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Abstract. We incorporate Milankovitch cycles into a recent conceptual climate model of
the glacial-interglacial cycles. Investigated are the effects of orbital forcing elements such
as variations in the eccentricity of the Earth’s orbit and variations in the obliquity of the
Earth’s axis, on the expansion and retreat of stable ice sheets. The results showed that in
a colder climate, variations in obliquity dominate the evolution of the ice sheet, whereas
in a warmer climate, variations in eccentricity and obliquity both matter in the evolution
of the ice sheet. The resulting simulations exhibited glacial cycles and also exhibited the
skipped obliquity signal phenomenon.

1. Introduction

Over the last one million years, massive ice sheets across North America have periodically
formed and melted during glacial periods. Milankovitch hypothesized that variations
in the Earth’s orbital parameters, such as obliquity of the Earth’s spin axis (i.e., the tilt
of the Earth’s axis), eccentricity of the Earth’s orbit, and the precession of the Earth as
it rotates (i.e., the amount it “wobbles”), pace the glacial cycles. [11] However, orbital
forcing cannot be the only reason behind the pacing of the glacial cycles, [4] since the
Milankovitch cycles have been constant over the last 5 million years. Thus, there must
be nonlinear feedbacks inherent to Earth’s climate system. [16] One such feedback is the
ice-albedo feedback, which is modeled as a dynamical system [9]. Ice-albedo feedback
is a positive feedback climate process where a change in the area of snow-covered land,
ice caps, glaciers or sea ice alters the albedo, i.e., the ratio of reflected radiation to the
incident radiation. Budyko was interested in how ice-albedo feedback affects climate and
in his 1969 paper [3], he introduces the conceptual energy balance model (EBM).

We look at Budyko’s model which studies the average annual temperatures in latitudinal
zones. A key feature of Budyko’s model is that it assumes that the Earth has an ice cap,
with the requirement that above a particular latitude y = η there is always ice and below
the latitude y = η there’s no ice. The ice line is then defined to be the edge of the ice
sheet η. However, Budyko’s model does not permit the ice line η to respond to changes in
temperature. This drawback was solved by Widiasih in [18] where an ODE modeling the
evolution of η was added. McGehee and Widiasih introduced a quadratic approximation
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to reduce this infinite dimensional system to a pair of ordinary differential equations.
However, since η approaches either a small ice cap or the equator over time, it doesn’t
take into account the relative sizes of the accumulation and ablation (melting) zones in
glacial advance and retreat and hence does not permit glacial cycles. Walsh et al. in [16],
rectified this by adding a variable called the snow line, which was independent of the ice
line.

The goal of this paper is to incorporate Milankovitch cycles into Walsh et al.’s conceptual
climate model as a numerical simulation. We aim to understand which orbital forcing
factor contributes more to the expansion and retreat of the ice sheet under different con-
ditions. In the following section we introduce Budyko’s EBM and Widiasih’s ice sheet
evolution equation. In Section 3 we draw attention to McGehee and Widiasih’s work of
reducing the infinite dimensional system to a pair of ordinary differential equations. In
Section 4 we describe how Walsh et al. added a snow line to McGehee’s and Widiasih’s
model. In the penultimate section, we include Milankovitch cycles into Walsh et al.’s
model and discuss the simulations and note that they exhibit the “skipped obliquity”
phenomenon, an idea first put forth by Huybers in [6] as a conceptual model with a phys-
ical interpretation of how the obliquity signal skips in the climate record. In the final
section we summarize our findings and conclude that variations in obliquity of Earth’s
orbit affect the glacial cycles predominantly but variations in the eccentricity of Earth’s
orbit plays a role as well in a warmer climate.

2. Temperature-Ice line model

Consider Budyko’s time-dependent equation [14] [5]:

R
∂T (y, t)
∂t

=Qs(y)(1−α(y))− (A+BT )−C
(
T − T

)
, (1)

This equation represents the change in energy stored in the Earth’s surface at y ∈ [0,1],
where y is the sine of the latitude with y = 0 the equator and y = 1 the north pole since
Budyko’s EBM assumes the Earth to be symmetric about the equator. The function T =
T (y, t)(◦C) is the annual average surface temperature on the circle of latitude y. The units
of each side of (1) are Watts per meter squared

(
W
m2

)
. The quantity R is the specific heat

capacity of the Earth’s surface, measured in units of J
m2 ◦C . The average annual incoming

solar radiation (also known as insolation), a parameter which depends on the eccentricity
of Earth’s orbit [9] is represented by Q. The distribution function s(y) depends upon
the obliquity of Earth’s orbit [9], which describes the distribution of insolation across
a latitude, and satisfies

∫ 1
0
s(y)dy = 1. The albedo function αy denotes the albedo at y,

which as described earlier, measures the extent to which insolation is reflected back into
space. Thus, the first term on the right hand side of (1) represents the energy absorbed at
latitude y on the surface from the sun.

The energy reradiated into space at longer wavelengths is approximated linearly by the
term A + BT . Before the heat escapes into space, some of it is absorbed by greenhouse
gases and returned to the surface. Thus, this reradiation term is the net loss of energy
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from the surface to space. The energy transported from warmer latitudes to cooler lati-
tudes is approximated by the term C(T −T ) where T is the global annual average surface
temperature and satisfies T =

∫ 1
0
T (y, t)dy. The positive constants A,B,andC are found

empirically through satellite data. [10]

The equilibrium temperature profiles are found to be: [10]

T ∗(y) =
1

B+C

(
Qs(y)(1−α(y))−A+

C
B

(Q(1−α −A)
)
, (2)

where

α =
∫ 1

0
α(y)s(y)dy (3)

and

s(y) = s0p0(y) + s2p2(y), s0 = 1, s2 = −0.482. (4)

The terms p0(y) = 1 and p2(y) = 1
2(3y2 − 1) are the first two even Legendre polynomials.

Equation (4) is within 2% of the true s(y) values [12]. The albedo function is written as:

αη(y) =


α1, ify < η
α2, ify > η,
α0 = α1+α2

2 , ify = η,
(5)

where α1 < α2 and α1 denotes the albedo of the surface having no ice and α2 denotes
the albedo of the surface having ice. Using (4) and (5), the equilibrium temperature
profiles (2) are even, piecewise quadratic functions having a discontinuity at η. Note that
η parametrizes (3) and hence (2), so T ∗(y) is written as T ∗η (y). Therefore, for each value of
η there are infinitely many equilibrium temperature functions. McGehee and Widiasih

define T ∗(η) as T ∗(η) =
limy→η− T

∗(y)+limy→η+ T ∗(y)
2 and the equilibrium temperature at the ice

line as

T ∗η (η) =
1

B+C

(
Qs(η)(1−α0)−A+

C
B

(Q(1−α −A)
)
, (6)

where α0 = α1+α2
2 . Budyko’s EBM however doesn’t allow the ice line η to respond to tem-

perature changes. This disadvantage was resolved by Widiasih in [18] where an ordinary
differential equation modeling the evolution of η was added, giving the following system:

R
∂T
∂t

=Qs(y)(1−α(y,η))− (A+BT )−C
(
T − T

)
(7a)

dη

dt
= ρ(T (η, t)− Tc), (7b)

where ρ is a parameter which controls the relaxation time of the ice sheet and Tc is a
critical temperature above which ice melts and below which ice forms. The above system
describes how the temperature distribution T (y, t) evolves according to Budyko’s equa-
tion (7a) and the evolution of η in (7b). If T (η, t) > Tc, the ice sheets melt and retreat
toward the pole. If T (η, t) < Tc, the ice sheets expand and move toward the equator. [16]
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3. Approximation to finite dimensional system

As mentioned earlier, the equilibrium solutions of Budyko’s equation (7a) are even and
piecewise quadratic, with a discontinuity at η when using (4) and (5). This prompted
McGehee and Widiasih to introduce a quadratic approximation to the infinite dimen-
sional system (7) and we note the final result below while the reader can find all details
in [10]. Thus, the infinite dimensional system (7) is approximated by the system of ODEs

ẇ = −τ(w −F(η)) (8a)

η̇ = ρ(w −G(η)), (8b)

where F(η),G(η) are given below in (9) and (10) respectively, τ = B
R and ρ are time con-

stants. One can prove that for fixed η the variable w is a translate of the global aver-
age temperature. In [10], it is proven that there exists a stable equilibrium point with a
small ice cap, and a saddle equilibrium point with a large ice cap, for all ρ > 0, for stan-
dard parameter values (See Table 1). [16] Note that F(η) is a cubic polynomial because

P2(η) = η3−η
2 ,

F(η) =
Q
B

(
(1−α0)A+

C
B+C

(α2 −α1)
(
η − 1

2
+ s2P2(η)

))
, (9)

and G(η) is a quadratic polynomial because p2(η) = 3η2−1
2 ,

G(η) = − Q
B+C

s2(1−α0)p2(η) + Tc. (10)

The constants A,B,C,Q,α0,α1,α2, s2, and Tc are given in Table 1. But, as η approaches
either the equator or a small ice cap over time, it does not take into account the rela-
tive sizes of the ablation (melting) and accumulation zones when ice sheets advance and
retreat and hence doesn’t permit glacial cycles. In [16], this was resolved by adding a
variable called the snow line independent of the ice line (which will now become the
albedo line), which is presented below.

4. Snow line addition

The accumulation and ablation of ice play a fundamental role in the theory of glacial
cycles, serving to control the terminus advance and retreat, the ice volume, and the ge-
ometry of the surface of the ice sheet [2]. Abe-Ouchi et al in [1] found the fast retreat of
the ice sheet was due to significantly enhanced ablation, i.e., the ablation rate for a large,
advancing ice sheet was necessarily much smaller than the ablation rate for a retreating
ice sheet, in order to faithfully reproduce the last four glacial cycles. [16] This simple
idea was incorporated into Walsh et al.’s model below (Systems (11) and (12)). The model
(Systems (11) and (12)) vector field has a line of discontinuity that produces a switch to
the alternate regime. Walsh et al.’s model below will share some similarities with [17], in
the way that it “flip-flops.”

Considering system (8) again, independent snow and ice lines are introduced to incorpo-
rate accumulation and ablation zones. Walsh et al. begin by recasting the role played by
η, interpreting η henceforth as the snow line. We denote by ξ the (more slowly moving)
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ice line, i.e., the edge of the ice sheet (see Figure 1 below). The ablation zone has extent
η − ξ (when η > ξ), while the accumulation zone has size 1− η. [16] The temperature-ice

Figure 1. Walsh et al. model set-up. η is the snow line and ξ is the ice line. For the
sake of illustration, the shape presented represents a glacier. Taken from Walsh et
al [16], reproduced with permission from the authors.

line-snow line model (Systems (11) and (12)) is a non smooth system with state space [16]

B = {(w,η,ξ) : w ∈R,η ∈ [0,1],ξ ∈ [0,1]}

defined as follows. Pick parameters b0 < b < b1 representing ablation rates, and a param-
eter a denoting the accumulation rate. When b(η − ξ)− a(1− η) < 0, so that accumulation
exceeds ablation and the ice sheet advances [16], set

ẇ = −τ(w −F(η)) (11a)

η̇ = ρ(w −G−(η)) (11b)

ξ̇ = ε(b0(η − ξ)− a(1− η)). (11c)

The function F(η) in (16a) is given by (9), G−(η) in (11b) is given by (10) but with Tc =
T −c = −5◦C, and ε > 0 is a time constant for the movement of the ice line.

When ablation exceeds accumulation (b(η −ξ)− a(1−η) > 0 and the ice sheet retreats, set

ẇ = −τ(w −F(η)) (12a)

η̇ = ρ(w −G+(η)) (12b)

ξ̇ = ε(b1(η − ξ)− a(1− η)). (12c)

where F(η) in (12a) is given by (9), G+(η) in (12b) is given by (10) but with Tc = T +
c =

−10◦C.

The relative sizes of ablation rates b0 and b1 were motivated by [1]. The choice of different
Tc-values is motivated by [15], in which a linear interpolation between Tc = −13◦C and
Tc = −3◦C is introduced to model changes in deep ocean temperature. The idea behind
it is that a large advancing sheet implies a colder world overall, so that less energy is
required to form ice (and vice versa for a retreating ice sheet).
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Walsh et al. thus arrived at a 3-dimensional system having a plane of discontinuity

Σ = {(w,η,ξ) : b(η − ξ)− a(1− η) = 0} =
{
(w,η,ξ) : ξ =

(
1 +

a
b

)
η − a

b

}
. (13)

A trajectory in (w,η,ξ)-space passing through Σ switches from advancing mode to glacial
retreat, or vice versa [16], similar in spirit to the flip-flop model in [17].

5. Milankovitch forcing

5.1. Equilibrium Solutions. The temperature-ice line model (System (8)) is now forced
with Milankovitch cycles, i.e., we make important parameters such asQ and s2 depend on
eccentricity of the Earth’s orbit and obliquity of Earth’s axis respectively. We would like
to emphasize here that both these orbital forcing elements are time dependent [8]. The
work of Laskar [8], was instrumental in incorporating these elements in our numerical
simulation below. McGehee and Lehman in [9] showed that insolation, Q is a function of
e, the eccentricity of the Earth’s orbit, given by

Q =Q(e) =
Q0√
1− e2

, (14)

where Q0 is the insolation assuming the eccentricity of Earth’s orbit is 0 (See Table 1 for
value). McGehee and Widiasih in [10] proved that the function s2 in (4) actually depends
on β, the obliquity of Earth’s axis, given by

s2 = s2(β) =
5

16
(−2 + 3sin2β). (15)

Recall that F(η) and G(η) are functions of Q and s2, which makes F(η) and G(η) functions
of eandβ:

F(η) =
Q0

B(
√

1− e2)

(
(1−α0)A+

C
B+C

(α2 −α1)
(
η − 1

2
+

5
16

(−2 + 3sin2β) ·
η3 − η

2

))
, (16)

G(η) = − Q0

(B+C)
√

1− e2

5
16

(−2 + 3sin2β)(1−α0) ·
3η2 − 1

2
+ Tc. (17)

Note that the accumulation and ablation parameters a,b,b0,b1 are dimensionless con-

Parameter Value Units
Q0 343 W m−2

A 202 W m−2

B 1.9 W m−2(◦C)−1

C 3.04 W m−2(◦C)−1

α1 0.32 dimensionless
α2 0.62 dimensionless
α0 0.47 dimensionless
T +
c −10 ◦C
T −c −5.5 ◦C
s2 −0.482 dimensionless

Table 1. Parameter values (taken from [16])
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stants, τ,ε have units (seconds)−1, and ρ has units (seconds)−1(◦C)−1. Consider the system
of ODEs in (8) again:

ẇ = −τ(w −F(η))

η̇ = ρ(w −G(η)).

In order to obtain the equilibrium solutions, we set the derivatives equal to 0. That is,

w = F(η) = G(η)⇒ F(η)−G(η) = 0.

Recall that F(η) is a cubic polynomial in η due to P2(η) = η3−η
2 and G(η) is a quadratic

polynomial in η due to p2(η) = 3η2−1
2 . We wrote a MATLAB code to solve the cubic equa-

tion F(η)−G(η) = 0 using a numeric solver and out of the three roots found for every kYr,
one is discarded since it does not belong to the range [0,1]. These roots are the snow line
values that are dependent on both e and β since F(η) and G(η) are dependent on these
orbital elements. We aim to find out which factor ηsink is more dependent on because it
signifies the extent of the stable ice sheet.

Using MATLAB we plot the stable and unstable snow lines along side the eccentricity
and obliquity curves (which are due to Laskar [8]) over the last million years. Using the
eyeball metric, we see in Figure 2 that for Tc = −10◦C, which has a small stable (sink)
ice cap near the pole, η, the snow line, is varying in sync with the obliquity curve. The
snow line (sink) curve and the obliquity curve have the same amplitude and to compute
the period, we look at the range -700 kYr to -600 kYr. The ηsink curve has 2.5 cycles in
the period, implying that one cycle has a 40,000 year period, which coincides with the
obliquity cycle period as seen in Figure 2. Variations in the obliquity signal driving the ice
sheet formation and melting was also predicted by McGehee and Lehman [9] and so by
forcing a system (8) with Earth’s orbital elements, this figure supplements their findings.
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Figure 2. Ice lines affected by Milankovitch cycles when Tc = −10◦C. Units of the
vertical axis are dimensionless.
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Figure 3. Ice lines affected by Milankovitch cycles when Tc = −5.5◦C. Units of the
vertical axis are dimensionless.

Using the eyeball metric again in Figure 3, we observe that the stable (sink) ice cap, does
not vary only with the β signal. Instead, it depends on both e and β. Although the
amplitude of the ηsink signal is similar to the obliquity signal, the dependence on e can
be seen by comparing the periods of the eccentricity and ηsink signals. In the ηsink signal,
one cycle can be measured from the trough at 650 kYr to the trough at 550 kYr. This
period of 100,000 years matches the period of the eccentricity signal as seen in the same
figure. The unstable (saddle) large ice cap below varies closely with β. Given that these
observations were done by eyeballing the figures, we did a power spectrum analysis to
confirm the results.

We computed the power spectrum using the Fast Fourier Transform algorithm in MAT-
LAB in order to claim that the stable snow line is forced by eccentricity or obliquity. The
power spectrum aims to tell us how much of the signal is at a particular frequency. In
Figure 4 we notice that the ηsink and obliquity signals follow the same shape. We note the
spikes at frequencies around 0.019 and 0.025 of the stable snow line, which also corre-
spond to the obliquity signal spikes. The ice cap movement follows the obliquity cycle
with a 40,000 year period (1×1000

0.025 = 40,000). This further confirms that the stable ice line
follows obliquity cycle as also seen in Figure 1. In Figure 5, we note that the power
signal for ηsink is mimicking the eccentricity signal and not just the obliquity signal. The
spikes of the stable snow line demonstrate the effect of the eccentricity. We see that the
snow line follows the eccentricity cycles of period 100,000 years. In Figure 3 we could
only hypothesize that the ice cap movement is also determined by the eccentricity signal,
but we have confirmed from Figure 5 that this is the case. Now that we have explored
in depth which orbital forcing is more dominant in different temperature settings in the
static case, i.e., without producing glacial cycles, we now focus on the dynamics of Walsh
et al.’s model when we include Milankovitch forcing.
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Figure 4. Power spectrum of stable ice line, eccentricity, and obliquity over the last
one million years when Tc = −10◦C.
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Figure 5. Power spectrum of stable ice line, eccentricity, and obliquity over the last
one million years when Tc = −5.5◦C.

5.2. Ice line-Snow line dynamics. We first show that we do get the similarities to the
“flip-flop” model in [17] with Walsh et al.’s model (System (8)). Since we calculated η
in Section 5.1 (Figures 2 and 3), we can also calculate ξ using (13) and finally find the
discontinuity equation given by the first equality in (13). We begin with Tc = −10◦C,
where we have a small ice cap, i.e., ηsink is close to the pole (Figure 2). Using MATLAB,
assuming a = 1.05,b = 1.75,b1 = 5,b0 = 1.5,D = b(η−ξ)−a(1−η) and sink values of η which
are found in Figure 2 and ξ given by ξ =

(
1 + a

b

)
η− ab , we getD < 0 which means that there

is more accumulation than ablation. Recall that when D < 0, we set Tc = −5.5◦C and we
switch to the ODEs in system (11) and we have Figure 7. We note that for Tc = −5.5◦C we
have a larger ice cap, i.e., ηsink is closer to the equator as compared to ηsink in the −10◦C
case. For the same values of a,b,b1,b0 as above, we get D > 0, which means that there is
more ablation than accumulation. However, recall that when D > 0, we set Tc = −10◦C
and switch to the ODEs in system (12), which corresponds exactly to Figure 6 above. But
after this, D < 0 and we switch back to Figure 7. Thus, for these parameter values, glacial
cycles do occur, where glaciation (D < 0) as seen in Figure 6 and deglaciation (D > 0)
as seen in Figure 7 take place one after the other. In particular, although the model
(Systems (11) and (12)) is constantly in the “flip-flop” state, D never crosses 0. If it were
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Figure 6. Discontinuity equation and switching mechanism when Tc = −10◦C

Figure 7. Discontinuity equation and switching mechanism when Tc = −5.5◦C

0, accumulation equals ablation and hence there would be no trigger to go to the next
state.

We now make b = b0 to reduce our parameter space. First, we force the model (Sys-
tems (11) and (12)) with two Milankovitch parameters, obliquity and eccentricity. Using
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(b) Evolution of ice and snow lines over time
with full Milankovitch forcing

Figure 8. b = b0 = 1.5,b1 = 5, a = 1,ρ = ε = 4× 10−2

Mathematica, in Figure 8(a) we note that we get cycles, that is, we constantly move from
a glaciation state (blue curve below the green straight line) to a deglaciation state (blue
curve above the green straight line) and vice versa. When the trajectory crosses the dis-
continuity plane, ablation exceeds accumulation and retreat begins (deglaciation) or ac-
cumulation exceeds ablation and ice sheets expand toward the equator (glaciation) (larger
values of ξ). Now that we have established that glacial cycles are possible in Walsh et al.’s
model, we aim to see how the snow and ice lines vary with time and how they behave
with orbital forcing one at a time.

Figure 8(b) describes the evolution of the snow line and ice line over time, where t = 0 rep-
resents one million years ago and t = 1000 represents present day. Note that the ice line
(red) increases slowly, denoting a slow descent into a long glacial period and an expand-
ing ice sheet and then a short interglacial period follows where the ice sheet relatively
quickly retreats as seen in the steep increase of ξ. This is consistent with paleoclimate
data [13]. Huybers in [6] made a case that obliquity must be the trigger for ice sheet
retreat since otherwise ice sheets were too massive to melt rapidly without any exter-
nal factor. Most importantly, what we notice in Figure 8(b) is that deglacial events were
not occurring every obliquity cycle and instead skipped two obliquity cycles at multiple
times, such as at t = 200,400,800. Measuring from peak to peak, we see that these skips
were between 80 and 120 kyr which is exactly what Huybers predicted in [6]. However,
when we force Walsh et al.’s model ((Systems (11) and (12))) only with obliquity (Figure
9(b)), that is, we remove variations due to eccentricity by assuming Q(e) = Q0, we notice
that near t = 800 there is no obliquity cycle which is skipped. Also note that the skipping
of cycles near t = 400 in Figure 8(b) is pushed back to t = 300 in Figure 9(b). This leads us
to consider the possibility that eccentricity still does play a role in these cycles. In Figure
10(b) we see exactly this, as there are skipping of cycles consistently when obliquity is
removed, i.e., s2 = s2(β). This is in agreement with Huybers’ revised outlook in [7] where
he notes that eccentricity is also responsible for deglaciation. Table 2 summarizes the
explorations and their results.

In Figures 11, 12, and 13 we make the time constant for the snow line 100 times faster
than the time constant for the ice line. Interestingly, we note that there is not much
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Figure 9. b = b0 = 1.5,b1 = 5, a = 1,ρ = ε = 4× 10−2
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Figure 10. b = b0 = 1.5,b1 = 5, a = 1,ρ = ε = 4× 10−2

of a change in the evolution of the ice lines and snow lines over time even though the
trajectory across the discontinuity plane has changed. We now increase the ablation
parameter b1 to its limiting case b1 = 45, beyond this value we do not get the expected
glacial-interglacial cycles. When we force the system fully with Milankovitch cycles we
observe in Figure 14(a) that the trajectory does not spend much time ablating and quickly
crosses the discontinuity plane to start accumulating ice slowly. We expect this since
b1 = 45 is a large ablation value and pushes the ice sheets to retreat faster. In Figure 14(b)
we see the rapid interglacial period and slow descent into the glacial period as well and
still have the skipping of some obliquity cycles.
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Figure 11. b = b0 = 1.5,b1 = 5, a = 1,ρ = 100ε = 4
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Figure 12. b = b0 = 1.5,b1 = 5, a = 1,ρ = 100ε = 4
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Figure 13. b = b0 = 1.5,b1 = 5, a = 1,ρ = 100ε = 4
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Figure 14. b = b0 = 2,b1 = 45, a = 1,ρ = ε = 4× 10−2

6. Discussion

Exploration Results
If Tc = −10◦C, which orbital forcing ele-
ment drives the stable ice sheet expansion
and retreat?

Obliquity (See Figures 2 and 4)

If Tc = −5.5◦C, which orbital forcing ele-
ment drives the stable ice sheet expansion
and retreat?

Eccentricity and Obliquity (See Figures 3
and 5)

Do glacial cycles occur with full Mi-
lankovitch forcing incorporated into Walsh
et al.’s model (Systems (11) and (12))?

Yes (See Figures 6,7,8(a),11(a),14(a)) and
notice skipped obliquity cycles in Figure
8(b)

What happens when we force Walsh et al.’s
model (System (11) and (12)) with varia-
tions in obliquity only?

No obliquity cycles skipped at certain
times (See Figure 9(b))

What happens when we force Walsh et al.’s
model (System (11) and (12)) with varia-
tions in eccentricity only?

Obliquity cycles skipped consistently (See
Figure 10(b)), signaling that eccentricity is
also responsible for deglaciation (which is
in agreement with Figures 3 and 5)

Table 2. Summary of explorations and their results

Walsh et al.’s unique model (Systems (11) and (12)) was based on a finite approximation of
an infinite dimensional model (System (7)) comprised of Budyko’s energy balance model,
an ODE describing the behavior of the edge of the ice sheet, and Walsh et al.’s snow line
addition to account for glacial accumulation and ablation zones. Parameters such as inso-
lation Q and s2 in the temperature-ice line model were made to depend on Milankovitch
cycles, that is, eccentricity of the Earth’s orbit and the obliquity of the Earth’s axis respec-
tively and we observed that deglaciation and glaciation do occur mostly due to obliquity
in the colder climate and in the warmer climate also due to eccentricity. Skipping of
obliquity cycles was also seen which is in agreement with Huybers’ model [6]. Thus, with
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Walsh et al.’s new simple conceptual model we were able to produce glacial cycles and
force them with Milankovitch cycles that shed more light on the behavior of ice and snow
lines.
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