
The Minnesota Journal of Undergraduate Mathematics

Sponsored by
School of Mathematics

University of Minnesota
Minneapolis, MN 55455

Further Results on Arc and Bar k-Visibility
Graphs

Mehtaab Sawhney and Jonathan Weed

Massachusetts Institute of Technology

The Minnesota Journal of Undergraduate Mathematics

Volume 3 (2017-2018 Academic Year)



MJUM Vol. 3 (2017-2018) Page 1

The Minnesota Journal of Undergraduate Mathematics

Volume 3 (2017-2018 Academic Year)

Further Results on Arc and Bar k-Visibility Graphs

Mehtaab Sawhney ∗ and Jonathan Weed

Massachusetts Institute of Technology

Abstract. We consider visibility graphs involving bars and arcs in which lines of sight can
pass through at most k objects. We prove a new edge bound for arc k-visibility graphs,
provide maximal constructions for arc visibility graphs and semi-arc k-visibility graphs,
and give a complete characterization of semi-arc visibility graphs. We further show that the
family of arc i-visibility graphs is never contained in the family of bar j-visibility graphs
for any i and j, and that the family of bar i-visibility graphs is not contained in the family
of bar j-visibility graphs for i , j. Finally, we give the first thickness bounds for arc and
semi-arc k-visibility graphs.

1. Introduction

Visibility graphs are a general class of graphs that represent lines of sight between ob-
jects. For this paper we will concentrate on visibility graphs between one dimensional
objects in the plane. Several visibility graphs of this type have attracted particular inter-
est, such as bar k-visibility graphs (introduced by Dean et al. [5]), semi-bar k-visibility
graphs (introduced by Felnsner and Massow [9]), and arc and semi-arc k-visibility graphs
(introduced by Hutchinson [13] and Babbitt et al. [2]). In each case, standard questions
include how many edges such a graph can have, how large the thickness of such a graph
can be, and in general what properties of a graph guarantee that it is representable as a
visibility graph. (See [1, 2, 5, 9, 12, 14, 18] for many results of this type.)

Babbitt et al. [2] proved the first such results for the class of arc and semi-arc k-visibility
graphs. Specifically, they provided an upper bound for the maximum number of edges
in an arc k-visibility graph on n vertices and lower and upper bounds on the maximum
number of edges in a semi-arc k-visibility graph on n vertices. In the case of semi-arc
k-visibility graphs, they conjectured their upper bound not to be optimal.

In this work, we extend the work of Babbitt et al. [2]. In Section 3, we give a complete
characterization of semi-arc visibility graphs, which complements the characterization of
arc visibility graphs given by Hutchinson [13]. This characterization implies that semi-arc
visibility graphs are in fact in general planar. In Section 4, we give a stronger edge bound
for arc k-visibility graphs and provide a construction showing that the upper bound on
the number of edges of a semi-arc k-visibility graph given in Babbitt et al. [2] is tight,
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thereby disproving their conjecture. In Section 5, we give the first nontrivial thickness
bounds for arc and semi-arc k-visibility graphs. Finally, in Section 6, we consider the
relationship between arc k-visibility graphs and the more common class of bar k-visibility
graphs.

2. Preliminaries

2.1. Visibility and k-visibility graphs. A visibility graph is a graph whose vertices cor-
respond to objects in the plane. Two vertices are adjacent whenever the corresponding
objects are connected by an unobstructed line of sight. A graph arising in this way is
known as a visibility graph, and the corresponding arrangement of objects is known as a
visibility representation.

Dean et al. [5] generalized this concept by defining k-visibility graphs, which are identical
to visibility graphs except that a line of sight may intersect up to k objects in addition to
the two objects it connects. Visibility graphs are obtained in the special case where k = 0.

(a) Visibility representation (b) Visibility graph (c) 1-visibility graph

Figure 1. Bar k-visibility

We consider the following four types of visibility graphs.

Definition 2.1. A bar k-visibility graph is a graph corresponding to an arrangement of
nonintersecting closed horizontal line segments in the plane (“bars”). Each vertex of the
graph corresponds to a bar, and two vertices are adjacent if and only if the corresponding
bars are connected by a vertical line of sight passing through at most k other bars.

We note that two different classes of graphs are obtained if lines of sight are defined
to be zero-width line segments (“strong visibility”) or rectangles of positive width (“ε-
visibility”). For example K2,3 has no strong visibility representation but has an epsilon
visibility representation. In this work we always adopt the notion of “strong visibility”
for visibility graphs being considered.

Figure 1 shows a collection of bars and the corresponding visibility and 1-visibility graphs.

Definition 2.2. An arc k-visibility graph is a graph corresponding to an arrangement of
nonintersecting concentric circular arcs. Each vertex of the graph corresponds to an arc,
and two vertices are adjacent if and only if the corresponding arcs are connected by a
radial line segment (which may pass through the center of the circle) intersecting at most
k other arcs.
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(a) Visibility representation (b) Visibility graph (c) 1-visibility graph

Figure 2. Arc k-visibility

Examples of arc k-visibility graphs appear in Figure 2.

Arc k-visibility graphs were introduced by Babbitt et al. [2] (although the k = 0 case
was already introduced by Hutchinson [13] under the name polar visibility graphs) and
possess a natural connection to the geometry of the projective plane.

There are two subtleties in defining arc k-visibility graphs. First, none of the arcs in an
arc k-visibility representation are complete circles. (Graphs obtained by allowing both
circles and arcs are called “circle visibility graphs” by Hutchinson [13].) The results and
proofs below are stated only for arc k-visibility graphs. However, any circle k-visibility
graph may be turned into an arc k-visibility graph by adding a small gap in any complete
circles, at the price of possibly adding some edges. The upper bounds we prove for arc
k-visibility graphs therefore hold for circle k-visibility graphs as well.

Second, a radial line of sight may intersect an obtuse arc more than once. We adopt
the convention that for the purpose of counting visibilities these double intersections are
counted only once.

Definition 2.3. A semi-bar k-visibility graph is a bar k-visibility graph where the left end-
points of all the bars in the bar k-visibility representation lie on the same vertical line. A
semi-arc k-visibility graph is an arc k-visibility graph in which all arcs in the arc k-visibility
representation extend in a counterclockwise direction from the same radial ray.

Semi-bar and semi-arc k-visibility graphs were introduced by Felsner and Massow [9] and
Babbitt et al. [2], respectively. Figure 3 gives examples of semi-bar and semi-arc visibility
representations.

3. Characterization of semi-arc visibility graphs

In this section, we obtain a full characterization of semi-arc visibility graphs. As a corol-
lary, we obtain the fact that all semi-arc visibility graphs are planar. This is in contrast to
the class of arc visibility graphs, which Hutchinson [13] observed contains the non-planar
graph K6 where Kn denotes the complete graph on n vertices (A proof of this fact appears
in Section 6.)
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(a) Semi-arc visibility representation (b) Semi-bar visibility representation

Figure 3

Given a semi-arc visibility representation, we can divide the visibilities between arcs into
two sets. Say that two arcs share a central visibility if all lines of sight between the two
arcs pass through the center of the circle. Otherwise, if there exists a line of sight between
two arcs not passing through the center of the circle, call the visibility between them non-
central.

The non-central visibilities in a semi-arc visibility representation have the structure of
a semi-bar visibility graph. Indeed, these are exactly the visibilities that exist in the
semi-bar representation obtained by taking each arc in the semi-arc representation and
straightening it into a line segment while maintaining the arcs’ relative ordering and
length. (See Figure 4.) We therefore refer to non-central visibilities as semi-bar visibilities.

Figure 4. Semi-arc visibility representation and corresponding semi-bar
visibility representation. The arcs and bars have the same relative length
and ordering, with the outermost arc corresponding to the topmost bar.

Cobos et al. [4] gave a complete characterization of semi-bar visibility graphs. We extend
their result to semi-arc visibility graphs.

Definition 3.1. A graph G is outerhamiltonian if it has a planar embedding in which there
is path through all the vertices and the edges on this path all lie on the outer face.

Theorem 3.2 (Cobos et al. [4]). A graph is a semi-bar visibility graph if and only if it is
outerhamiltonian. Moreover, the Hamiltonian path can be taken to be the path that visits each
bar in order, from top to bottom.

Given an outerhamiltonian graph and corresponding Hamiltonian path P , say that a ver-
tex is critical if it is a cutpoint of the whole graph or is the first or last vertex in P . We first
show that all central visibilities involve only critical vertices.
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Proposition 3.3. Consider a semi-arc visibility graphG and a fixed representation correspond-
ing to G. If H is the outerhamiltonian graph corresponding to the semi-bar visibilities of the
representation and P is the Hamiltonian path in H that visits each arc in order from outermost
to innermost, thenH ⊆ G and each edge present in G but not inH connects two critical vertices
of H .

Proof. That H ⊆ G is clear from the definition. If no arc has argument equal or greater
than π, then there are no visibilities through the center and H = G.

Otherwise, consider the arc with the greatest argument. (If there is more than one such
arc, take the innermost one.) Call this arc and its corresponding vertex cm. Consider all
arcs with smaller radius than c1, and label the vertex corresponding to the largest such
arc c2. (If there are multiple candidates, take the innermost one.) Continuing in this way,
construct the sequence of arcs c1, . . . , cm. Let C = {c1, . . . , cm}. (This procedure is identical
to that done for semi-bar k-visibility graphs by Felsner and Massow [9].)

All visibilities through the center of the circle must be between two arcs in C, since by
construction every other arc in the visibility representation is blocked from seeing the
center of the circle by an element of C.

The vertices corresponding to the elements of C are critical vertices ofH . Given c ∈ C, if c
is the arc with the largest or smallest radius in the semi-arc visibility representation, then
the vertex corresponding to c is the first or last vertex in P . Otherwise, the corresponding
vertex must be a cutpoint in the associated semi-bar visibility graph, since the arc blocks
all possible semi-bar visibilities between arcs with larger radius and arcs with smaller
radius. In either case, the vertex corresponding to c is critical. �

The proof of Proposition 3.3 establishes something stronger. Call a semi-arc visibility rep-
resentation monotone if, for each pair of arcs, the arc with the smaller radius has strictly
smaller argument.

Corollary 3.4. Given a semi-arc visibility representation, there exists a monotone semi-arc
visibility representation with the same central visibilities.

Proof. Take the semi-arc visibility representation obtained by removing all arcs except
those in the set C. This representation has the same central visibilities as the original
representation, and by construction the arcs in C strictly decrease in argument as their
radius decreases. �

Corollary 3.4 implies that to characterize the central visibilities of semi-arc visibility rep-
resentations, it suffices to characterize the central visibilities of monotone semi-arc visi-
bility representations. To do so, we define the following family of graphs.

Definition 3.5. An ordered matching on 2n vertices is a graph with vertices labeled by
v1, . . . , v2n and edges (vi ,vi+n) for 1 ≤ i ≤ n. For each vertex vi , call the vertex vi+1 its
successor.

An example of an ordered matching appears in Figure 5. For completeness, we also recall
the following definition.
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Figure 5. An ordered matching on 2n vertices

Definition 3.6. Given a graph G and two (not necessarily adjacent) vertices u and v, the
(vertex) contraction of u into v is the graph that is obtained by removing the vertex u and
replacing each edge of the form (u,x) for some vertex x , v by an edge (v,x), so long as
this edge does not already exist.

Theorem 3.7. A graph G corresponds to the central visibilities in a monotone semi-arc visi-
bility representation if and only if it can be obtained from an ordered matching by repeatedly
contracting vertices into their successors.

Proof. We first show that a graph G corresponding to central visibilities in a monotone
semi-arc visibility representation has the claimed form.

Fix a monotone semi-arc visibility representation, and fix a line of sight between each
pair of arcs sharing a central visibility. Each such line of sight is a segment joining two
arcs and passing through the center of the circle. Define the argument of each segment
to be the angle in [0,π) that the segment makes with the positive x-axis. Denote these
segments by `1, . . . , `m, where the segments are indexed in order of increasing argument.

For each line of sight `i with 1 ≤ i ≤m, let ai and bi be the two arcs that it joins, where ai
is the arc with smaller radius and bi the arc with larger radius. We thereby obtain a list
a1, . . . , am,b1, . . . , bm of arcs in the semi-arc visibility representation. Call this list L.

We show that if an arc appears multiple times in L, then its appearances must be consec-
utive. To do so, we show that the radii of the arcs in L are nondecreasing. This implies
that the appearances of any arc in the list must be consecutive, since if an arc x appears in
L between two appearances of an arc y, then x and y have the same radius. Since different
arcs in a semi-arc visibility representation do not intersect, the radii of different arcs are
distinct. Hence x = y.

It therefore suffices to show that the radii of the arcs in L are nondecreasing. By construc-
tion, if i < j, then line of sight `i has a smaller argument than `j . Color the endpoint of `i
that lies on ai red, and color the endpoint that lies on bi blue. Since the semi-arc visibility
representation is monotone, as we rotate the line of sight `i counterclockwise to meet `j ,
the radii of the arcs that the red endpoint encounters do not decrease, and the radii of the
arcs that the blue endpoint encounters also do not decrease. When `i has been rotated to
meet `j , its red endpoint lies on aj and its blue endpoint lies on bj . Therefore ai does not
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have a larger radius than aj and bi does not have a larger radius than bj . This implies that
the radii of the arcs in the lists a1, . . . , am and b1, . . . ,bm are nondecreasing.

Moreover, the radius of am is not larger than the radius of b1. To see this, note that without
loss of generality we can take `1 to be a segment with argument 0, which in turn implies
that b1 is the arc with the smallest argument greater than or equal to π. On the other
hand, by definition the segment `m has argument strictly less than π. If am had a larger
radius than b1, then the portion of the segment `m joining am to the center of the circle
would intersect b1 as well, which contradicts the definition of a line of sight. Hence the
radius of am cannot be larger than the radius of b1.

We have shown that the radii of the arcs in L are nondecreasing, which implies that the
appearances of any arc in L must be consecutive. Let H be an ordered matching on 2m
vertices, and associate the vertices v1, . . . , v2m with the elements of L. That is, associate
v1, . . . , vm with a1, . . . , am and vm+1, . . . , v2m with b1, . . . , bm. Whenever an arc in L is the
same as the following arc in L, contract the corresponding vertex of H into its successor.
Perform this operation repeatedly until each vertex of the graph corresponds to a unique
arc.

By construction, the resulting graph corresponds to the central visibilities of the arc vis-
ibility representation. Hence the resulting graph is G, and G can be obtained from an
ordered matching by repeatedly contracting vertices into their successors, as claimed.

Conversely, suppose that G is obtained from an ordered matching on 2m vertices by con-
tracting vertices into their successors. Define a semi-arc visibility representation with 2m
arcs, labeled a1, . . . , a2m in order of increasing radius. For 1 ≤ i ≤ 2m, let ai have argument
(i − 1)π/m. Then the central visibilities of this representation are all of the form (ai , am+i)
for 1 ≤ i ≤ m. Therefore the central visibilities of this representation form an ordered
matching on 2m vertices, with arc ai corresponding to vertex vi for 1 ≤ i ≤ 2m.

Removing the arc ai from this representation corresponds to contracting the vertex vi into
vi+1. If G is obtained from an ordered matching on 2m by contracting each of the vertices
in {vj1 , . . . , vjk } into its successor, then by removing arcs {aj1 , . . . , ajk } from the given semi-arc
visibility representation we obtain a monotone semi-arc visibility representation whose
central visibilities correspond to G, as desired. �

Corollary 3.8. A graph G is a semi-arc visibility graph if and only if it can be written as the
union of an outerhamiltonian graph H and a graph obtained from an ordered matching by
contracting a subset of vertices into their successors whose vertices are a subset S of the critical
vertices of H containing at least one endpoint of the Hamiltonian path in H .

Proof. That G is necessarily of the claimed form follows from Proposition 3.3 and Theo-
rem 3.7 noting that if a semi-arc visibility graph has any visibilities through the center of
the circle then the innermost arc certainly has such a visibility.

Conversely, the proof of Theorem 3.2 given by Cobos et al. [4] establishes that any out-
erhamiltonian graph H can be written as a semi-bar visibility graph, and moreover that
the critical points of H can be taken to correspond to bars which are longer than all non-
critical bars.
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If H = G, then there are no central visibilities and the claim follows upon embedding the
semi-bar visibility graph in the upper half of a circle. Otherwise, Theorem 3.7 establishes
that the edges in G but not inH correspond to the central visibilities of a monotone semi-
arc visibility representation. Lengthen the arcs corresponding to critical vertices in the
chosen subset S so that they form the required monotone semi-arc visibility representa-
tion. Note that the innermost arc corresponds to one of the endpoints of the Hamiltonian
path and must lie in the subset S. For each critical vertex v < S, let w be the vertex in
S nearest to v on the Hamiltonian path in H whose arc has smaller radius, and lengthen
the arc corresponding to v so that it has the same argument as the arc corresponding to
w. Finally, place the remaining arcs between these critical vertices, maintaining their rel-
ative lengths and positions. The resulting semi-arc visibility representation has semi-bar
visibilities corresponding to H , since the arcs in the resulting visibility representation
have the same relative ordering and length as the bars in the semi-bar visibility represen-
tation, and by construction they have central visibilities corresponding to edges in G but
not inH . Hence the associated semi-arc visibility graph is G, and G is a semi-arc visibility
graph, as claimed. �

Corollary 3.9. All semi-arc visibility graphs are planar.

Proof. It suffices to consider the case where the semi-arc visibility representation is mono-
tone. Indeed, label the arcs a1, . . . , an, with indices increasing with increasing radius. Sup-
pose there exists an arc aj such that the argument of aj is not larger than the argument of
aj−1. Choose the largest j for which this condition holds. Then the vertex corresponding
to aj has degree 1 (if aj is the outermost arc) or degree 2 (if aj is not the outermost arc
and the argument of aj+1 is larger than the argument of aj). Removing aj has the effect
of contracting the edge between the vertices corresponding to aj and aj−1, which does not
affect the planarity of the graph.

We therefore suppose that the semi-arc visibility representation is monotone. The semi-
arc visibility graph G can be written as the union of an outerhamiltonian graph H and
a graph on the critical vertices of H . Since the representation is monotone, H is a path.
The remaining edges are obtained from an ordered matching by contraction. Therefore
G is a minor of the graph shown in Figure 6, where the dotted edges correspond to the
subgraph H . This graph is planar, and therefore any of its minors is planar [6]. Hence G
is planar, as claimed.

�

4. Improved edge bounds for arc and semi-arc k-visibility graphs

Babbitt et al. [2] established upper bounds on the total number of edges for arc and semi-
arc k-visibility graphs. For arc k-visibility graphs with sufficiently many vertices, they
proved that a graph with n vertices can have at most (k+ 1)(3n−k −2) edges. We improve
this bound to (k + 1)(3n − 3k+6

2 ). For semi-arc k visibility graphs with sufficiently many
vertices, they proved that a graph with n vertices can have at most (k+ 1)

(
2n− k+2

2

)
edges

but conjectured that the correct bound was smaller. We prove that in fact their original
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Figure 6. Planar embedding of ordered matching (solid edges) on a path
(dotted edges)

bound is tight. For comparison, semi-bar k-visibility graphs can have at most (k + 1)(2n−
2k − 3) edges.

Since we seek to establish upper bounds on the number of edges, we assume in this sec-
tion that each arc has a different radius and moreover that no two endpoints of any two
arcs lie on the same radial segment. We can accomplish this without decreasing the num-
ber of edges by slightly perturbing arcs and their endpoints. These assumptions are es-
sentially the same as those present in Babbitt et al. [2].

By definition, none of the arcs in an arc k-visibility graph is a circle. Moreover, we assume
in this section that none of the arcs is a semi-circle: if an arc is a semi-circle, then since
by assumption no two arcs have endpoints lying on the same radial line we can lengthen
the arc slightly without decreasing the number of edges.

We begin by establishing some definitions. We begin by defining the argument of a point
or ray in an arc visibility representation as its angular position, when measured with
respect to the positive x-axis. Given an arc in such a representation, it is possible to
choose arguments α and β for its endpoints such that 0 < β − α < 2π. Call the endpoint
corresponding to β the positive endpoint and the endpoint corresponding to α the negative
endpoint. Given an arc k-visibility representation, consider two arcs joined by some line
of sight. Consider the set of all valid lines of sight between the two arcs. Two lines of sight
are contiguous if we can rotate one into the other such that all intervening segments are
also valid lines of sight, and we define a region of visibility to be the closure of a maximal
set of contiguous lines of sight. For each region of visibility, we call the radial segment in
it with the smallest argument the limiting line of the region.

Following Babbitt et al. [2], we associate edges in an arc k-visibility graph G with arcs
according to the limiting lines of their regions of visibility, in the following way.1

Fix an arc k-visibility representation of G. Suppose that two arcs au and av in the rep-
resentation are connected by a line of sight, so that the corresponding vertices u and v
are connected by an edge in G. We consider each region of visibility between au and av
1Our definitions slightly differ from theirs in that we allow an edge to be associated with multiple arcs.
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in turn. Given a region, if the limiting line contains an endpoint of au (respectively av),
then we call the edge between u and v in G a negative edge of au (respectively av). If this
limiting line extends inward (toward the center of the circle) from au (respectively av),
then we call this an inner negative edge; if it extends outward, we call it an outer negative
edge.

Otherwise, the limiting line must contain the endpoint of another arc, say aw. In this case,
we call the edge between u and v a positive edge of aw. In this way, we assign each edge to
(possibly many) arcs in the visibility representation.

In Figure 7, we give an example showing several limiting lines corresponding to regions
of visibility in an arc k-visibility graph. In each case, the edge is assigned to the arc whose
endpoint is contained in the limiting line.

Figure 7. Inner Negative (orange), Outer Negative (red), Positive (blue) edges

The following lemma establishes a link between the number of regions of visibility be-
tween two arcs and the number of arcs that the corresponding edge is assigned to.

Lemma 4.1. Fix a pair of arcs au and av in an arc k-visibility representation corresponding to a
pair of adjacent vertices u and v in G. If the arcs have at least two distinct regions of visibility,
either both through the center of the circle or not through the center of the circle, then the edge
between u and v is assigned to at least two different arcs.

Proof. We assign the edge between u and v to an arc whenever that arc’s endpoint lies on
the limiting line of a region of visibility. By assumption, there are at least two distinct
regions of visibility between au and av , hence at least two distinct limiting lines. Since
these visibilities are either both through the center of the circle or both not, these limiting
lines have different arguments. Moreover, it is impossible for an edge to be assigned as
both a negative and a positive edge to the same arc because a negative edge is always
assigned to an arc corresponding to one of its two vertices, whereas a positive edge is
always assigned to a different arc. We therefore conclude that the two different limiting
lines must be assigned to two different arcs, as claimed.

�

The following two lemmas are useful for bounding the number of negative and positive
edges assigned to each arc.

Lemma 4.2. If an arc a has ` distinct outer (inner) negative edges, then a radial ray extending
outward (inward) from the negative endpoint of a intersects at least ` other arcs.



MJUM Vol. 3 (2017-2018) Page 11

Proof. If arc a has an outer (inner) negative edge with arc b, then a radial ray extending
outward (inward) from the negative endpoint of a intersects b. �

Lemma 4.3. If an arc a has ` distinct positive edges, then a radial ray extending outward or
inward from the positive endpoint of a intersects at least ` other arcs. Moreover, the radial
line containing the positive endpoint of a makes at least k + ` + 1 intersections with other arcs.
(These may include multiple intersections with the same arc.)

Proof. By definition, each positive edge of a involves two other arcs, and the positive
endpoint of a lies on the limiting line of a region of visibility between those two arcs.
Hence, if an edge between b and c is a positive edge of arc a, then a radial ray extending
outward or inward from the positive endpoint of a intersects either b or c.

The radial segment between the two arcs corresponding to this limiting line must inter-
sect exactly k arcs in addition to a. If a has ` distinct positive edges, then a radial ray
extending outward from the positive endpoint of a intersects ` arcs involved in positive
edges assigned to a. Let b be the arc in this set with the smallest radius and let c be the arc
such that the edge between b and c is a positive edge assigned to a. The radial segment
between b and c containing the positive endpoint of a intersects k arcs in addition to a.
Therefore the radial line containing the positive endpoint of a intersects these k arcs, the
arcs b and c, and the ` − 1 arcs with radius larger than b. We obtain at least k + ` + 1
intersections. �

4.1. An improved bound for arc k-visibility graphs. Using Lemma 4.1 it is possible to
improve the bound on the maximum number of edges given in Babbitt et al. [2] for arc
k-visibility graphs.

Theorem 4.4. The maximum number of edges in an arc k-visibility graph with n vertices is at

most
(
n
2

)
for n ≤ 4k + 4 and (k + 1)(3n− 3k+6

2 ) for n > 4k + 4.

Proof. When n ≤ 4k + 4, the bound is trivial, as any graph on n vertices has at most
(n

2
)

edges. It therefore suffices to consider n > 4k + 4.

Label the outermost k + 1 arcs ak+1, . . . , a1 with indices decreasing with decreasing radius.
We first recall how to obtain the bound given in Babbitt et al. [2]. Note that there are at
most k + 1 inner negative edges, k + 1 outer negative edges, and k + 1 positive edges asso-
ciated with each arc. Moreover, for the outermost arcs a stronger bound holds: there are
at most 0, . . . , k positive edges and 0, . . . , k outer negative edges for ak+1, . . . , a1 respectively.
The total number of edges is therefore at most (3k + 3)n− 2

∑k+1
i=1 i = (k + 1)(3n− k − 2).

We will show that the above bound necessarily double-counts existing edges or counts
non-existent edges. Each over-counted edge will involve an arc a`, where 1 ≤ ` ≤ k + 1.
These over-counted edges are of two types: negative edges between a` and arcs of smaller
radius than a`, and positive edges involving a` assigned to arcs of smaller radius than a`.

We consider in turn a`, for 1 ≤ ` ≤ k + 1. Say an arc a is in the cone of visibility of a` if any
portion of it lies in the blue shaded region of Figure 8, where the left figure corresponds
to the case where a` is obtuse and the right to the case where a` is acute.



MJUM Vol. 3 (2017-2018) Page 12

Figure 8. Cone of visibility for obtuse and acute arcs. The arc a` is the solid
arc, and the dotted lines indicate the boundaries of the cone of visibility.

Figure 9. Definition of S` for obtuse and acute arcs. We take the ` arcs
encountered last in moving from the tail to the head of the arrow.

Consider all the arcs in the cone of visibility for a` in the order shown in Figure 9, where
the two different cases correspond to whether a` is an obtuse or acute arc, and take the `
arcs encountered last in moving from the tail to the head of the arrow. If there are fewer
than ` arcs, take them all. Call this set of arcs S`.

Let a be any arc in S`. For the Babbitt et al. [2] bound to be tight, the arc a should have
k + 1 negative edges in each direction, or, if a = am for 1 ≤ m < `, at least k −m + 1 outer
negative edges and k + 1 inner negative edges.

Suppose that there is a radial ray originating at the negative endpoint of a and extending
in the direction specified by Figure 9 that does not intersect a`. By construction, this
radial ray intersects at most k arcs, (` − 1) other arcs in S` and (k + 1− `) arcs with larger
radius than a`. By Lemma 4.2, a has strictly fewer than k + 1 negative edges along this
ray. If a = am for m < ` and the ray extends outward from a, then a has strictly fewer than
k −m+ 1 outer negative edges, since there are only k −m+ 1 arcs with larger radius than a
and the ray does not intersect a`. In either case, the arc a has strictly fewer negative edges
along this ray than it must for the Babbitt et al. [2] bound to be tight; in other words, that
bound counts a non-existent edge between a and a`.

The argument for positive edges is extremely similar. Suppose there is a radial ray orig-
inating at the positive endpoint of a in the direction specified by Figure 9 that does not
intersect a`. This radial ray intersects at most k arcs, (` −1) other arcs in S` and (k + 1− `)
arcs with larger radius than a`. By Lemma 4.3, a has strictly fewer than k + 1 positive
edges. If a = am for m < ` and the ray extends outward from a, then a has strictly fewer
than k −m + 1 positive edges, since there are only k −m + 1 arcs with larger radius than
a and the ray does not intersect a`. If the ray extends inward from a, then it intersects
at most k arcs, (` − 1) other arcs in S` and (k + 1 − `) arcs with larger radius than a`. The
ray extending in the outward direction from the positive endpoint of a intersects at most
k −m+ 1 arcs because there are only k −m+ 1 arcs with larger radius than a, so the radial
line containing the positive endpoint of a makes at most k+(k−m+1) intersections, so by
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Lemma 4.3, a has strictly fewer than k −m+ 1 positive edges. Again, the Babbitt et al. [2]
bound counts a non-existent positive edge of a between a` and some other arc.

Finally, if radial rays from both endpoints of a intersect a`, then a and a` have at least two
distinct regions of visibility either both through the center of the circle or not. Lemma 4.1
then implies that the edge between a and a` is either assigned to two different arcs.

We have shown that each arc in S` is associated with at least one over-counted visibility,
either one that does not exist the original graph or is counted twice in the original bound.
Moreover, if |S` | < `, then the original bound counts at least ` − |S` | non-existent inner
negative visibilities assigned to a`, since a radial ray extending inwards from the negative
endpoint of a` encounters at most |S` |+ k + 1− ` arcs, at most |S` | with smaller radius and
k + 1− ` with larger radius.

In any case, we obtain that a` is associated with an over-counting of at least ` visibilities.
Moreover, each non-existent edge or double-counting of an existing edge is uniquely as-
sociated with a`, so we never account for these missing visibilities more than once as `
ranges from 1 to k + 1.

Repeating this process for all ` with 1 ≤ ` ≤ k + 1 yields a total over-count of
∑k+1
`=1 ` =

(k + 1)
(
k+2

2

)
. We therefore obtain that the maximum number of edges is

(k + 1)
(
3n− k − 2− k + 2

2

)
= (k + 1)

(
3n− 3k + 6

2

)
,

as desired. �

Corollary 4.5. The maximum number of edges in an arc visibility graph with n vertices is
(
n
2

)
for n ≤ 5 and 3n− 3 for n ≥ 6.

Proof. This bound can be achieved as shown in Figure 10 with the dots indicating any
necessary additional arcs. (If n < 5 take the innermost n arcs in Figure 10.) �

Figure 10. Arc visibility representation with maximum number of edges
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4.2. A tight construction for semi-arc k-visibility graphs. As noted above, the edge
bound previously given in Babbitt et el. [2] for semi-arc k-visibility graph is actually
optimal. By establishing optimality, we disprove their Conjecture 20, which posited that
a semi-arc k-visibility graph had at most (k+ 1)(2n− 3k+6

2 ) edges for a semi-arc k-visibility
graph with more than 3k + 3 vertices.

Theorem 4.6. The maximum number of edges in a semi-arc k-visibility graph with n vertices
is exactly (k + 1)

(
2n− k+2

2

)
for n ≥ 5k + 5.

Proof. The maximum number of edges in a semi-arc k-visibility graph with n vertices is
at most (k + 1)

(
2n− k+2

2

)
for n ≥ 3k + 3. This is Theorem 13 in Babbitt et al. [2]. We claim

Figure 11. Semi-arc k-visibility representation with 5k+5 arcs and the max-
imum number of edges. Each set of arcs has k + 1 arcs.

that the semi-arc k-visibility representation in Figure 11 corresponds to a graph with
n = 5k + 5 vertices and exactly (k + 1)

(
2n− k+2

2

)
edges. Let the arcs be marked a1, . . . , a5k+5

with indices increasing with increasing radius in Figure 9. The arcs a1, . . . , a5k+5 have
arguments of π5 ,

π
5 +ε, ..., π5 +kε, 3π

5 , ...,
3π
5 +kε,π, ...,π+kε, 7π

5 , ...
7π
5 +kε, 9π

5 , ...,
9π
5 +kε radians

respectively for ε sufficiently small. This semi-arc k-visibility representation gives a total
of (k + 1)

(
2(5k + 5)− k+2

2

)
edges, as there are 5(k + 1)2 edges corresponding to visibilities

through the center and (k + 1)
(

9k+8
2

)
edges corresponding to visibilities not through the

center. This establishes the desired edge count for n = 5k + 5. For n > 5k + 5, add an
additional n−5k −5 arcs between a3k+3 and a3k+4 that have an argument less than that of
a1. Notice that each new arc adds 2k + 2 edges, so the bound is optimal for n > 5k + 5. �

Babbitt et al. [2] also conjectured that the complete graph K3k+4 is not a semi-arc k-
visibility graph. Using a construction similar to the one given above, we disprove this
conjecture as well.

Theorem 4.7. K3k+4 is a semi-arc k-visibility graph.
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Proof. The construction is given in Figure 12. As radius increases, the arcs have argu-
ments of π3 ,

π
3 −ε, ...,

π
3 −kε,

2π
3 , ...,

2π
3 −kε,π, ...,π+kε, 5π

3 radians for ε sufficiently small. �

Figure 12. Semi-arc k-visibility representation of K3k+4. Each set of arcs
has k + 1 arcs.

Combining Theorem 13 in Babbitt et al. [2] with Theorems 4.6 and 4.7, we have a con-
struction of a semi-arc k-visibility graph on n vertices with the maximum number of
edges for n ≤ 3k + 4 and n ≥ 5k + 5. This leaves open the question of finding a maximal
construction (or proving an improved bound) for 3k + 4 < n < 5k + 5. When k = 0, there is
no gap; when k = 1 the only open cases are n = 8 and n = 9.

5. Thickness bounds

In this section, we prove new bounds on the thickness of arc and semi-arc k-visibility
graphs.

Definition 5.1. The thickness of a graphG, denoted θ(G), is the smallest number of planar
graphs into which the edges of G can be partitioned.

Bounding the thickness of bar k-visibility graphs has been a main subject of interest ever
since their introduction by Dean et al. [5]. This quantity is especially relevant to VLSI
design, where graphs of low thickness correspond to circuit designs that are electrically
practical [16].

Computing the thickness of a graph is np-hard in general [15], and exact thickness results
are still open for all but a few classes of visibility graphs. Recently, Chang et al. [3]
proposed using a simpler quantity, arboricity, to obtain easier bounds on thickness purely
in terms of extant edge bounds. The results of this section use this strategy and the results
of Sections 3 and 4 to prove new thickness bounds for arc and semi-arc k-visibility graphs.

We first review some basic facts about arboricity.
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Definition 5.2. The arboricity of a graph G, denoted arb(G), is the smallest number of
forests into which the edges of a graph can be partitioned.

Theorem 5.3 (Nash-Williams [17]). For any graph G,

arb(G) = max
H⊆G

⌈
EH

NH − 1

⌉
,

where NH and EH are the number of vertices and edges respectively in the subgraph H .

Unlike thickness, arboricity can be computed in polynomial time [10]. Moreover, it differs
from thickness by at most a constant factor.

Proposition 5.4 (Mutzel et al. [16]). If a graph G has thickness Θ, then

Θ ≤ arb(G) ≤ 3Θ .

Proof. Any partition of G into forests is a fortiori a partition into planar graphs, so Θ ≤
arb(G). Theorem 5.3 implies that if H is planar, then arb(H) ≤ 3, as any subgraph of a
planar graph is planar, and a planar graph with n vertices has at most 3n − 6 edges [6].
Hence a partition of G into Θ planar graphs can always be subdivided further into a
partition of G into at most 3Θ forests. Hence arb(G) ≤ 3Θ. �

Combining Theorem 5.3 with Theorem 4.4, we obtain the following theorem.

Theorem 5.5. The thickness of an arc k-visibility graph is at most 3k + 3.

Proof. Let G be an arc k-visibility graph on n vertices, and let H ⊆ G have ` vertices.
Removing all arcs from the visibility representation of G except those corresponding to
the vertices of H yields an arc k-visibility graph G′ on ` vertices such that H ⊆ G′. Thus
we can assume that H is a subgraph of a arc k-visibility graph with the same number of
vertices.

By Theorem 4.4, H has at most (k + 1)
(
3NH − 3k+6

2

)
edges if ` > 4k + 4 and

(NH
2
)

otherwise.
In the former case,

EH ≤ (k + 1)
(
3NH −

3k + 6
2

)
= (3k + 3)

(
NH − 1− k

2

)
≤ (3k + 3)(NH − 1).

In the latter case, EH = NH
2 (NH − 1) ≤ (2k + 2)(NH − 1).

Theorem 5.3 and Proposition 5.4 then yield

θ(G) ≤ arb(G) = max
H⊆G

⌈
EH

NH − 1

⌉
≤ 3k + 3

as desired. �

Corollary 5.6. The thickness of an arc visibility graph is at most 3.

Note that Corollary 5.6 is stronger that what could have been obtained by applying the
Nash-Williams Theorem to the bound of 3n−2 for arc visibility graphs proved by Babbitt
et al. [2], which yields a maximum thickness of 4.
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Applying the above strategy to semi-arc k-visibility graphs using the edge bound in Bab-
bitt et al. [2] (which we showed to be tight in Section 4) shows that the thickness of these
graphs is at most 2k + 2 for k ≥ 2. Using the classification of semi-arc visibility graphs
given in Section 3, we can obtain a stronger statement.

Theorem 5.7. The thickness of a semi-arc k-visibility graph is at most 2k + 1.

Proof. Fix a semi-arc k-visibility graph G and an associated representation. As in Sec-
tion 4, we can assume that all arcs have radially distinct positive endpoints and distinct
radii since we can achieve this by small perturbations without decreasing the thickness
of the graph.

Given such a representation, call the semi-arc (0-)visibility graph associated with the
collection of arcs SA0. Note that SA0 ⊆ G. Moreover, by Corollary 3.9 SA0 is planar.

(a) Visibilities in a sample semi-arc 1-visibility repre-
sentation. Red segments indicated visibilities corre-
sponding to the subgraph SA0. Blue segments indi-
cate the remaining visibilities.

(b) Choice of orientation for blue
edges.

Figure 13. Partition of edges described in Theorem 5.7

Remove the edges in SA0 from G and call the remaining graph G′. For every pair of
adjacent vertices G′, the line of sight with largest argument between the corresponding
arcs contains one of their endpoints. Direct all edges in G′ from the arc whose endpoint
is contained in the corresponding line of sight to the one whose endpoint is not contained
in the line of sight. (See Figure 13.) Each vertex in this graph has outdegree at most 2k, so
this graph can be partitioned into 2k disjoint graphs in which each vertex has outdegree
at most one. Any component of such a graph has at most the same number of edges as
vertices, hence is either a tree or a tree plus a single edge [6]. Therefore, each of these
graphs is planar.

Thus the thickness of G′ is at most 2k. We obtain θ(G) ≤ θ(G′) + θ(SA0) ≤ 2k + 1, as
desired. �
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6. Comparison of families of arc k-visibility graphs and bar k-visibility graphs

In this section, we consider the relationship between bar and arc k-visibility graphs. We
first show several structural properties of the family of bar k-visibility graphs and then
use these results to show that arc i-visibility graphs are not bar j-visibility graphs in gen-
eral. On the other hand, we note that bar j-visibility graphs are a subset of arc j-visibility
graphs, since any bar visibility representation can easily be converted into a correspond-
ing arc visibility representation. (This observation appears in Hutchinson [13].)

We begin by analyzing the families of bar i-visibility and j-visibility graphs for i , j.
A result of Hartke et al. [12] establishes that these families are incomparable under set
inclusion when j = i + 1. We use a similar construction to generalize their argument to all
i , j.

We require one definition.

Definition 6.1. An interval graph is a graph corresponding to an arrangement of noninter-
secting closed horizontal line segments in the plane. Each vertex of the graph corresponds
to a bar, and two vertices are adjacent if and only if the corresponding bars are connected
by a vertical line of sight passing through an unlimited number of bars.

Informally, interval graphs are generalizations of bar k-visibility graphs where k = ∞.
Following our practice above, we call the collection of bars corresponding to an interval
graph an interval representation. Interval graphs are well studied and have been com-
pletely characterized. In particular, it is known that all interval graphs are chordal (that
is, contain no induced cycle of length more than three) [11].

The following theorem provides a precise connection between k-visibility graphs and
interval graphs.

Theorem 6.2. Let G be a Kk+2-free graph. Then G is an interval graph if and only if it is a bar
k-visibility graph.

Proof. Suppose that G is an interval graph, and fix an interval representation. Since G is
Kk+2 free, no vertical line intersects k + 2 bars. Any line of sight in the interval represen-
tation therefore passes through at most (k + 2) − 2 = k intervening bars. Thus this set of
bars is also a representation of G as a bar k-visibility graph.

Conversely, assume G is a bar k-visibility graph and fix a representation. If there existed
a vertical line intersecting k + 2 bars, then the corresponding vertices would form a copy
of Kk+2, since every pair of bars would be separated by at most (k + 2)− 2 = k intervening
bars. Therefore any pair of bars intersected by a vertical line are separated by at most k
bars, and hence the corresponding vertices are adjacent in G. Thus this set of bars is also
an interval representation for G as an interval graph. �

Evans et al. observed [8, Lemma 1] that triangle-free bar 1-visibility graphs are forests.
Theorem 6.2 implies the following stronger corollary.

Definition 6.3. A caterpillar is a tree in which all vertices are within one edge of a central
path.
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Corollary 6.4. Let k ≥ 1. If a bar k-visibility graph is triangle-free, then it is a disjoint union
of caterpillars.

Proof. Theorem 6.2 implies that a triangle-free bar k-visibility graph with k ≥ 1 is an
interval graph, and any triangle-free interval graph is a union of caterpillars [7]. �

We can now state the main theorem.

Theorem 6.5. Let Bk be the family of bar k-visibility graphs for k ≥ 0. Then Bi * Bj and
Bj * Bi for i , j.

Proof. Without loss of generality let j < i. Consider the graph Kj +C4, the graph on j + 4
vertices formed by taking the union of a complete graph on j vertices and a cycle graph
on 4 vertices and adding all 4j edges between the two graphs (where Cn is the cycle on n
vertices). Note that Kj +C4 is Kj+3 free and hence Ki+2 free.

Since Kj +C4 contains an induced four-cycle, it is not chordal and in particular is not an
interval graph. Theorem 6.2 then implies Kj +C4 is not a bar i-visibility graph. However,
Figure 14 shows that it is a bar j-visibility graph. Hence Bi * Bj .

Figure 14. Bar j-visibility representation of Kj +C4

On the other hand, Hartke et al. [12] show that K4j+4 < Bj and K4j+4 ∈ Bi . Therefore
Bj * Bi . �

Let Ak be the family of arc k-visibility graphs. Since Bk ⊂ Ak for all k, Theorem 6.5 implies
that Aj * Bi for all i , j. A more careful analysis shows that in fact this claim holds for all
i and j.

Theorem 6.6. Let Bk be the family of bar k-visibility graphs and Ak be the family of arc k-
visibility graphs. Then Aj * Bi for all i, j ≥ 0.

Proof. Fix a nonnegative j. We first show that Aj * B0. Figure 15 shows that K5 is an
arc j-visibility graph for any j ≥ 0. Since all bar visibility graphs are planar, this implies
Aj * B0.

Suppose now that i ≥ 1. The cycle graph C4 is triangle free, so Theorem 6.2 implies that
it is a bar i-visibility graph if and only if it is an interval graph. Since C4 is not chordal,
we conclude that C4 is not a bar i-visibility graph for all i ≥ 1. But Figure 16 shows it is
an arc j-visibility graph. Therefore Aj * Bi , as desired. �
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Figure 15. Arc j-visibility
representation of K5

Figure 16. Arc j-visibility
representation of C4

We note that the analogous questions for semi-bar k-visibility graphs and semi-arc k-
visibility graphs are far simpler. The family of semi-bar or semi-arc i-visibility graphs is
never contained in the family of semi-bar or semi-arc j-visibility graphs for i , j because
a semi-bar or semi-arc k-visibility graph on n vertices has at least (k+1)n−O(1) edges and
at most 2(k + 1)n+O(1) edges.
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