤ n− (k − 1)km−1, i ∈ [k]. (21)

Again, we can conclude from our inductive hypothesis that the 2 ≤ r ≤ m conditions in
(11) ensure equality for (15). Thus we need only show that the second inequality (16) is
also equality, which is equivalent to showing that∑

i∈I1

km−1 = km, (22)

since min(g1,i , k
m−1) = km−1 for each i ∈ [k] by (21). But this is the same as showing that

g1,i > 0, i ∈ [k] (for then I1 = [k]). However, since we assumed k > 1 and m > 1, the
left-hand inequality in (21) guarantees that this is the case, and consequently (22) holds.
Hence, the reverse implication is proved.

Now assume that (a) holds. As in the last case, the inequalities (15) and (16) become
equalities. Since (15) is now equality, we know by the inductive hypothesis that (11)
holds for 2 ≤ r ≤m. We will show that (21) holds as well. Notice that we have∑

i∈[k]

min(g1,i , k
m−1) =

∑
i∈I1

min(g1,i , k
m−1) = km (23)

since (16) is equality. If it happened that, say, g1,1 < k
m−1, we would have∑

i∈[k]

min(g1,i , k
m−1) = g1,1 +

∑
2≤i≤k

min(g1,i , k
m−1) <

∑
i∈[k]

km−1 = km,

contradicting (23). We conclude that the left-hand inequality in (21) is proved, i.e.

g1,i ≥ km−1, i ∈ [k]. (24)

To prove that the right-hand inequality in (21) holds, suppose that g1,1 > n − (k − 1)km−1.
Then, invoking (24) we obtain

g1,1 + g1,2 + . . .+ g1,k > n− (k − 1)km−1 + (k − 1)km−1 = n,

which contradicts (18). Therefore, the right-hand inequality in (21) holds, and the proof
is complete. �
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Henceforth, we shall refer to Gus’s probability-maximizing strategies detailed in Theo-
rem 4.8 as the “optimal strategies.” Moreover, in light of condition (b) of Theorem 4.8,
we shall have occasion to reference the m vectors of cardinalities (|Gr,1|, . . . , |Gr,k |), r ∈ [m],
in the game G(k,m,X) and will refer to these collectively as Gus’s “cardinality vectors.”

5. Some Technicalities and Consequences

In this section, we take care of some technical book-keeping items, and present some
immediate consequences of our results that seem especially pertinent. In Theorem 4.8
we have determined, precisely, Gus’s available optimal strategies. But there is still the
question of whether Gus is always able to satisfy the cardinality conditions (b) of Theorem
4.8 in order to achieve this optimal outcome. We dispense with this pesky technicality
now, although it will take some work!

Proposition 5.1. There is an allowable game vector (α,Q1, . . . ,Qm,γ) in the game G(k,m,X)
that satisfies (b) of Theorem 4.8.

Proof. Fix r ∈ [m], and suppose that for each j < r Gus has chosenQj := (Gj,1, . . . ,Gj,k), then
presented Qj to Ann, and she has given her response Aj := Gj,aj to him. We must show
that Gus can now construct his next question Qr = (Gr,1, . . . ,Gr,k) to satisfy (b) of Theorem
4.8. Once again writing gr,i := |Gr,i | for i ∈ [k], Gus needs only select a solution to the
“balls-in-bins” equation

gr,1 + gr,2 + · · ·+ gr,k = |Ar−1| (25)
satisfying (b) of Theorem 4.8, and consequently our task becomes to show that such a
solution exists. There are two cases to consider.

Case 1: |Ar−1| ≤ km−r+1. Then |Ar−1| − (k − 1)km−r ≤ km−r , and condition (b) from Theorem
4.8 in tandem with (25) require that

max(|Ar−1| − (k − 1)km−r ,0) ≤ gr,i ≤min(|Ar−1|, km−r), i ∈ [k];

this ought to remind the reader of (17) in the proof of Theorem 4.8, as it is a generaliza-
tion. Under this restriction we have∑

i∈[k]

gr,i ∈ [k ·max(|Ar−1| − (k − 1)km−r ,0), k ·min(|Ar−1|, km−r)] , (26)

with all sums in this range clearly possible. It follows that (25) has a solution if and only
if

|Ar−1| ∈ [k ·max(|Ar−1| − (k − 1)km−r ,0), k ·min(|Ar−1|, km−r)] , (27)

and so we need only prove (27). First, clearly |Ar−1| ≤ k · |Ar−1| and also |Ar−1| ≤ km−r+1

by assumption in this case. Thus |Ar−1| ≤ k ·min(|Ar−1|, km−r), so it remains to show that
|Ar−1| ≥ k ·max(|Ar−1| − (k − 1)km−r ,0). This inequality is obvious if the maximum on the
right-hand side is 0, so let’s suppose that |Ar−1| − (k − 1)km−r > 0. Then we need to show

|Ar−1| ≥ k(|Ar−1| − (k − 1)km−r). (28)

If instead we had |Ar−1| < k(|Ar−1| − (k − 1)km−r), we would obtain

(k − 1)km−r+1 < (k − 1)|Ar−1|,
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from which k > 1 and then |Ar−1| > km−r+1 follow. This contradicts our Case 1 assumption,
and therefore (28) (and hence (27)) is proved. This completes the proof in this case.

Case 2: |Ar−1| > km−r+1. Then |Ar−1|−(k−1)km−r > km−r , and so following the same template
as last case the analog of equation (26) becomes∑

i∈[k]

gr,i ∈
[
km−r+1, k(|Ar−1| − (k − 1)km−r)

]
; (29)

no “max” or “min” are necessary in this case. Proceeding as in Case 1, we must show

|Ar−1| ∈
[
km−r+1, k(|Ar−1| − (k − 1)km−r)

]
. (30)

But clearly |Ar−1| ≥ km−r+1 by our assumption in this case. And if we had

|Ar−1| > k(|Ar−1| − (k − 1)km−r)

then as above we would obtain (k − 1)km−r+1 > (k − 1)|Ar−1|, from which k > 1 and then
km−r+1 > |Ar−1| follow, which violates our Case 2 assumption. Consequently, we must
have |Ar−1| ≤ k(|Ar−1| − (k − 1)km−r), and (30) follows. The proof is complete. �

Now for some low-hanging fruit! Next, we determine precisely when it is that Gus has a
winning strategy.

Corollary 5.2. Gus has a winning strategy in the game G(k,m,X) if and only if m ≥ logk |X |.

Proof. Gus has a winning strategy if and only if P(Wg(k,m,X)) = min(|X |,km)
|X | = 1 if and only

if |X | ≤ km if and only if m ≥ logk |X |. �

Another technicality we may dispose of is the “min” and “max” in condition (b) of Theo-
rem 4.8. This makes for a much cleaner-looking statement of our result there.

Corollary 5.3. Let g = g(α,γ) := (α,Q1, . . . ,Qm,γ) be a random allowable game vector in the
game G(k,m,X). Then the following hold:

(a) If km ≥ |X |, then P(Wg(k,m,X)) = 1 if and only if
|Ar−1| − (k − 1)km−r ≤ |Gr,i | ≤ km−r for all i ∈ [k] and r ∈ [m].

(b) If km ≤ |X |, then P(Wg(k,m,X)) = km

|X | if and only if
km−r ≤ |Gr,i | ≤ |Ar−1| − (k − 1)km−r for all i ∈ [k] and r ∈ [m].

Proof. Once again, let |X | = n and gr,i := |Gr,i | for i ∈ [k], r ∈ [m]. We proceed by induction
on m. Hence, assume the corollary holds for all ` < m. If m = 1, Theorem 4.8 guarantees
(a) and (b) hold, since under the hypothesis of (a) we have n − (k − 1)km−1 ≤ km−1, and
under (b) we have km−1 ≤ n− (k − 1)km−1. So assume that m > 1. In addition, by Theorem
4.8 we only need to prove the forward implications.

We prove (a), since the proof of (b) is similar. Suppose km ≥ n and P(Wg(k,m,X)) = 1.
Then n− (k−1)km−1 ≤ km−1, and by Theorem 4.8 we know that n− (k−1)km−1 ≤ g1,i ≤ km−1

for all i ∈ [k]. Now, for some a1 ∈ [k] we have α ∈ A1 = G1,a1
and hence |A1| = g1,a1

≤ km−1.
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This and the inductive hypothesis applied to the game G(k,m− 1,A1) with random game
vector g′ := (α,Q2, . . . ,Qm,γ) now imply that

|Ar−1| − (k − 1)km−r ≤ gr,i ≤ km−r for all i ∈ [k] and 2 ≤ r ≤m.

�

By Corollary 5.2, Gus has a winning strategy in the game G(k,m,X) if and only if we
have m ≥ dlogk |X |e. But even in the extreme case m = dlogk |X |e, Gus may still have a
good deal of freedom in choosing his cardinality vectors for a winning strategy. Indeed,
consider the specific case of m = dlog4 8e = 2 in the game G(4,2,8). By (a) of Corollary
5.3, Gus can begin a winning strategy in the game by constructing his first cardinality
vector (|G1,1|, . . . , |G1,4|) with coordinates in the interval [0,4]. Using once again the “balls-
in-bins” context, and subtracting away those ball placements with 5, 6, 7, or 8 in a box
(there can only be one such “bad” box), we see that there are a total of

48 − 4
(
8
5

)
33 − 4

(
8
6

)
32 − 4

(
8
7

)
31 − 4

(
8
8

)
30 = 58380

ways to start that satisfy this requirement! Of course, here we are accounting for all
the different ways that Gus could construct a given cardinality vector. Since there are a
total of 48 = 65536 ways that Gus could begin the game, this says that 58380

65536 = 89.08% of
possible starts to the game are actually optimal! Moreover, Ann’s response A1 is certain
to satisfy |A1| ≤ 4. And since Gus still has one more 4-option question left, he is certain to
win so long as he follows the second cardinality vector condition in (a) of Corollary 5.3,
namely that (|G2,1|, . . . , |G2,4|) have all coordinates belonging to {0,1}.

Lastly, we determine exactly when it is that the optimal strategy cardinality vectors in the
game G(k,m,X) are all uniquely determined. Perhaps unsurprisingly, the answer connects
us back to our initial “intuitive” strategy for playing the game.

Corollary 5.4. Let g = g(α,γ) := (α,Q1, . . . ,Qm,γ) be a random allowable game vector in the
game G(k,m,X), with maximum probability P(Wg(G(k,m,X))) = min(|X |,km)

|X | . Then

(a) the cardinality vectors (|Gr,1|, |Gr,2|, . . . , |Gr,k |), r ∈ [m],
are uniquely determined if and only if

(b) |X | = km.

Proof. We let |X | = n and gr,i := |Gr,i | for i ∈ [k] and r ∈ [m]. Assume (a). By Theorem 4.8
we know that min(km−1,n− (k−1)km−1) ≤ g1,1 ≤max(km−1,n− (k−1)km−1), and since g1,1 is
uniquely determined we get g1,1 = min(km−1,n− (k − 1)km−1) = max(km−1,n− (k − 1)km−1).
But this can only occur when km−1 = n− (k − 1)km−1, so km = n.

Conversely, assume (b). By Corollary 5.3, we get that gr,i = km−r for all i ∈ [k] and r ∈
[m]. �
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6. An Extension

We close with an interesting extension. Let k := (k1, . . . , km) ∈ (Z+)m, define ‖k‖ := k1k2 · · ·km,
and for each r ∈ [m] introduce ‖k‖m−r := ‖k‖

k1k2···kr
. For instance, we have

‖k‖m−1 = k2k3 · · ·km, ‖k‖m−2 = k3k4 · · ·km and ‖k‖0 = ‖k‖m−m = 1.

Note that ‖k‖m−r consists of the last m− r coordinates of k, multiplied together. A natural
extension of the canonical game G(k,m,X) is the following.

Definition 6.1 (The game G(k,m,X), canonical version). A finite, nonempty set X ⊆ Z
+

is presented to Ann and Gus. Ann randomly chooses a number α ∈ X known only to
her. Further, Gus is given a positive integer m ∈ Z+ and a vector of m positive integers
k := (k1, . . . , km) ∈ (Z+)m.

For each r ∈ [m], Gus will present to Ann an ordered kr-tuple of disjoint subsets of X,
which we denote by Qr := (Gr,1,Gr,2, . . . ,Gr,kr ). Ann then responds by returning Ar := Gr,ar
if and only if ar ∈ [kr] is such that α ∈ Gr,ar . To be clear, this all transpires sequentially
in the sense that Gus first presents Q1 to Ann, to which she responds with A1, at which
point Gus then presents Q2 to Ann, to which she responds with A2, and so on. After
Gus has presented all m “questions” (Q1, . . . ,Qm) to Ann, and subsequently received all
m responses (A1, . . . ,Am) from Ann, Gus then attempts to guess the number Ann chose.
Now set A0 := X. We further require the following:

(1) Gus’s question Qr satisfies
⊔
Qr :=

⊔
1≤i≤kr Gr,i = Ar−1 for all r ∈ [m], and

(2) Gus’s guess γ is a random member of Am.

Gus wins if his guess γ = α.

In essence, Definition 6.1 only differs from our original canonical game notion in that
it permits the number of options per question to vary. Naturally, we have the following
extension of Theorem 3.3.

Theorem 6.2. The probability that Gus wins the game G(k,m,X) is at most min(|X |,‖k‖)
|X | .

And subsequently, we obtain a generalization of Theorem 4.8.

Theorem 6.3. Let X be a finite, nonempty subset of Z+, let m ∈ Z+, and we introduce k :=
(k1, . . . , km) ∈ (Z+)m. Now let g = g(α,γ) := (α,Q1, . . . ,Qm,γ) be a random allowable game
vector of the game G(k,m,X), with Qr := (Gr,1, . . . ,Gr,kr ) satisfying

⊔
Qr = Ar−1 for each r ∈

[m]. Finally, let Wg(k,m,X) be the event, “g is a winning vector of the game G(k,m,X).” Then

(a) P(Wg(k,m,X)) = min(|X |,‖k‖)
|X | if and only if

(b) min(‖k‖m−r , |Ar−1| − (kr − 1)‖k‖m−r) ≤ |Gr,i | ≤max(‖k‖m−r , |Ar−1| − (kr − 1)‖k‖m−r)
for all i ∈ [kr] and r ∈ [m].

Indeed, the proofs of Theorems 6.2–6.3 run parallel to those of Theorems 3.3–4.8 with
very minor modifications. Of course, Proposition 4.7 still applies. And of course, if
k = (k,k, . . . , k) for some k ∈ Z

+, we have ‖k‖m−r = km−r for each r ∈ [m] and ‖k‖ = km,
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and we obtain Theorems 3.3–4.8 from Theorems 6.2–6.3. Moreover, Proposition 5.1 and
Corollaries 5.2–5.4 also have their analogs in this setting. We leave the details of these
modifications, and all the proofs, to the interested reader.
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