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Abstract. The σ+ Lights Out puzzle is a game played on some geometrical grid wherein
there is a bulb and a switch on each tile and the switches are wired so that flipping any
switch changes the state of not only the bulb in its own tile but also of those in all adjacent
tiles. A geometrical arrangement is said to be completely solvable if every initial configura-
tion of ‘on’ and ‘off’ bulbs has a unique configuration of ‘switch flips’ to turn all the bulbs
in the initial configuration off. By symmetrizing elements of the kernel of the σ+ linear
map, we present a method by which geometrical arrangements which have axes/planes of
symmetry may be characterized as completely solvable or otherwise. The advantage of this
method is that it can be used to reduce the complete solvability characterizations of more
complicated arrangements to those of simpler arrangements, and therefore can be used to
categorize these arrangements in a manner that is less cumbersome than previous poly-
nomial approaches. We apply this method to reduce the characterizations of diamonds
and surface grids on cylinders, capped-cylinders, tori, cones, capped-cones and spheres to
the characterizations of rectangular grids. We also demonstrate how this method of sym-
metrizing elements of the kernel can be used to uncover many of the well-studied patterns
regarding the characterization of m×n rectangular grids.

1. Introduction

Consider an undirected graph embedded in R
d . At every vertex, there is a switch and a

bulb. Each bulb can be in one of two states: ‘on’ and ‘off’. Upon flipping a switch at a
vertex, the bulb at that vertex and those at all adjacent vertices change their state. This
is what is meant by the σ+ game. In this paper, we will restrict our attention to finite
graphs, and every explicit graph considered will be embedded in R

2 or R3.

The undirected graph can often be depicted in a geometrical fashion by placing ‘tiles’
(finite dimensional shapes) at each vertex, and specifying an adjacency rule: a rule which
allows one to determine which vertices are adjacent based on how their corresponding
tiles interact. Every explicit graph considered in this paper will use tiles of dimension 2,
drawn in either R2 or R3, and unless otherwise stated, two vertices will be considered to
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Figure 1. The diagram to the left is an undirected graph. The diagram on the right
represents one way to depict the graph geometrically with the default adjacency
rule. Each vertex has been represented by a tile - a two dimensional shape. If two
vertices are connected by an edge, the corresponding tiles share a 1 dimensional
surface.

Figure 2. Both of the diagrams show the surface of a cone when one looks from the
top. The black lines drawn carve the surface into tiles in a very natural way; the
blue spaces between the black lines are the tiles. The diagram on the left represents
which switches are flipped. The switches at the rim of the larger circle (5th rung
of the cone) and the one on the fourth rung of the cone are wired according to the
default adjacency rule. The switch flipped at the tip of the cone is wired according
to the cone-tip rule. The diagram on the right shows which lamps will be turned
on if these flips are applied on a geometrical setup in which all lamps are initially
off.

be adjacent precisely when the corresponding tiles share a 1-dimensional surface. How-
ever, we will also consider cases where this is not so: for example, we will tile the surface
of a cone, and will define every tile at the tip of a cone to be adjacent to every other tile at
the tip. (Many of the tiles at the tip of the cone only share a single point, a 0-dimensional
surface, but we will nevertheless define them to be adjacent to each other). Figure 1
demonstrates how a graph can be geometrically represented with the default adjacency
rule. Figure 2 demonstrates the default adjacency rule and the cone-tip adjacency rule
for a surface grid on a cone.

When a Lights Out graph is viewed as a geometrical object with tiles and an adjacency
rule, we may refer to it as a ‘geometrical arrangement’, or a ‘geometrical setup.’ A ge-
ometrical arrangement is said to be completely solvable if every initial configuration of
‘on’ and ‘off’ bulbs has a unique configuration of flips that will turn it off. That is, after
applying this configuration of flips to the initial configuration of ‘on’ and ‘off’ bulbs, ev-
ery bulb in the geometrical arrangement will be in the off state. Such a configuration of
flips can be referred to as a ‘solution’ to that initial configuration. The term “completely
solvable” is also used in [5]. In [6], the term “reversible” is used instead.

The patterns which describe when a particular m×n rectangular grid is completely solv-
able have been studied in detail by Barua and Ramakrishnan [2], and also by Goldwasser,
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Klostermeyer, and Trapp [5]. While the rectangular σ game, which is similar except its
adjacency rule requires that a switch does not affect its own tile, can be completely cato-
gorized in a crisp statement, as shown in [2], the rectangular σ+ game is more difficult
to categorize. In both [2] and [5], the method that was used was to construct a Sylvester
matrix equation AX + XB = C over the field Z/2Z (denoting ‘off’ by ‘0’ and ‘on’ by 1),
where the rectangular matrices A and B describe the default σ+ adjacency rule, X is the
rectangular matrix which denotes the configuration of flips, and C is the initial config-
uration which is turned off by the flips described by X. In this method, the geometrical
setup will be completely solvable if and only if, for every C, there is a unique X which
satisfies the equation. By the standard result on existence and uniqueness of solutions
of Sylvester equations, this will happen if and only if the characteristic polynomials of A
and −B are relatively prime over Z/2Z, and since −B = B over Z/2Z, complete solvability
will hold if and only if the characteristic polynomials of A and B are relatively prime.
The polynomials in question were shown in the two papers to be Fibonacci polynomi-
als, which are elsewhere called Chebyshev-polynomials, as in [6] and [9]. By studying
these, some patterns of solvabilities were established, and it was shown in [5] that the
method of checking if the polynomials were relatively prime could be used to deter-
mine the solvability of a m × n grid in O(max(m,n) · log2(max(m,n))) time. Alternative
approaches to characterize rectangular grids include studying a variation of Pascal’s tri-
angle, as was done in [7], but such approaches have not thus far proved as effective as
studying Chebyshev-polynomials. Determining complete solvability is in general a diffi-
cult task and algorithmic methods need to be employed. Nevertheless, the solvability of
certain problems of interest have clear and crisp answers. For instance, it has been shown
linear algebraically by Sutner [8], and graph theoretically by H. Eriksson, K. Eriksson and
Sjöstrand [3], that the all ones problem (equivalent to the problem of turning off lights
when every light is initially on) always has a solution for every finite graph. The complete
solvability of a geometric setup is substantially more difficult to categorize.

Generalized versions of the Lights Out puzzle in which each bulb has p states for a prime
p ∈ Z have also been investigated on rectangular grids. Here, flipping adjacent switches
causes a bulb to cycle through it’s p states. In [6], Hunziker, Machiavelo and Park study
Chebyshev-polynomials over Z/pZ for a prime p ∈ Z in order to investigate whether
there are infinitely many square grids that are not completely solvable in the generalized
game with p states. Checking for complete solvability reduces to checking whether two
polynomials over Z/pZ are relatively prime over Z/pZ. The fact that there are infinitely
many such grids for p = 2 is well known, and can in fact be easily deduced from the
results we will present in Section 4. Hunziker, Machiavelo and Park prove that there are
infinitely many square grids which are not completely solvable for p = 3 and formulate
a conjecture which would prove the result true for all primes. In this paper, we will
restrict our attention to the standard Lights Out puzzle in which there are exactly two
states - i.e p = 2. We will be interested in a broader class of geometrical arrangements
than rectangles, namely those geometrical arrangements which have axes or planes of
symmetry.

The notion of symmetry is very natural to the problem of complete solvability. In [4],
M. Florence and M. Frédéric show that any doubly-symmetric (about both vertical and
horizontal axes) configuration on a rectangular grid can be turned off. In [3], H.Eriksson,
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K.Eriksson and Sjöstrand ask a very different question: “How few lamps can be lit on an
infinite rectangular grid (with the usual adjacency rule) when all bulbs are initially off?”.
They conclude that the minimum number of lights that can be lit is 5, and furthermore
show that the only way to light five bulbs is to flip switches in symmetric patterns which
are called Mikado diamonds. In order to prove that the only patterns of flips that can
light five switches is one of the Mikado diamonds, they first show that the pattern must be
symmetric (about all vertical, horizontal and diagonal axes). To do this, they suppose that
it was not and sum the asymmetric pattern with its reflection to obtain a contradiction.
This method of obtaining the contradiction by reflecting an asymmetric configuration of
flips about an axis of symmetry and summing it with the original configuration has the
flavor of what we will exploit in this paper.

However, despite the fact that the notion of symmetry is natural to the problem, sym-
metrizing an element of the kernel in order to show equivalence of geometrical arrange-
ments is, to our knowledge, a novel approach presented in this paper. This is a very pow-
erful tool, since it can convert somewhat difficult geometrical arrangements into simpler
ones. If one were to approach each problem from the polynomial approach, one would
have to construct a new matrix equation each time, and investigate the gcds of the charac-
teristic polynomials, which is substantially more cumbersome than the method presented
here. Nevertheless, it should be noted that the polynomial approach, although more cum-
bersome, can provide additional information, since one can use it to find the number of
elements of the kernel of the σ+ linear map (details about the linear map itself are pro-
vided in Section 2). By symmetrizing elements of the kernel, we lose this information,
but we also gain the information about the number of symmetric elements of the kernel.
However, this is not the objective of the paper. The objective is not to find the number of
elements of the kernel, but to simply identify which geometrical arrangements are com-
pletely solvable and which are not. This is a problem of great importance; given a setup
of bulbs and switches wired in some way, and an initial configuration of burning bulbs,
the first question we are likely to ask is whether there is a way to turn all the bulbs off,
and complete solvability of the underlying setup provides a sufficient condition under
which the answer will be ‘yes’.

In Section 2 of the paper, we introduce the linear map M. In Section 3 of the paper, we
will establish how we may exploit symmetrization of the kernel of M in some general
settings. In Section 4, we prove many of the results presented in [2] and [5] regarding
the patterns of characterizations of m× n rectangular grids. In Section 5, we will reduce
the characterizations of diamonds and surface grids on cylinders, capped-cylinders, tori,
cones, capped-cones and spheres to the characterizations of rectangular grids.

2. Introducing the linear mapM

In this section, we will set the stage for the next section by introducing the σ+ linear map
M which is dependent on the particular geometrical arrangement at hand. We first label
the tiles of the geometric setup as 1,2, ...,n. The order in which the tiles are labelled does
not affect arguments that follow.

An event of flipping a particular arrangement of switches may be viewed as a vector v
where vi = 1 ∈Z/2Z if the i’th switch is flipped and vi = 0 ∈Z/2Z if the i’th switch is not
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flipped, so that ~v = (v1, ....,vn) denotes the configuration of switch flips on the grid. This
view imposes a natural additive structure on the set of all configurations of switch flips
that did not exist previously. With this additive structure, the collection of all such vec-
tors forms the n dimensional vector space V = (Z/2Z)n over the field Z/2Z. Now, when
all of the bulbs in a geometrical setup are off, and we flip the switches corresponding to a
vector v ∈ V , some of the bulbs will be turned on. This is a configuration of ‘on’ and ‘off’
bulbs. Let Y denote the space of configurations of ‘on’ and ‘off’ bulbs. We may endow
Y with an additive structure, and represent such configurations by vectors (y1, ....yn) ∈ Y ,
where yi = 1 ∈Z/2Z if the i’th bulb is on, and yi = 0 ∈Z/2Z if the i’th bulb is off. V and Y
are then isomorphic spaces. The map M : V → Y is defined in such a way that (Mv)i = 1
if the i’th bulb is ‘on’ after flipping the switches corresponding to the configuration de-
scribed by v ∈ V on an initially ‘all off’ setup and (Mv)i = 0 if the i’th bulb is off after
flipping switches as described by v ∈ V on an initially ‘all off’ setup. Henceforth, we will
use the following notation: vi = v(i) and yi = y(i). This notation will enable us to get rid
of subscripts in longer expressions.

It remains to be shown that M is indeed a linear map. Since V and Y are vector spaces
over Z/2Z, and since M(0v) = M(0) = 0 = 0 ·M(v) and M(1 · v) = M(v) = 1 ·M(v), what
remains to be shown is that if v,w ∈ V are two vectors of ‘flips’, thenM(v+w) =Mv+Mw.
To check this, we introduce the following notation:

Definition 2.1. For any vector u ∈ V , and any tile i, define the set ad(u, i) := {tiles j |u(j) =
1 and either j is adjacent to i or j = i}. We will use |ad(u, i)| to denote the cardinality of
ad(u, i).

Let i be any tile. Consider (Mv)(i) + (Mw)(i). We observe that (Mv)(i) + (Mw)(i) = 1 if and
only if |ad(v, i)|+ |ad(w,i)| is an odd number. Let k = |ad(v, i)∩ ad(w,i)|. We then observe
that (M(v +w))(i) = 1 if and only if |ad(v, i)| − k + |ad(w,i)| − k is an odd number. Since
|ad(v, i)| − k + |ad(w,i)| − k = |ad(v, i)|+ |ad(w,i)| − 2k, and 2k is even, these two characteri-
zations are equivalent. Thus, (Mv)(i) + (Mw)(i) = (M(v +w))(i). Since this is true for each
i, we have that Mv +Mw =M(v +w) as desired.

Example 2.2. What is the linear map M of the following arrangement?

1

2 3

4 5

All we have to note is that 1 affects 1, 2 and 4, 2 af-
fects 1, 2 and 3, 3 affects 2, 3 and 4, 4 affects 1, 3,
4 and 5 and 5 affects 4 and 5. We use the standard
basis with ei(j) = δij . With respect to this basis, the
linear map

M =


1 1 0 1 0
1 1 1 0 0
0 1 1 1 0
1 0 1 1 1
0 0 0 1 1

 .
Note that M is a symmetric matrix, simply because i
affects j if and only if j affects i.

Before we proceed, we should remark that in the above example, we used the standard
basis, and with respect to this basis, the matrix we generated was simply the adjacency
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matrix of the associated graph plus the identity matrix. This will always be the case when
we choose the standard basis, since we may then construct the matrix representing M by
considering which tiles are affected by a given tile i, and the σ+ rule dictates that the tiles
that are affect by the i’th tile are simply the i’th tile itself and all adjacent tiles. In this
paper however, we will never need to use matrices, and all arguments will be presented
in an intrinsic manner.

Now, keeping the mapM in mind, we return to the problem of characterizing a geometri-
cal arrangement as completely solvable or otherwise. If there is some initial configuration
without a solution, then rank(M) , n and thus, by the Rank-Nullity theorem, it follows
that there exists some non-trivial element of the kernel of M. Similarly, if uniqueness
does not hold, then some problem has multiple solutions (multiple vectors of flips), and
so the sum of these (which is nontrivial) will be in the kernel of M. Conversely, if the
kernel of M is nontrivial, then there exists a nontrivial v ∈ ker(M) and in particular,
uniqueness cannot hold since M(v) = 0 and M(0) = 0. Furthermore, by the Rank-Nullity
theorem, the rank of M must not equal n and thus there must exist some vector w such
that there is no v such thatMv = w. In particular, the initial configuration described by w
cannot be turned off. Recalling that a geometrical setup is said to be completely solvable
if every initial configuration of lit bulbs has a unique vector to turn it off, we then observe
that complete solvability holds if and only if ker(M) = {0}.

If v is a nontrivial element of ker(M), what does this mean in the context of the Lights Out
puzzle? By definition, it means that v , 0 and Mv = 0. Thus, v represents a configuration
of flips such that if the switches in the geometrical arrangement are flipped according to
v, no bulbs will change from their initial state.

In subsequent sections, we will refer to the linear map M. If we refer to M in the context
of a general theorem, it is understood that M represents an abstract linear map which
describes the type of geometrical setups that the theorem holds for. If we refer to M in
the context of an example or a specific application, it should be understood that M refers
to the σ+ linear map associated with the particular arrangement that we are considering.
Thus, the definition of M will change according to the setup considered.

3. Symmetrizing elements of the kernel

In the introduction, we introduced a geometrical arrangement as a collection of tiles with
some adjacency rule. Often, such grids can be drawn very naturally on a flat two dimen-
sional surface, but some grids may be more naturally drawn on the surfaces of higher
dimensional solids, and some grids may have tiles which are higher dimensional shapes
and connections are not represented on a surface of a solid, but rather through the solid.
Any of these notions is permitted by the definition of a geometrical arrangement we pro-
vided in the introduction. In this paper we primarily consider examples of geometrical
arrangements which are either two dimensional and drawn on a plane, or are two di-
mensional surfaces of three dimensional objects. However, the results in this section are
much more general in nature. We will always work in R

d , and the tiles may have any
dimension less than d. Some people might object that this generality is unnecessary since
it is a fact that every finite graph can be embedded in R

3. Nevertheless, while this is true,
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one should note that if the original geometrical arrangement is drawn more naturally in
R
d for d > 3, we might prefer to determine the complete solvability directly instead of

first embedding it in R
3. For this reason, we choose to work in R

d .

We saw at the end of the previous section that a geometrical arrangement is completely
solvable if and only if there is no nontrivial element of the kernel of the linear map M.
Bearing this in mind, we first present the main theorem, which is applied in the rest of
the paper. Let us say we are in R

d . In the statement of the theorem as well as in the rest
of the paper, we use the word ‘plane’ to denote a translated linear subspace of dimension
k for any k < d. We use the word ‘axis’ to refer to a 1-dimensional plane.

Theorem 3.1. Consider a geometrical arrangement of tiles with associated linear map M :
V → Y , where the tiles of the geometrical arrangement are represented in R

d . Let a1, ..., an
be perpendicular planes about which the geometrical arrangement is symmetric, each plane
having a dimension less than d. Then, there exists v ∈ ker(M) nontrivial if and only if there
exists ṽ ∈ ker(M) nontrivial which is symmetric about all planes a1, ...., an.

That is, if v ∈ ker(M) is nontrivial, then v can be symmetrized about all the planes a1, ...an.

Proof. Before we begin the proof, let us introduce some notation. Let us denote the oper-
ation of reflection about plane a by Ra. Also, for a vector u ∈ V and a tile i, ad(u, i) will be
defined as in Definition 2.1.

We will prove the theorem by induction on n, but we will first show that if a is a plane
about which the geometrical setup is symmetric, then v ∈ ker(M)⇔ Rav ∈ ker(M). To this
end, let v ∈ ker(M). Then

(M(Rav))(i) = |ad(Rav, i)| (mod 2) = |ad(v,Ra(i))| (mod 2) = (Mv)(Ra(i)) = 0

for each i. Thus, Rav ∈ ker(M). Conversely, if Rav ∈ ker(M), then we have just shown that
R2
av ∈ ker(M), and since v = R2

av, v ∈ ker(M). Let us now begin the inductive process. For
n = 1, take v ∈ ker(M) nontrivial. Then, set:

ṽ =
{
v if v is symmetric about a1

v +Ra1
v otherwise

The claim is that ṽ is a nontrivial element of the kernel which is symmetric about a1. If
v is already symmetric about a1, there is nothing to show. If v is not symmetric about a1,
then since v ∈ ker(M)⇔ Ra1

v ∈ ker(M), we have that Mṽ = Mv +M(Ra1
v) = 0 + 0 = 0, so

ṽ ∈ ker(M). Also, if ṽ = 0, then v(i) = (Ra1
v)(i) for every tile i which means that v would

have to be symmetric about a1. Therefore, since v is not symmetric about a1, then ṽ , 0
and thus is nontrivial. To show that ṽ is symmetric about a1 it is sufficient to show that the
tiles i where ṽ(i) = 0 are symmetrically arranged about a1 because then since the whole
geometrical setup is symmetric about a1, it will follow that the tiles i where ṽ(i) = 1 are
also symmetrically arranged about a1. Thus, we observe that ṽ(i) = 0⇔ v(i) = (Ra1

v)(i)⇔
(Ra1

v)(Ra1
(i)) = v(Ra1

(i))⇔ ṽ(Ra1
(i)) = 0, and thus ṽ is symmetric about a1. This proves

the case for n = 1.
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Now, assume that there exists a nontrivial vector v ∈ ker(M) which is symmetric about
a1, ...., an−1. The claim is that there is a nontrivial vector ṽ ∈ ker(M) which is symmetric
about a1, ...., an. As before, set

ṽ =
{
v if v is symmetric about an
v +Ranv otherwise

By our base case, we know that ṽ ∈ ker(M), ṽ is nontrivial, and ṽ is symmetric about an.
It remains to be shown that ṽ is symmetric about a1, ...., an−1. If v is already symmetric
about an, then we are done. Otherwise, take some axis ak, and by perpendicularity of the
planes, we have that since v is symmetric about ak, Ranv is symmetric about ak. Thus,

ṽ(i) = v(i) + (Ranv)(i) = v(Rak (i)) + (Ranv)(Rak (i)) = ṽ(Rak (i)),

and thus ṽ is symmetric about ak. This concludes the proof. �

Example 3.2. Symmetrizing elements of the kernel on a 4× 4 grid.

Consider a 4×4 grid. There are many elements of the kernel which
are asymmetric about both vertical and horizontal axes. An ex-
ample is illustrated in the diagram to the left. Theorem 3.1 tells
us that there is also an element of the kernel which is symmetric
about both the vertical and horizontal axes. If we apply the pro-
cedure in Theorem 3.1 with a1 being the horizontal axis, and a2
being the vertical axis, we obtain an element of the kernel symmet-
ric about the two axes which has been represented in the diagram
to the top right. If we flip the switches of every tile with a black
dot, notice that no bulbs will change state. Theorem 3.1 also tells
us that there is an element of the kernel symmetric about both the
diagonal axes, since they are perpendicular. Labelling the diagonal
axes as a1 and a2 in any order, we can apply the procedure de-
scribed in the theorem to obtain the element of the kernel depicted
in the bottom right, which is symmetric about the two diagonal
axes.

The next two theorems and related corollaries use the above result and apply it to some
general situations. They are practically useful and will be applied throughout the paper.
Lemma 3.4, which will follow soon, is not a lemma for the theorems that follow but it
helps us apply the theorems. The result presented in the lemma is very well known, and
can be easily worked out for oneself, but we leave the proof in for the sake of clarity. The
notion of ‘length’ mentioned in the lemma as well as in the example below is just the
number of tiles of a standard line. In this paper, geometrical dimensions always refer to
the number of tiles.

Example 3.3. What will we mean by a standard line of tiles? What is a linear map asso-
ciated with a standard line of tiles of length 4?
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The diagram on the left shows a standard line of tiles of length 4.
In the case of a line of length 4, label the tiles from left to right
by 1,2,3,4 in that order. A standard line of length n can be sim-
ilarly labelled, and the adjacency rule will then be: tile 1 is adja-
cent to itself and tile 2, tile n is adjacent to itself and tile n − 1,
and, for all k ∈ {2, ...,n − 1}, tile k is adjacent to tile k − 1, itself and
tile k + 1. For i ∈ {1,2,3,4}, let ei = δij be the i’th standard basis
vector. Then, with respect to this basis,

M =


1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1

 .
Lemma 3.4. Consider a standard line of tiles, of length n. Then, the line is completely solvable
iff n . 2 (mod 3). Consider a ring (a line connected onto itself) of length n. Then the ring is
completely solvable iff n . 0 (mod 3).

Proof. We can label the positions of the line as 1,2,3..,n. The line is not completely solv-
able if and only if there is a nontrivial element v of the kernel. We search for such an
element. If v(1) = 0, then to ensure (Mv)(1) = 0, we must require that v(2) = 0. Assume
v(1), ...,v(j) = 0. Then to ensure (Mv)(j) = 0, we must have that v(j + 1) = 0. Therefore,
v(i) = 0 for all i. This is the trivial solution. Now, assume that v(1) = 1. Then, to ensure
(Mv)(1) = 0, we must have that v(2) = 1, and continuing the argument, we see that the
pattern of v must be 1,1,0,1,1,0,1,1,0,1,1,0... and so on. But we also require this to be
satisfied from the other end, so in particular, we require v(n) = 1, v(n−1) = 1, v(n−2) = 0.
This can happen if and only if n = 2 (mod 3). Thus, the line is completely solvable if and
only if n . 2 (mod 3).

The argument for a ring is very similar. Suppose that there exists a nontrivial v ∈ ker(M).
Then, we must flip some switch. Let us label the tile in which this switch is flipped as the
first tile. There must be exactly one adjacent tile whose switch is also flipped. Label this
tile as the second tile, and flip its switch. In this manner, label the tile adjacent to tile 2
that is not tile 1 as tile 3, and continuing in this manner, we may label all the tiles. Note
that tile 1 is adjacent to tile 2 and tile n. We cannot flip the switch of tile n in order to
ensure that (Mv)(1) = 0. Arguing as before, the pattern must be 1,1,0,1,1,0, ... and since
v(n) = 0, we may find an element of the kernel if and only if n ≡ 0 (mod 3). �

The theorems that are soon to follow allow us to reduce the characterization of a larger
geometrical arrangement to that of a smaller arrangement, utilizing the symmetrization
process we observed in Theorem 3.1. The following definition provides us with a notion
that is essential to make this reduction.

Definition 3.5. Consider a geometrical setup S. A generalized line of tiles (denoted L) of
S is a collection of tiles that has two properties:

(1) S is symmetric about a plane which bisects every tile of the L.

(2) For any given tile i ∈ L, the tiles of S −L which are adjacent to i exist in symmetric
pairs about the plane.
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Example 3.6. What are some examples of generalized lines?

(1) We can place three rings of tiles, each of length n, one on top of each other to form
a cylinder of height 3. Let us choose for simplicity to perfectly align the rings
when we stack them so that any tile in the middle ring is adjacent to exactly two
tiles of the setup minus the ring: the tile above and the tile below. Note that the
cylinder is symmetric about a plane of symmetry which bisects every tile of the
middle-ring. Note also that given any tile on the ring, the two tiles which we noted
were in the setup minus the ring and were adjacent to the tile form a symmetric
pair about the plane. Thus, the middle-ring of the cylinder is a generalized line of
tiles. Let us take a moment to look at the adjacency rule of the ring. The rule is
similar to that of a line, but the difference is that the ends affect each other.

(2) Consider a square grid (like the one in Example 3.2), and consider the collection
of tiles along one of the diagonals. Note that a diagonal axis of symmetry bisects
every tile in the diagonal. Moreover, the tiles of the square minus the diagonal that
are adjacent to any tile on the diagonal exist in symmetric pairs about the diagonal
axis. Thus, the collection of tiles on the diagonal is a generalized line of the square.
The adjacency rule here is that no two tiles on the diagonal are adjacent to each
other. If we use the term ‘diagonal’ in the context of another geometrical setup, it
will mean a generalized line in which no two tiles on the line are adjacent to each
other.

We saw two examples of generalized lines with two different adjacency rules. There is
no restriction on the adjacency rule of a generalized line other than the fact that the rule
must be symmetric with respect to the plane of symmetry that bisects the line.

Theorem 3.7. Consider an arbitrary geometrical setup drawn in R
d which has a generalized

line. If the generalized line is not completely solvable, then the setup is not completely solvable.

Proof. Denote the generalized line by L, the setup by S, the setup minus the line by S −L,
and the restriction of a vector v to a collection of tiles X by v�X . Denote by MX the linear
map associated with a collection of tiles X, when considered in isolation (Note that for
X , S, MX is a smaller matrix that M). Denote by MXS : X→ S the following linear map:
For x ∈ X, take y ∈ S such that y�S−X = 0 and y�X = x; then, MXSx =My.

Suppose first that S − L is completely solvable. Then, since L is not completely solvable,
there exists some nontrivial w0 ∈ ker(ML). Set v�L = w0. The flipping of the switches of v
on L induces some of the lights of S − L to be switched on. Because a plane of symmetry
bisects every tile of L, the induced pattern will be symmetric about this plane. Since S −L
is completely solvable, there exists a unique solution w which will turn this induced ini-
tial configuration off. By uniqueness, w must be symmetric about the plane of symmetry
(since the original configuration of ‘on’ and ‘off’ lights was symmetric about the plane,
and if w is not symmetric about the plane, we can reflect it about the plane and the reflec-
tion will also be a solution, thereby contradicting uniqueness). Take any tile i ∈ L. The
tiles of S−L adjacent to i exist as symmetric pairs about the plane, and w, defined only on
S−L, is symmetric about the plane bisecting L. Therefore, we have that the tiles j adjacent
to i such that w(j) = 1 must exist as symmetric pairs about i. Therefore, there is no net
effect on the state of the bulb in tile i when w is applied. Noting this, take v�L = w0, and
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v�S−L = w. For i ∈ L, we have:

(Mv)(i) = (MLSv�L)(i) + (M(S−L)Sv�S−L)(i) = (MLSw0)(i) + (M(S−L)Sw)(i) = 0 + 0 = 0

For i ∈ S −L, we have that (Mv)(i) = (MLSw0)(i) + (M(S−L)Sw)(i) = 0 by the definition of w.
Thus, we see that v ∈ ker(M) so the setup is not completely solvable.

Now suppose that S − L is not completely solvable. Then, by Theorem 3.1, there exists a
nontrivial symmetric (about the plane bisecting L) element w ∈ ker(MS−L). So, set v�S−L =
w and v�L = 0. Then, since v�L = 0, the generalized line does not contribute to the state of
any bulb, so for a tile i ∈ S −L, (Mv)(i) = (M(S−L)Sw)(i) = 0, since w ∈ ker(MS−L). For a tile
i ∈ L, note that the tiles j ∈ S − L adjacent to i such that w(j) = 1 exist in symmetric pairs
about i, and therefore, their contributions cancel. Thus (Mv)(i) = 0. Hence, v ∈ ker(M),
so the setup is not completely solvable. �

We wish to emphasize that the theorem above makes no restriction that the portions of
the setup on either side of the line cannot affect each other (We will see several instances
where the symmetric portions affect each other when we consider the shapes such as
the odd-cylinder and the odd-cone). One might also wonder why we required in the
definition of a generalized line that for any given tile i on the generalized line, the tiles
of the setup minus the generalized line which are adjacent to i exist in symmetric pairs
about the plane. Does this not follow from the fact that a plane of symmetry bisects every
tile on the generalized line? The answer is no. We will explain the reason for this in
Example 3.9.

When we are working with specific geometrical arrangements, it will often be the case
that the generalized line in question is either a standard line or a ring. It is therefore
worthwhile giving some special attention to these cases. We see as a direct consequence
of Lemma 3.4 and Theorem 3.7 that if a geometrical setup has a standard line of length
l ≡ 2 (mod 3) for a generalized line, then the setup is not completely solvable. Likewise,
if a geometrical setup has a ring of tiles of length l ≡ 0 (mod 3) as a generalized line, then
the setup is not completely solvable.

Example 3.8. Lights Out on a butterfly with central body length 5. (A butterfly is a being
with a standard line as a central body and two identical wings on either side. The wings
are tiled in some manner unknown to us.)

The wonderful thing about Theorem 3.7 is that even though
we know nothing about the tiling of the wings, it guarantees
that the butterfly is not completely solvable, since it is sym-
metric about a plane bisecting a line of length 5 ≡ 2 (mod 3)
and the tiles of the setup minus the line that are adjacent
to any tile i of the line exist in symmetric pairs about the
plane. Needless to say, since we have no information about
the shape and tiling of the wings, we cannot possibly explic-
itly find an element of the kernel. Nevertheless, Theorem 3.7
guarantees that one exists.

Example 3.9. Why do we need the seemingly extra assumption that for “any given tile i on
the generalized line, the tiles of the setup minus the generalized line which are adjacent
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to i exist in symmetric pairs about the plane”? Does this not follow from the fact that the
setup is symmetric about a plane that bisects every tile of the generalized line?

In the diagram to the left, the central column satisfies the
following two properties: (i) It is a standard line (ii) If we
drew an axis which bisected it, the setup would be sym-
metric about the axis. However, we cannot for certain say
anything about the solvability of the setup for the follow-
ing reason: The topmost of the five tiles is adjacent to some
collection of tiles directly above it which is not in line. It is
very possible that one of the tiles in the collection is its own
reflection, in which case the tile cannot possibly have a sym-
metric pair that about the axis. We have no way to assert,
therefore that the standard line is a generalized line. Thus,
Theorem 3.7 cannot be applied to this arrangement.

Theorem 3.10. Consider an arbitrary geometrical setup drawn in R
d which has a generalized

line. If the generalized line is completely solvable, then the solvability of the setup is equivalent
to the solvability of the setup minus the generalized line.

Proof. As before, denote the generalized line by L, the setup by S, the setup minus the
line by S −L, and the restriction of a vector v to a collection of tiles X by v�X . Denote MX
by the linear map associated with a collection of tiles X, when considered in isolation.

Assume that the setup is not completely solvable. Then, by Theorem 3.1, there exists an
nontrivial element v ∈ ker(M) which is symmetric about the plane that bisects L. There
is no net effect on the bulbs in L by v�S−L since the tiles in S − L that are adjacent to
any tile i ∈ L exist in symmetric pairs about the plane, and v is symmetric about the
plane. Therefore, v�L ∈ ker(ML). Since L is completely solvable, it follows that v�L = 0.
Therefore since there is no contribution from v�L to the bulbs in S − L, it follows that
v�S−L ∈ ker(MS−L). Thus, S −L is not completely solvable.

Assume that S − L is not completely solvable. By a proof identical to the second portion
of Theorem 3.7, we see that the setup is not completely solvable. Hence, the solvabilities
of L and S −L are equivalent. �

In a similar vein to the remarks after Theorem 3.7, we will give some special attention to
the case when the generalized line in question is either a standard line or a ring. We see
as a direct consequence of Lemma 3.4 and Theorem 3.7 that if a geometrical setup has
a standard line of length l . 2 (mod 3) for a generalized line, then the solvability of the
setup is equivalent to the solvability of the setup minus the standard line. Likewise, if a
geometrical setup has a ring of tiles of length l . 0 (mod 3) as a generalized line, then the
solvability of the setup is equivalent to the solvability of the setup minus the ring.

Corollary 3.11. Consider a geometrical setup drawn in R
d which has a diagonal for a gener-

alized line. Then, the solvability of the setup is equivalent to the solvability of the setup minus
the diagonal.

Proof. As remarked earlier, a diagonal is a generalized line in which no two tiles of the
line are adjacent to each other. Such a line L is always completely solvable since there can
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not exist any nontrivial element of ker(ML) (as each tile stands alone). Hence, applying
Theorem 3.10, we see that the solvability of the setup is equivalent to the solvability of
the setup minus the diagonal. �

Example 3.12. Is the 6× 6 square grid completely solvable?

Applying Corollary 3.11 twice in succession, we see that the
solvability of the 6 × 6 square is equivalent to the solvability
of the (4)-pyramid, the structure depicted below. By Theo-
rem 3.1, the pyramid is not completely solvable iff there is
a nontrivial element of the kernel which is symmetric about
the cyan axis. We will try to find an element v of the kernel
of the pyramid which is symmetric about the cyan axis. First
suppose v(1) = v(4) = 0. Then, (Mv)(1) = 0 =⇒ v(2) = 0 and
by symmetry, v(3) = 0. Further, (Mv)(2) = 0 =⇒ v(5) = 0
and by symmetry v(6) = 0. This is the trivial element of the
kernel. If v(1) = v(4) = 1, then (Mv)(1) = 0 =⇒ v(2) = 1
and by symmetry, v(3) = 1. (Mv)(2) = 0 =⇒ v(5) = 1 and by
symmetry, v(6) = 1. But then, (Mv)(5) = 1 which shows that
v < ker(M). Thus, there is no nontrivial element of the kernel
symmetric about the cyan axis, and by Theorem 3.1, the 6× 6
square is completely solvable.

1 2 3 4

5 6

Example 3.13. Is the surface grid of a 5× 5× 5 cube completely solvable?

Three planes of symmetry are depicted in the diagram. Each
plane bisects a ring which is of length 5 · 4 = 20 and 20 . 0
(mod 3). Therefore, first apply Theorem 3.10 using the red
plane and the solvability of the cube is equivalent to the
solvability of the cube-minus-red-ring. Since the sections
on either side of the red ring do not affect each other, the
solvability of the cube minus the red ring is equivalent to
the solvability of one of the sections. Now, such a section is
symmetric about a line that the green plane cuts. This line
has length 5 + 2 · 2 = 9 . 2 (mod 3). Therefore, by Theorem
3.10, the solvability of the side is equivalent to the solvabil-
ity of the section minus the green line, which is comprised
of two portions on either side of the green plane that do not
affect each other. Such a portion is symmetric about a line
that the blue plane bisects. The length of this line is 4 . 2
(mod 3). Therefore, applying Theorem 3.10 the solvability
of the section-minus-the-green-line is equivalent to the solv-
ability of the section-minus-the-green-line minus the blue
line. Thus, the solvability of the cube is equivalent to the
solvability of (a) below.
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(a)

Now, (a) has a diagonal axis of symmetry (cyan). By Corol-
lary 3.11, characterizing the geometrical setup is equivalent
to characterizing the setup minus the diagonal, which is de-
picted in (b), on which a nontrivial element of the kernel has
been found. Therefore, the 5 × 5 × 5 cube is not completely
solvable. The element of the kernel has been depicted in (c)
below.

(b)

(c)

4. The solvability patterns for m×n rectangular grids

Obviously, the solvability characterization of a m × n grid is the same as that of a n ×m
grid. Bearing this in mind, we have the following propositions wherein it is understood
that the same result holds for an n×m grid.

Proposition 4.1. Ifm ≡ 2 (mod 3) and n is odd, then them×n grid is not completely solvable.

Proof. Note that if n is odd, there is a central column about which the grid is symmetric.
Moreover, since m ≡ 2 (mod 3), the length of the column l ≡ 2 (mod 3). Since, the tiles of
the grid minus the central column that surround any tile i of the central column exist in
symmetric pairs about i, the proposition is a direct corollary of Theorem 3.7. �

Proof. We can also prove this in a constructive way. On any odd-numbered column, make
the components of v follow the pattern 1,1,0,1,1,0,1,1,0, ...,0,1,1 as we go down succes-
sive rows, and let the restriction of v to even columns be 0. Then, v ∈ ker(M). �

In the first proof of the above proposition, notice that it was very important for n to be
odd, so that the rectangle could be symmetric about a column (vertical line of tiles). In a
rectangle with an even number of columns, the vertical axis of symmetry does not bisect
a column, but instead traces a line that separates two columns (which we will henceforth
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refer to as a separating-line). Thus, it is not possible for us to apply Theorem 3.7, and
Proposition 4.1 cannot be extended to include even n. For a simple counter-example, the
reader may check that the 2×2 square is completely solvable although 2 ≡ 2 (mod 3) (One
quick way to verify this would be to apply Corollary 3.11).

Note that the above proposition is equivalent to the first statement in the third part of
Proposition 4.5 from [2]. Another interesting observation is that the computer game
made by Tiger Electronics which was studied by M. Anderson and T. Feil in [1] featured a
5 × 5 grid. This proposition shows that such a grid is not completely solvable. This not
only means that some initial configurations will not have solutions but also means that
solutions to symmetric initial configurations may be asymmetric, which is likely to have
made the solutions to puzzles in the computer game less obvious. Note that if complete
solvability holds and an initial configuration is symmetric about some plane a1, then its
solution must also be symmetric about a1, since if it is not, we may reflect the solution
about a1 and the reflection will also be a solution to the initial configuration, thereby con-
tradicting uniqueness. For geometrical arrangements which are not completely solvable,
there is no such restriction.

We should also remark here that the above result implies that there are infinitely many
square grids that are not completely solvable. The analogous statement when each bulb
has three states was shown to be true in [6]. For a general prime p, the question is to our
knowledge still open, and [6] includes a conjecture which would imply that the statement
is true for every prime p.

Proposition 4.2. Ifm . 2 (mod 3), then them×n grid is completely solvable if and only if the
m× (2n+ 1) grid is completely solvable.

Proof. Since 2n+ 1 is always odd, there will be a column about which the m× (2n+ 1) grid
is symmetric. Also, given any tile i in the column, the tiles of the grid minus the column
adjacent i exist in symmetric pairs about the column. Thus, by Theorem 3.10, since the
length of the column l = m . 2 (mod 3), we have that the solvability of the m × (2n + 1)
grid is equivalent to the solvability of the m × (2n + 1) grid without the central column,
and since the two m × n grids on either side of the column do not affect each other, we
have that the solvability of the m × (2n + 1) is equivalent to that of an m × n grid, which
proves the result. �

Note that the above two propositions mean that we can categorize all grids with one or
two odd sides either explicitly, or in terms of smaller grids with two even sides. This is
because if n is odd, then either m ≡ 2 (mod 3), in which case we apply Proposition 4.1,
or else m . 2 (mod 3) in which case we apply Proposition 4.2 in order to reduce it to an
m× n−1

2 grid. We can obviously do the same thing with the roles of m and n reversed.

Corollary 4.3. Suppose that the m×n grid is completely solvable. Then: (i) If m . 2 (mod 3),
then the m × (2k(n + 1) − 1) grid is completely solvable for every k ∈ N∪ {0}. (ii) If m,n . 2
(mod 3), then the (2k(m+1)−1)×(2l(n+1)−1) grid is completely solvable for every k, l ∈N∪{0}.

Proof. Let us prove part (i) first. For k = 0, the result is trivial since 20(n + 1) − 1 = n.
Assume that (i) is true for k ∈ N: that is, the m × (2k(n + 1) − 1) grid is completely solv-
able. Then, for k + 1, we see that since m . 2 (mod 3), we may apply Proposition 4.2
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and conclude that the m × 2(2k(n + 1) − 1) + 1 grid is completely solvable. That is: the
m× 2k+1(n+ 1)− 1 grid is completely solvable, which proves (i).

Now let us prove (ii). Note that it suffices to show that 2k(m+ 1)−1 . 2 (mod 3) for all k,
because we can then apply (i) to conclude (ii). Before we begin an inductive argument, we
will first show that if x . 2 (mod 3), then 2x+1 . 2 (mod 3). To see this, note that if x ∈N
and 2x+1 = 2 (mod 3), then since 2x+1 is always odd, 2x+1 = 5+6j for some j ∈N∪{0}.
Thus, x = 4+6j

2 = 2 + 3j, so x ≡ 2 (mod 3). Thus, if x . 2 (mod 3), then 2x+ 1 . 2 (mod 3).

Now we may proceed with an inductive argument to prove (ii). For k = 0, we easily see
that 20(m + 1) − 1 = m . 2 (mod 3). Assume for k that 2k(m + 1) − 1 . 2 (mod 3). Take
x = 2k(m+ 1)− 1. Then, 2k+1(m+ 1)− 1 = 2(2k(m+ 1)− 1) + 1 = 2x + 1 . 2 (mod 3), which
completes the inductive argument and proves (ii). �

A special case of this corollary is withm = n = 1, and the 1×1 square is trivially completely
solvable, and 1 . 2 (mod 3). We then apply the corollary to see that the (2k − 1)× (2l − 1)
grid is completely solvable for every k, l ∈N. This is the result quoted in the first part of
Proposition 4.5 of [2].

One can also compare the above result with part ii) of Proposition 8 in [5]. The results are
very similar; moreover, the reverse direction that is quoted there is a simple consequence
of the next proposition, since (2n+1) = n+(n+1), and 2(n+ j(n+1))+1 = n+(2j+1)(n+1).

Proposition 4.4. Assume that a m× n rectangle is not completely solvable. Then, the m′ × n′
rectangle is not completely solvable whenever m′ ≡m (mod m+ 1) and n′ ≡ n (mod n+ 1).

Proof. Assuming that a m × n rectangle is not completely solvable, then by Theorem 3.1,
we may find an element of the kernelwwhich is symmetric about both the horizontal and
vertical axes. Now consider a (m+ k(m+ 1))× (n+ k′(n+ 1)) rectangle. Mark the columns
n+ 1,2(n+ 1), ...k′(n+ 1), and the rows m+ 1,2(m+ 1), ...k(m+ 1) and set v(i) = 0 whenever
i is a tile on these marked rows or columns. What we have then done is we have divided
the big rectangle into little rectangles of size m × n, separated by the marked rows and
columns. On each little rectangle Rj , set v�Rj = w. We claim that v is in the kernel of the
(m+ k(m+ 1))× (n+ k′(n+ 1)) rectangle.

First, take a tile i on one of the marked rows and columns. If i is on the intersection
of a marked row and a marked column, then the none of the adjacent tiles are flipped
when v is applied and thus (Mv)(i) = 0. Otherwise, i is adjacent to three tiles on its
marked row/column, and two other tiles i1 and i2 which belong to two different little
rectangles. The relative positions of i1 and i2 with respect to their rectangles are such
that if the two rectangles were superimposed, i1 and i2 would be reflections of each other
about a horizontal/vertical axis of symmetry. Thus, since w is identically placed on both
rectangles and w is symmetric about the horizontal and vertical axes of symmetry, w(i1) =
w(i2). Thus, Mv(i) = 0 +w(i1) +w(i2) = 0.

Now, take a tile i in one of the little m × n rectangles; we see that the marked rows and
columns isolate the rectangle from all other flipped switches of v and therefore (Mv)(i) =
(Mm×nw)(i) = 0. (Mm×n is the linear map of the m×n grid which contains i). Hence v is in
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the kernel of the (m+k(m+ 1))× (n+k′(n+ 1)) rectangle, and since k,k′ were arbitrary, the
proposition follows. �

5. Using symmetry to predict Lights Out solvabilities of various arrangements of

tiles

Previous investigation into the solvability of rectangular grids has primarily exploited
polynomial algebra. Polynomial approaches can become difficult when we move to non-
rectangular arrangements of tiles. This is because, in order to determine which polyno-
mials must be relatively prime for the solvability to hold, we must construct a Sylvester
rectangular-matrix equation (of the form AX+XB = C) as explicitly demonstrated for ex-
ample in [2]. As the shapes change, it may be difficult to construct the rectangular matrix
equation and determine whether the characteristic polynomials are relatively prime. In
the case of a cylinder or torus, there is an obvious choice for the matrices and hence the
matrix equation, as shown in [2], where a polynomial based solution is given. The reason
why the matrix equation could be very naturally constructed in those cases is because
the cylinder and torus are inherently linked to rectangles: Lights out on the surface of a
cylinder or torus is equivalent to that on a rectangle with a different adjacency rule that
allows tiles on opposite sides to affect each other. Depending on the problem however, it
may not be so easy, and the matrices (and hence characteristic polynomials) can become
ugly. Fortunately, for many of these shapes, an approach by symmetrizing the kernel is
much cleaner, and in this section, we will reduce the characterizations of surface grids on
cylinders, capped-cylinders, tori, cones, capped-cones and spheres as well as the charac-
terizations of diamond grids (in that order) to the characterizations of rectangular grids.

Lights Out on the surface of a cylinder. When we refer to a cylinder, we refer to a cylin-
drical shell with a hole through the middle, without caps at the ends. Tile a cylinder by
drawing circles at regular intervals of height and drawing lines that run vertically from
the bottom to the top. We will call the columns of tiles that exist between two lines as
columns, and the lines that separate the columns will be called separating-lines. We may
call a cylinder a (n,h) cylinder if it has a height h and circumference n, where n and h cor-
respond to the number of tiles along the circumference and the number of tiles in each
column respectively. The n = 1 case is equivalent to a line of tiles with length h, which
we categorized in Lemma 3.4. The n = 2 case is equivalent to a h× 2 rectangle, which can
be seen by representing the (2,h) cylinder by its associated graph (with each tile being
a vertex and the connecting edges representing the adjacency rule). The h × 2 rectangle
will be completely solvable if and only if h is even (Hint: Look for elements of the kernel
which are symmetric about the vertical axis (the axis that is parallel to the long side of the
rectangle)). However, for n > 2, it is not true that the graph of a (n,h) cylinder is equiva-
lent to the graph of a h×n rectangle. This is because in such a rectangle, the first column
and n’th column do not affect each other. The example below illustrates this difference.
Henceforth, we may therefore consider n > 2.

Example 5.1. The graphs associated with a (2,3) and a (3,3) cylinder.
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(a) (b)

Graph (a) is the associated graph of a (2,3) cylinder. Graph (b) is the associated graph of
the 3×2 rectangle. Note that they are the same. Graph (c) is the associated graph of a (3,3)
cylinder. Graph (d) is the associated graph of a 3 × 3 square. Note that they are not the
same.

(c) (d)

Proposition 5.2. Let n > 2. If h ≡ 2 (mod 3), then the cylinder is not completely solvable. If
h . 2 (mod 3), then the cylinder is solvable if and only if the (n− 1)× h rectangle is solvable.

Proof. Consider a plane that bisects any vertical column. The cylinder is symmetric about
this plane. Moreover, taking any tile i in the column which the plane bisects, the adjacent
tiles to i that are in the cylinder minus the column exist in pairs about the plane. If h ≡ 2
(mod 3) then the cylinder is not completely solvable by Theorem 3.7. If h . 2 (mod 3),
then by Theorem 3.10, the solvability of the cylinder is equivalent to the solvability of the
cylinder minus the column, which is a (n− 1)× h rectangle. �

Note that for the case where h ≡ 2 (mod 3), we could have alternatively explicitly con-
structed an element of the kernel: label the circumference position of a tile by i = 1, ...,n
and the height position of a tile by j = 1, ...,h, so that the coordinate of any tile can be rep-
resented by (i, j). If h ≡ 2 (mod 3), then for each i, define v by letting v(i,1),v(i,2), ....,v(i,h)
follow the pattern 1,1,0,1,1,0, ...,0,1,1 (Note Lemma 3.4). We claim that v ∈ ker(M). To
see this, let us look at any position (i, j). (Mv)(i, j) is not affected by adjacent columns
since the contribution from the columns to either side cancels out. Thus, the only con-
tribution to the state of the bulb in a tile is from the same column. Since each (i, j) is
adjacent to exactly two tiles in its column that are associated with nonzero components
of v, it follows that (Mv)(i, j) = 0. Thus, v ∈ ker(M) and the cylinder is not completely
solvable.

Example 5.3. Consider a cylinder of height 6 and circumference 7. Is this cylinder com-
pletely solvable?

This is a top view of a cylinder of height 6 and radius 7.
The red rectangle represents a plane of symmetry which cuts
through the cylinder as described in the proof of Proposition
5.2. We first notice that 6 . 2 (mod 3). Therefore, by Propo-
sition 5.2, the solvability of this cylinder is equivalent to the
solvability of a 6 × 6 square, which is completely solvable by
Example 3.12. Therefore, this cylinder is completely solvable.
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Lights Out on the surface of capped cylinders. We add caps to either one end, or two
ends of the cylinder. Such cylinders are called one-capped and two-capped cylinders
respectively. The cap is a single tile that affects and is affected by all the tiles in the rung
which is adjacent to it. Let h denote the height of the cylinder without the caps, and n
denote the number of tiles making up the circumference. If n = 1, the capped cylinder is
simply a line of tiles of length n+ 1 or n+ 2 (depending on the number of caps). Thus, we
may consider n > 1.

Proposition 5.4. Let n > 1.

(i) If n is even, the solvability conditions of the capped and regular cylinder are the same
(for both the one-capped cylinder and the two-capped cylinder).

(ii) If n is odd, then the one-capped cylinder is completely solvable if and only if h . 1
(mod 3) and the (n− 1)× h rectangle is completely solvable.

(iii) If n is odd, then the two-capped cylinder is completely solvable if and only if h . 0
(mod 3) and the (n− 1)× h rectangle is completely solvable.

Proof. Denote the whole setup (the capped-cylinder) by S. Denote the collection of tiles
corresponding to the caps by C. Denote the capped-cylinder minus the caps by S −C (a
regular cylinder). Notation such as MS−C and M(S−C)S will be carried over from Theorem
3.7.

Proof of i): If n is even, then consider a plane of symmetry that cuts through two opposite
vertical separating-lines (not columns, but the lines that separate the tiles). If the capped
cylinder is not completely solvable, then there is a nontrivial element v ∈ ker(M) which
is symmetric about this plane. Due to symmetry about the plane, v(j) = 1 on an even
number of tiles on the top rung and on an even number of tiles on the bottom rung. Since
a tile in S −C is adjacent to a cap if and only if it is in the nearest rung (either bottom or
top rung), it follows that if i is a cap tile, (M(S−C)Sv�S−C)(i) = 0. Thus, since v ∈ ker(M),
0 = (Mv)(i) = (M(S−C)Sv�S−C)(i) + (MCSv�C)(i), and thus, (MCSv�C)(i) = 0 which is only
possible if v(i) = 0 (since the caps are disjoint from one another and flipping a switch on
each cap affects that cap). Hence, v�C = 0. Thus, when we flip switches in a configuration
described by v, the caps do not contribute to the state of the bulbs in S −C. Therefore,
v�S−C ∈ ker(MS−C), and the (n,h) uncapped cylinder S −C is not completely solvable.

Conversely, if the regular (uncapped) cylinder S−C is not completely solvable, then there
is a nontrivial element w ∈ ker(MS−C) which is symmetric about the plane which cuts
through two opposite vertical separating-lines. Set v�S−C = w and v�C = 0. Then, v is in
the kernel of the capped cylinder, since the caps neither affect other tiles (since v�C = 0)
nor are affected by tiles (since the number of tiles j that are adjacent to the cap and for
which w(j) = 1 is an even number, because w is symmetric about the plane), which means
that the capped cylinder is not completely solvable. Thus, the solvabilities of the capped
cylinder and the regular cylinder are equivalent, which proves i).

Proof of ii) and iii): If n is odd, then consider a plane of symmetry that bisects a column,
and cuts through a separating-line on the opposite side. Let us call the column that the
plane bisects plus the cap(s) the ‘extended column’. The extended column is therefore
of length h + 1 for a one capped cylinder and h + 2 for the two capped cylinder. The
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cylinder is symmetric about the plane that bisects the extended column, and moreover
the tiles of the setup minus the extended column that are adjacent to any tile i of the
extended column exist in symmetric pairs about the plane. Therefore, by Theorem 3.7,
if h + 1 ≡ 2 (mod 3), i.e h ≡ 1 (mod 3), then the one-capped cylinder is not completely
solvable and if h + 2 ≡ 2 (mod 3), i.e h ≡ 0 (mod 3), then the two-capped cylinder is not
completely solvable. If h + 1 . 2 (mod 3), then by Theorem 3.10, the solvability of the
one capped cylinder is equivalent to the solvability the one-capped cylinder minus the
extended column, which is a (n− 1)× h rectangle. If h+ 2 . 2 (mod 3), then by Theorem
3.10, the solvability of the two-capped cylinder is equivalent to the solvability of the two-
capped cylinder minus the extended column, which, is a (n−1)×h rectangle. This proves
the proposition. �

In the proofs of ii) and iii), we introduced the notion of an ‘extended column’. One might
wonder why this was necessary, since the plane bisects the column and the setup would
thus be symmetric about the column, even if we do not add the caps. The reason is that if
we did not add caps to the column, it would not be true that given any tile i in the column
L, the tiles adjacent to i that are in S − L would exist in symmetric pairs around that tile.
For example, if the cylinder has a cap at the top, then the topmost tile of the column is
adjacent to a cap tile which is in S −M. However, there is no tile adjacent to the column
which is a symmetric pair of this cap, since the reflection of the cap about the plane of
symmetry is itself.

Example 5.5. Consider a two-capped cylinder of height 4 and circumference 5. Is this
cylinder completely solvable?

The diagram on the left is a representation of a capped
cylinder of height 4 and circumference 5. A capped cylin-
der can be formed from the representation by rolling the top
and bottom of the rectangle inwards, and afterwards fold-
ing the circular caps inwards. The red rectangle represents
the plane of symmetry as described in the proof of Propo-
sition 5.4 when n is odd. The extended line of symmetry
comprises of every tile that the plane of symmetry bisects,
including the caps. Since 4 . 0 (mod 3), it follows that the
solvability of this capped cylinder is equivalent to the solv-
ability of a 4 × 4 square. The 4 × 4 square is not completely
solvable by Example 3.2, and looking at Example 3.2 we can
construct two elements of the kernel, depicted below.

Lights Out on the surface of a torus. A torus is just a cylinder whose ends are connected.
In this spirit, we can label the height of the cylinder which is self connected as h, the
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circumference of this cylinder as n, and call the resulting torus a (n,h) torus. If n = 1 or
h = 1, then the torus just becomes a cylinder of height 1. If n = 2 or h = 2, then the graph
of the torus is the same as the graph of cylinder of height 2. To see this, just construct
the associated graphs of the two shapes as we did in Example 5.1. We may now consider
n > 2, h > 2.

Proposition 5.6. Let n,h > 2. If either n ≡ 0 (mod 3) or h ≡ 0 (mod 3), then the torus is not
completely solvable. Otherwise, the torus is solvable if and only if a (n−1)× (h−1) rectangle is
solvable.

Proof. Label the tiles of the torus by (i, j) where i ∈ {1, ...,n} gives the circumference posi-
tion and j ∈ {1, ...,h} gives the height position of the cylinder which was bent to make the
torus. If n ≡ 0 (mod 3), then, for each j, take

(v(1, j),v(2, j), ....,v(n,j)) = (1,1,0,1,1,0, ...,1,1,0).

Then it is easy to verify that v ∈ ker(M). If h ≡ 0 (mod 3), then, for each i, take

(v(i,1),v(i,2), ....,v(i,h)) = (1,1,0,1,1,0, ....,1,1,0).

Once again, it is easy to verify that v ∈ ker(M) (Recall Lemma 3.4).

If n,h . 0 (mod 3), then consider a plane of symmetry which bisects one of the rungs of
the cylinder used to create the torus. The torus is symmetric about this plane. We look for
nontrivial elements ṽ ∈ ker(M) which are symmetric about this plane, and observe that if
we take any tile (i, j) on this rung, all tiles of the setup minus the ring that are adjacent to
(i, j) exist in symmetric pairs about the plane (This is the statement that requires h > 2).
The torus minus the ring is nothing but a cylinder with height h−1 and circumference n.
Since the length of the rung n . 0 (mod 3), the solvability of the torus is equivalent to the
solvability of the (n,h − 1) cylinder by Theorem 3.10. Since h . 0 (mod 3), we have that
h− 1 . 2 (mod 3). Because, h− 1 . 2 (mod 3) and n > 2, we can apply Proposition 5.2 to
conclude that the solvability of the torus is equivalent to the solvability of a (n−1)×(h−1)
rectangle. �

Lights Out on the surface of a cone. For the purposes of the Lights Out puzzle, the
difference between a cone and a cylinder is the tip. We play Lights Out on the cone with
the rule that every tile at the tip of the cone affects every other tile at the tip. Just like
a cylinder we can talk of a cone of height h and circumference n. Since the n = 1 case is
equivalent to a line with length h, and the n = 2 case is equivalent to a 2×h rectangle, we
may consider n > 2.

Proposition 5.7. Let n > 2. If h = 1, the cone is not completely solvable. If h = 2, and n is even,
the cone is completely solvable. If h > 2 and n is even, the cone is completely solvable if and
only if h . 1 (mod 3) and the (n− 1)× (h− 2) rectangle is solvable. If h ≥ 2 and n is odd, then
the cone is completely solvable if and only if h . 2 (mod 3) and the (n−1)× (h−2) rectangle is
solvable.

Denote the setup (the cone) by S. Denote the collection of tiles present at the tip of
the cone by T . Denote the rung below the tip by R. The bottom part of the cone that
comprises of a (n,h−2) cylinder is thus S−T −R. We carry over notation such asMX from
Theorem 3.7. For the sake of description, we orient the cone so that the tip is at the top
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of the cone and the base is at the bottom. We may therefore say that a tile i is ‘directly
above’ tile j (or j is ‘directly below’ i) if i and j are adjacent tiles on the same column and
i is above j with respect to this orientation.

If h = 1, then every tile of the cone affects every other tile in the cone, and since n > 2,
the cone has more than two tiles. Thus, choose two tiles i1 and i2 and define the vector
v by v(i1) = v(i2) = 1, v(j) = 0 for all j < {i1, i2}. Then, v ∈ ker(M). Thus, the cone is not
completely solvable. Henceforth, consider h > 1.

Proof of Proposition 5.7 for even n: If n is even, then choose a plane of symmetry which
cuts through two opposite vertical separating-lines. If there is a nontrivial element v ∈
ker(M), then there exists a nontrivial element ṽ ∈ ker(M) which is symmetric about this
plane. By symmetry about the plane, ṽ�T (i) = 1 for an even number of tiles i ∈ T . Thus,
for any tile i0 ∈ T , (MT S ṽ�T )(i0) = 0. Taking any i ∈ T , we can now note that since the only
adjacent tiles to i are in T or R,

(Mṽ)(i) = (MT S ṽ�T )(i) + (MRS ṽ�R)(i) = 0 + (MRS ṽ�R)(i) = 0 + ṽ(j),

where j is the tile in R located directly below i. Since ṽ ∈ ker(M), (Mṽ)(i) = 0 and so ṽ(j) =
0. Since every j ∈ R is directly below some i ∈ T , it follows that ṽ�R = 0. If h = 2, then this
means that we must require ṽ�T = 0 also, or else bulbs in R will be lit. Thus, ṽ = 0 is the
only symmetric element in ker(M) and the cone with height h = 2 is completely solvable.
Now let h > 2. Because ṽ�R = 0, R effectively isolates the nonzero components of ṽ in T
and the nonzero components of ṽ in S−T −R. It follows that ṽ�S−T−R ∈ ker(MS−T−R), since
v ∈ ker(M) and thus, for any i ∈ S − T −R,

0 = (Mṽ)(i)

= (M(S−T−R)S ṽ�S−T−R)(i) + (MRS ṽ�R)(i)

= (M(S−T−R)S ṽ�S−T−R)(i) + 0

= (M(S−T−R)S ṽ�S−T−R)(i).

Thus, the (n,h− 2) cylinder S − T −R is not completely solvable.

Conversely, if the (n,h− 2) cylinder S − T −R is not solvable, then there exists an element
w̃ ∈ ker(MS−T−R) which is symmetric about a plane which passes through two opposite
separating-lines. Construct ṽ by requiring ṽ�S−T−R = w̃, ṽ�R = 0, and requiring, for i ∈ T ,
ṽ(i) = w̃(j) where j ∈ S − T −R is the tile in the same column as i and two rungs below i
(so if we call the tip the first rung, j is on the third rung). Note that since w̃ is symmetric
about the plane which passes through opposite separating-lines, the number of nonzero
components of w̃ in the third rung of the cone is an even number and thus, the number
of nonzero components of ṽ at the tip is an even number. Thus, for a tile i ∈ T , (Mṽ)(i) =
(MT S ṽ�T )(i) + (MRS ṽ�R)(i) = 0 + 0 = 0. For a tile j ∈ R, denote by i1 ∈ T the tile directly
above j and by i2 ∈ S − T − R the tile directly below j. Then, because ṽ(i1) = ṽ(i2) and
ṽ�R = 0, we have that

(Mṽ)(j) = (MRS ṽ�R)(j) + ṽ(i1) + ṽ(i2) = 0 + 2ṽ(i1) = 0.

For j ∈ S − T −R,

(Mṽ)(j) = (MRS ṽ�R)(j) + (M(S−T−R)S ṽ�S−T−R)(j) = 0 + (M(S−T−R)Sw̃)(j) = 0
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since w ∈ ker(MS−T−R). Thus, ṽ ∈ ker(M) and thus, the (n,h) cone is not completely solv-
able.

Therefore, for n even, and h > 2 the (n,h) cone is completely solvable if and only if the
(n,h− 2) cylinder is completely solvable. By Proposition 3.1, this will happen if and only
if (h − 2) . 2 (mod 3) and the (n − 1) × (h − 2) rectangle is solvable. Since (h − 2) . 2
(mod 3)⇔ h . 1 (mod 3), the result follows for even n. �

Example 5.8. Example for n even: What is the solvability characterization of a cone with
circumference 12 and height 5?

This is a cone of height 5 and circumference
12. In particular, the circumference is even. The
plane of symmetry (red) cuts through a vertical
separating-line and the separating-line opposite
it. By Proposition 5.7, since 5 . 1 (mod 3), the
solvability of the cone reduces to the solvability
of a 11 × 3 rectangle. Since 11 ≡ 2 (mod 3), and
3 is odd, it follows by Proposition 4.1 that this
cone is not completely solvable. The diagram
on the right is a top view of the cone, and the
arrangement shown is an element of the kernel.
That is, if we flip the switches of every tile with
a black dot, no bulbs will change state.

Proof of Proposition 5.7 for odd n: If n is odd, then choose a plane of symmetry that bisects
a column L and goes through the separating-line on the opposite side. Given any tile
i ∈ L, the tiles in S − L that adjacent to i (if i is the topmost tile of L, this refers to every
tile of S − L at the tip) exist in symmetric pairs about the plane. Hence, by Theorem 3.7,
if h ≡ 2 (mod 3), the cone is not completely solvable. If h . 2 (mod 3), then by Theorem
3.10, it follows that the solvability of the setup is equivalent to the solvability of S − L.
S − L is symmetric about the very same plane introduced earlier, and moreover, the tiles
at the tip of S − L exist in symmetric pairs about the plane. Denote by T2 the tip of S − L,
and by R2 the rung adjacent to T2 that is below T2.

Suppose that S−L is not completely solvable. Then, there exists a nontrivial v ∈ ker(MS−L)
which is symmetric about the plane. Since the tiles of T2 exist in symmetric pairs about
the plane, it follows that the number of tiles i ∈ T2 such that v(i) = 1 is an even number.
Thus, (MT2Sv�T2

)(i) = 0 for all i ∈ T2. As we argued in the proof for even n, this implies
that v�R2

= 0, and v�(S−L)−T2−R2
∈ ker(M(S−L)−T2−R2

). Since (S−L)−T2−R2 is a (h−2)×(n−1)
rectangle, this implies that the (h− 2)× (n− 1) rectangle is not completely solvable.

Conversely, suppose the (h−2)×(n−1) rectangle (S−L)−T2−R2 is not completely solvable.
Then, there exists a nontrivial element w ∈ ker(M(S−L)−T2−R2

) that is symmetric about the
plane cutting through S − L. Define v by the following: v�(S−L)−T2−R2

= w, v�R2
= 0, and

for a tile i ∈ T2, v(i) = w(j) where j is the tile on the same column as i and two rungs
lower. By similar reasoning as in the proof for even n, v ∈ ker(M(S−L)). Thus, S − L is not
completely solvable. Thus, we have shown that if h . 2 (mod 3), the solvability of the
cone S is equivalent to the solvability of S − L which is equivalent to the solvability of a
(h− 2)× (n− 1) rectangle. This completes the proof. �
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Example 5.9. Example for n odd: What is the solvability characterization of a cone with
circumference 5 and height 9?

This is top-view of a cone of height 9 and circumference 5.
In particular, the circumference is odd. The plane of sym-
metry (red) cuts through a vertical line and the column of
tiles opposite it. By Proposition 5.7, since 9 . 2 (mod 3), the
solvability of the cone reduces to the solvability of a 4 × 7
rectangle. Since 4 . 2 (mod 3), it follows by Proposition 4.2
that the solvability is equivalent to a 4× 3 rectangle which is
(again applying Proposition 4.2) equivalent to the solvability
of a 4 × 1 rectangle. Since 4 . 2 (mod 3), we can then con-
clude by Lemma 3.4 that the 4 × 1 rectangle is completely
solvable and thus the cone in question is completely solv-
able.

Lights Out on the surface of a capped cone. The cap here has similar properties to the
cap of a cylinder. That is, if we orient the cone such that the tip points upwards, then the
cap is a single tile placed over the base of the cone, which is adjacent to every tile at the
bottom-most rung of the cone. Let h be the height of the cone without the cap and n the
number of tiles making up the circumference of the cone.

Proposition 5.10. If n is even, the solvability conditions of the capped and regular cone are
the same. If n is odd, then the capped cone is completely solvable if and only if h . 1 (mod 3)
and the (n− 1)× (h− 2) rectangle is completely solvable.

Proof. Similar arguments to those given to categorize the capped cylinder and those given
to categorize the regular cone can be adapted to prove this. Details are left to the reader.

�

Lights Out on the surface of a sphere. We divide the sphere by introducing latitudes
and longitudes, and play Lights Out on the resulting grid. At the poles, the rule is the
same as that we used for a cone - every switch at the pole affects every light at the pole.
We denote the number of tiles along the latitude by n and the number of tiles from pole
to pole by h. Once again, if n = 1, then the sphere is equivalent to a line of length h and if
n = 2, then the sphere is equivalent to a 2× h rectangle. Thus, we can take n > 2.

Proposition 5.11. Let n > 2. If h = 2, the sphere is completely solvable if and only if n is even.
If h = 3, the sphere is not completely solvable. If h = 4, the sphere is always completely solvable.
If h > 4, and n is even, the sphere is completely solvable if and only if h . 0 (mod 3) and the
(n−1)× (h−4) rectangle is solvable. If h > 4 and n is odd, then the sphere is solvable if and only
if h . 2 (mod 3) and the (n− 1)× (h− 4) rectangle is solvable.

Proof. If h = 2, and n is odd, then, set v = 1 (flip all the switches). Then, one can verify that
v ∈ ker(M), so the geometrical setup is not completely solvable. If h = 3, then, since n > 2,
choose any two tiles at the north pole and flip those two switches. Flip also the switches
of the identically placed tiles in the south pole. Do not flip any tiles in the middle. Then,
if we denote this configuration of flips by v, then one can verify that v ∈ ker(M) so the
geometrical setup is not completely solvable. For a general sphere, denote the sphere by
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S, the poles by P1 and P2. An arbitrary pole may be labelled P . Denote by R1 and R2 the
rungs of the sphere which are adjacent to P1 and P2 respectively and denote an arbitrary
rung by R.

Let n be even. Then, arguing as we did for the case of a cone, we take a plane of symmetry
which goes through two opposite separating-lines, and look for nontrivial elements v ∈
ker(M) which are symmetric about this plane. Because v is symmetric about the plane, at
each pole, the number of tiles i ∈ P such that v(i) = 1 must be even. If h = 2, this means
that we cannot flip any switches of either pole, so the sphere is completely solvable. For
h > 2, by an argument identical to that presented in the case of a cone, the even number
of flips at the poles implies that we require v�R1

= v�R2
= 0. If h = 4, this means that

we cannot flip switches on the second and third rungs, and to ensure the bulbs on these
rungs remain off, we cannot flip any switches on the poles either. Thus, the sphere is
completely solvable for h = 4. Now assume h > 4. Then, arguing as we did in the case of a
cone, the solvability of a sphere is equivalent to the solvability of the remaining portion,
which is a (n,h−4) cylinder, and therefore, we have that the sphere is completely solvable
if and only if h − 4 . 2 (mod 3) and the (n − 1) × (h − 4) rectangle is solvable. That is, for
h > 4, the sphere is completely solvable if and only if h . 0 (mod 3) and the (n−1)× (h−4)
rectangle is completely solvable.

Let n be odd. Take a plane of symmetry that bisects a column L and cuts the separating-
line on the opposite side. The sphere is symmetric about this plane and moreover, if we
take any tile i ∈ L, the tiles of S − L that are adjacent to i exist in symmetric pairs about
the plane. Thus, if h ≡ 2 (mod 3), the sphere is not completely solvable by Theorem 3.7.
If h . 2 (mod 3), by Theorem 3.10, the solvability of the sphere S is equivalent to the
solvability of S − L. S − L is symmetric about the plane we described earlier. For h = 4,
we search for an element v ∈ ker(M) which is symmetric about this plane. By arguments
presented in Proposition 5.7, the number of tiles i at a given pole such that v(i) = 1 is
an even number, and thus v�R1+R2

= 0. Thus, to ensure that (Mv)(i) = 0 for every i ∈ Rk
(k ∈ {1,2}), we require that v�P1+P2

= 0. Thus, v = 0 is the only element of the kernel that
symmetric about the plane, and the sphere of height 4 is therefore completely solvable.
Now let h > 4. Using similar arguments as we did to prove Proposition 5.7 for odd n, we
can find that the solvability of S − L is equivalent to the solvability of a (n − 1) × (h − 4)
rectangle, and the proposition follows for odd n. �

Example 5.12. Lights Out on the surface of the earth. By convention, there are five pri-
mary latitude lines, and let us choose to draw 10 longitudinal lines. If we draw these
lines on the surface of the earth, is the resulting grid completely solvable?

The latitudes divide earth into six portions, so the height h = 6, and the longitudes divide
the earth into 10 portions, so the circumference is 10. Since 10 is even, and h ≡ 0 (mod 3),
we have that the sphere is not completely solvable. An element of the kernel can be
seen below. In the schematic drawing presented, it is understood that every tile at the
top (resp. bottom) row affects every other tile in the top (bottom) row, since these rows
represent the circles of tiles around the poles. It is also understood naturally that the tiles
on opposite sides of the same row affect each other.
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Lights Out on the surface of a diamond. A (n) pyramid is a pyramid formed by consid-
ering a line of length n, a second line of length (n−2) symmetrically placed on top of this
line, a third line of length (n− 4) symmetrically placed on top of the previous two and so
on. A diamond is a geometrical arrangement that is constructed from two pyramids as
follows: If n is even, then the diamond consists of two (n) pyramids placed back to back,
and if n is odd, then the diamond consists of two (n) pyramids facing opposite directions,
with their bases glued together. A (10) diamond and a (7) diamond are illustrated in
Figure 3.

Figure 3. Illustration of a (10) diamond (left) and a (7) diamond (right)

Further, it is important to note that an (n) pyramid is completely solvable if and only
if a (n + 2) × (n + 2) square is completely solvable. This can be see by considering the
(n + 2) × (n + 2) square and searching for an element v of the kernel which is symmetric
about planes passing through the diagonals, as was done in Example 3.12.

Proposition 5.13.

(i) A (2) diamond is completely solvable; a (4) diamond is not completely solvable.

(ii) If n is even, n > 4, and n
2 is odd, then the solvability conditions of an (n) diamond and

an (n−2
2 ) diamond are the same.

(iii) If n is even, n > 4, and n
2 is even, then the (n) diamond is completely solvable if and only

if n . 1 (mod 3) and the n2 ×
n
2 square is completely solvable.

(iv) If n is odd, then the (n) diamond is completely solvable if and only if n . 2 (mod 3) and
the n×n square is completely solvable.

Proof. Denote the setup (diamond) by S. A (2) diamond is just a 2 × 2 square, and is
thus completely solvable. On the (4) diamond, define v(i) = 0 if i is a tile on one of
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the diagonals, and define v(i) = 1 if i is not on a diagonal. Then, v ∈ ker(M) so the (4)
diamond is not completely solvable, thus proving (i). If n is even, and n

2 is odd, then we
notice that the diagonals separate the diamond into four smaller diamonds of size n−2

2 .
Since the diamond is symmetric about an axis that passes through a diagonal L, and the
tiles of S − L that are adjacent to any tile i ∈ L exist in symmetric pairs about the axis,
we can then apply Corollary 3.11 twice in succession and find that the solvability of the
(n) diamond is equivalent to the solvability of the n−2

2 diamond, thus proving (ii). If n
2

is even, then the diagonals separate the diamond into four smaller arrangements, which
consist of two (n2 −2) pyramids separated by a column of length n

2 . By Corollary 3.11, the
solvability of the (n) diamond is equivalent to the solvability of the smaller arrangements.
If n

2 ≡ 2 (mod 3) (i.e n ≡ 1 (mod 3)), then each arrangement is not completely solvable by
Theorem 3.7, and so the n diamond is not completely solvable. If n . 2 (mod 3), then, by
Theorem 3.10 the solvability of the smaller arrangements is equivalent to the solvability
of an n

2 −2 pyramid, which is equivalent to the solvability of an n
2 ×

n
2 square, which proves

(iii).

If n is odd, then we consider the horizontal axis of symmetry which bisects a column L
of length n. The tiles in S − L that are adjacent to any tile i ∈ L exist in symmetric pairs
about the axis. Therefore, If n ≡ 2 (mod 3), the (n) diamond is not completely solvable
by Theorem 3.7. If n . 2 (mod 3), then by Theorem 3.10, the solvability of diamond is
equivalent to the solvability of a (n− 2) pyramid, which is equivalent to the solvability of
a n×n square, which proves (iv). �

Since the proposition is relatively straightforward for odd numbers, we will illustrate a
couple of examples highlighting solutions for even number diamonds.

Example 5.14. Is the (10) diamond completely solvable?

The red axes of symmetry are per-
pendicular diagonal axes. Since 10
is even, and 10

2 is odd, we apply
Proposition 5.13 to determine that
the solvability of a (10) diamond is
equivalent to the solvability of a (4)
diamond, and thus the (10) diamond
is not completely solvable. An ele-
ment of the kernel is illustrated to
the right.

Example 5.15. Is the (12) diamond completely solvable?
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12 is even and 12
2 = 6 is even. Applying Proposition

5.13, since 12 . 1 (mod 3), we have that the solvability
of a (12) diamond is equivalent to the solvability of a
6× 6 square. By Example 3.12, the 6× 6 square is com-
pletely solvable. Thus, the (12) diamond is completely
solvable. In the proof of Proposition 5.13 iii) which
addresses diamonds with similar properties to the (12)
diamond, the red axes of symmetry are applied first,
and then the green axes of symmetry are applied to
the four separated smaller arrangements.
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