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Abstract. The Euler line of a triangle passes through several important points, including
three specific triangle centers: the centroid, orthocenter, and circumcenter. Each of these
centers is the intersection of lines related to the triangle, mainly its medians, altitudes, and
perpendicular bisectors, respectively. We present three theorems which initially share a
similar construction. Each involves starting with a triangle and a point. After connecting
the triangle’s vertices to that point, creating additional triangles, we establish connections
to either the centroids, orthocenters, or circumcenters of the new triangles.

1. Introduction

Geometry is a classic mathematics subject, both in the sense that there were important
geometric developments in classical times and in the fact that most students are intro-
duced to geometry in high school. If we consider the geometrical subfields which are
taught and researched in graduate schools as modern geometry, then there is currently
great work being done in those areas. The focus of this paper follows in the footsteps
of older geometry. Mathematicians in “premodern” geometry returned to, and expanded
upon, Euclidean geometry. This paper returns to premodern geometry and expands upon
it.

To set the stage, we turn to Leonhard Euler, one of the greatest influencers of mathe-
matics. His reach extended to geometry, as seen through the founding of the subfields
topology and graph theory. He also made his mark on the geometry of the classic Eu-
clidean triangle. The Euler line of a triangle passes through three main triangle centers:
the centroid, circumcenter, and orthocenter. These points are defined as follows:

Definition 1.1. The centroid of a triangle is the intersection of the triangle’s medians (lines
connecting vertices to each side’s midpoint).

Definition 1.2. The circumcenter of a triangle is the intersection of the triangle’s perpen-
dicular bisectors (lines perpendicular to, and through the midpoint of, each side).

Definition 1.3. The orthocenter of a triangle is the intersection of the triangle’s altitudes
(lines through vertices which are perpendicular to the opposite sideline).

∗ Corresponding author
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Euler noted that the three centers are collinear. Also, the centroid is between the cir-
cumcenter and the orthocenter and is twice as far from the orthocenter as it is from the
circumcenter [5].

Every so often the work of Euler is resurrected with new results. Mathematicians have
since found significant points that also reside on the Euler line, such as de Longchamp’s
point and more recently, in 1985, the Schiffler point [2, 9]. Also in the 20th Century,
Euler’s conclusion about the line was reproven using position vectors [4]. Oldknow (1996)
investigated these centers, along with the incenter and associated circles [8]. In 2000,
Longuet-Higgens wrote about another interesting point that lies on the Euler line [7].
A year later, we saw a conclusion about the concurrency of four Euler lines [6]. Euler’s
work has even been extended by Villiers et. al. ([3], 2014) to a quasi-Euler line of a
quadrilateral. This type of geometry continues to hold mathematicians’ interests and is
not the finished field that it is sometimes perceived to be.

The definitions of centroid, circumcenter, and orthocenter are central to this paper, but
there are a few more topics that recur in multiple sections. We recall these, which the
reader has likely seen before.

Two line segments are congruent if they have the same length, and two angles are con-
gruent if they have the same measure. Two triangles are congruent if their corresponding
sides and angles are congruent. Corresponding parts of congruent figures are congru-
ent, a theorem that is used often in the proofs of this paper. Congruency of triangles is
denoted 4ABC � 4XYZ.

A less strong, but frequently useful, statement to make about triangles is that they are
similar. Two triangles are similar if the three angles of one are congruent to the three
angles of the other, and if corresponding sides are proportional. Similarity is denoted
4ABC ∼ 4XYZ.

For a thorough introduction to Euclidean geometry, we direct the reader to [1]. To explore
more advanced topics, especially those involving the aforementioned triangle centers, see
[10].

This paper is split into three sections, one each on the centroid, orthocenter, and circum-
center. Our three main theorems were developed similarly, beginning with an arbitrary
triangle and a point (not necessarily arbitrary). By constructing centroids, orthocenters,
or circumcenters, respectively, of three resulting triangles, we were led to unique and in-
teresting conclusions. In the next section, centroids will be used to create a new triangle
that is similar to the given triangle. We also prove another set of collinear points that
have a two-thirds distance relationship. Section 3 demonstrates how orthocenters lead to
a triangle congruent to the original. Finally, in Section 4 we show a connection between a
triangle, a circumcircle, and three created circumcenters.

2. Centroid Theorem

We initially consider the centroid of a triangle, which is the most well-known center of a
triangle. Centroids, or centers of mass, are often considered in other courses and topics,
and are certainly not restricted to triangles. The proofs of Theorem 2.7 and Corollary
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2.10, our main centroid theorems, were completed through the use a few simple lem-
mas, mostly relating to similar triangles. These were likely theorems seen in high school
geometry classes. We include them here for reference.

Lemma 2.1. Given two triangles 4ABC and 4DEF, ∠ABC � ∠DEF and ∠BAC � ∠EDF (or
any two corresponding angles) if and only if 4ABC ∼ 4DEF.

Lemma 2.2. (SSS for Similar Triangles): If two triangles have all three pairs of corresponding
sides in the same ratio, then the triangles are similar.

Definition 2.3. A transversal is a line that crosses at least two other lines.

Definition 2.4. Suppose two lines are cut by a transversal. The pairs of angles on opposite
sides of the transversal but inside the two lines are called alternate interior angles.

Lemma 2.5. (Alternate Interior Angle Theorem, AIAT): If two parallel lines are cut by a
transversal, then the resulting pairs of alternate interior angles are congruent.

One more well-known theorem is needed. This last lemma might be new to someone who
has not taken a college geometry course.

Lemma 2.6. The centroid is 2
3 from any triangle vertex along the length of the median from

that vertex.

To set up our main centroid theorem, we need to define a number of points. See Figure
1 for a visual representation. Let there be an arbitrary point L and 4ABC with medians
AD, BE, and CF. The medians intersect at centroid M. Also, let there be segments LA
with midpoint P , LB with midpoint R, and LC with midpoint Q. The centroid of 4ABL is
Z, the centroid of 4BCL is X, and the centroid of 4ACL is Y . Finally, we construct 4XYZ
with centroid N and medians XI , Y J , and ZK .

Figure 1. The initial set-up for Theorem 2.7.
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Theorem 2.7. Given 4ABC and an arbitrary point L, with centroids X,Y , and Z of 4BCL,
4ACL, and 4ABL, then 4XYZ is similar to 4ABC. Also, the side lengths of 4XYZ are 1

3 the
length of 4ABC.

Proof. First, we will show similarity by proving the ratio between the sides of 4XYZ and
4ABC is one to three. Thus, we show that each of sides XY ,ZX, and YZ are 1

3 the lengths
of the corresponding sides of 4ABC.

Consider 4ACR in Figure 2. Recall that R is the midpoint of the segment connecting the
arbitrary L with the main triangle vertex B. We want to show that this triangle is similar
to 4ZXR, where X is the centroid of 4BCL and Z is the centroid of 4ABL. We cannot
assume that ZX and AC are parallel. Because AR is a median of 4ABL, by Lemma 2.6
AZ = 2

3AR. Similarly, CX = 2
3CR since CR is a median of 4CBL. Also, ∠CRA � ∠XRZ by

the reflexive property. Then, by SAS for Similar Triangles, 4ACR ∼ 4ZXR.

Figure 2. Similar triangles in the proof of Theorem 2.7.

By triangle similarity, ZRAR = ZX
AC = 1

3 . Then ZX is 1
3 the size of AC. Also, by AIAT, ZX ‖ AC.

We have our first side comparison: ZX = 1
3AC and ZX ‖ AC.

Now consider the point Y , which is the centroid of 4ACL. By equivalent reasoning, YX
and YZ are parallel to, and 1

3 the size of, AB and CB, respectively. Thus, all the side
lengths of 4XYZ are 1

3 the lengths of the corresponding sides of 4ABC.

Finally, to show similarity we simply apply SSS for Similar Triangles and get 4XYZ ∼
4ABC. �

The proof of Corollary 2.10 will introduce quadrilaterals, denoted �ABCD, so we include
a lemma connected to that shape:

Lemma 2.8. If opposite angles of a quadrilateral are congruent, then it is a parallelogram.

We will also make use of the following fact about the medians of similar triangles.
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(a) Used for part one, to show two-thirds length. (b) Used for part two, to show thatN ′ is the same
as N .

Figure 3. Figures used in the proof of Corollary 2.10.

Lemma 2.9. The ratio of the areas of similar triangles is equal to the ratio of their correspond-
ing medians.

Corollary 2.10. The centroid,M, of 4ABC, and the centroid, N , of 4XYZ, are collinear with
L and LN = 2

3LM.

Proof. Recall that point I is the midpoint of ZY , with XI being a median. Our proof
necessitates two cases: one where

←→
LM and

←→
XI intersect and another in which they do not

intersect in a single point. We first give the proof of single intersection case.

Part One: In this part, we show the two-thirds length relationship. See Figure 3a for
a visual representation. Assume that the intersection of

←→
LM and

←→
XI exists; call it N ′.

From the proof of Theorem 2.7, we know that 4XYZ ∼ 4ABC and they have parallel
corresponding sides. By SAS similarity, 4Y IX ∼ 4BDA, where D is the midpoint of BC.

Therefore, ∠Y IX � ∠BDA. Let H be the intersection of
←→
XI and

←→
BC, and G the intersection

of
←→
YZ and

←→
AD. Then by AIAT, the alternate interior angles ∠IGH and ∠DHG are con-

gruent. Since GH � GH , then AAS gives congruency of 4IGH and 4DHG. Lemma 2.8,
along with IG � HD and GD � IH implies �IGDH is a rectangle and XI ‖ DA. By AIAT,
∠LN ′X � ∠LMD and ∠LXN ′ � ∠LDM. By Lemma 2.1, 4LN ′X ∼ 4LMD. By the definition
of similarity LX

LD = LN ′
LM = 2

3 . Then LN ′ = 2
3LM.

Part Two: Show that N =N ′. See Figure 3b for a visual representation.

Again, by similarity for 4LN ′X and 4LMD, LXLD = N ′X
MD = 2

3 . Then we have

MD =
3
2
N ′X. (1)

By Theorem 2.7, the sides of 4XYZ are 1
3 the length of the corresponding sides of 4ABC.

Then by Lemma 2.9, we have AD = 3XI . Also, since M is the centroid on median AD, we
have AD = 3MD. This implies 3MD = 3XI and MD = XI.
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Substituting equation (1), we see

3
2
N ′X = XI

N ′X =
2
3
XI.

Because N is the centroid, by Lemma 2.6 we know that XN = 2
3XI . It follows that XN =

2
3XI = XN ′. Thus, we know that N =N ′ and L, N , and M are collinear with LN = 2

3LM.

We now give an abbreviated proof of the case where
←→
LM and

←→
XI do not intersect at a

single point. Assuming that they do not intersect, then
←→
XI ‖ ←→LM. Then L is on

←→
AD since

M is on
←→
AD and

←→
AD ‖ ←→XI . Since

←→
LD is a median of 4BCL, and X is the centroid of that

triangle, then X must lie on
←→
LD. Thus

←→
AD,

←→
LD,
←→
XD are coincident lines and

←→
XD ‖ ←→XI . Of

course, this means that
←→
XD and

←→
XI are coincident. Then medians LD and AD are on the

same line, and since M is on
←→
AD, then L and M are collinear. Since they are on

←→
XI , then

they are also collinear with N .

Figure 4. Collinearity case of Corollary 2.10.

Figure 4 shows one example of this collinearity. Depending on the placement of L, the
order of the points may change. For clarity, we use the placement as seen in the figure.
However, other than sign changes, the following proof sketch holds for any position of
L. We need to show that LN = 2

3LM. The following equalities use triangle similarity,
proportionality, and the two-thirds centroid relationship.

First,

LN = LX −NX =
2
3
LD −NX =

2
3
LD − 2

3
IX =

2
3

(LD − IX) =
2
3

(XD +LI). (2)
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Also,

XD =MD −MX =
1
2
AM −MX =

1
2

(3XN )−MX = IX −MX

= (IM +MX)−MX = IM. (3)

Substituting the conclusion of equation (3) into equation (2) gives

LN =
2
3

(IM +LI) =
2
3

(LM).

�

3. Orthocenter Theorem

Section 2 was devoted mainly to centroids. We now move along the Euler line to another
triangle center, the orthocenter. Our main orthocenter theorem uses circles and triangles,
so we begin by presenting the associated lemmas that will be helpful later:

Lemma 3.1. (SSS): If two triangles have three pairs of congruent corresponding sides, then the
triangles are congruent.

Definition 3.2. A central angle is an angle whose vertex is the center of a circle and whose
legs, or sides, are radii intersecting the circle in two distinct points.

Definition 3.3. An inscribed angle is an angle formed by two chords in a circle which have
a common endpoint. This common endpoint forms the vertex of the inscribed angle.

Lemma 3.4. An inscribed angle is half the central angle of that arc.

Lemma 3.5. (Vertical Angle Theorem) Vertical angles are congruent.

Lemma 3.6. The interior angles of a quadrilateral sum to 360°.

Theorem 2.7 began with an arbitrary triangle and point. The following orthocenter the-
orem is initially similar except that it also requires a circumscribed circle of the triangle,
which informs the selection of the extra point. The circumscribed circle passes through
the vertices of the triangle and has as its center the circumcenter of the triangle.

Theorem 3.7. Given 4ABC and a circumscribed circle β. Let point D be the intersection
of a diameter through one of the vertices with β. Connect each vertex of 4ABC to D with
segments AD,BD,and CD. The orthocenters of 4ABD,4ACD, and 4BCD create a triangle
that is congruent to 4ABC.

Proof. Although Figure 5 demonstrates one case of this proof, the reader may refer to that
figure for the following general set-up. Begin with 4ABC and a circumscribed circle β.
Without loss of generality, use vertex A to create point D on β such that AD is a diameter
of β. Connect the vertices of4ABC toD. We then have4ABD,4ACD, and4BCD. Because
AD is a diameter of β, the arc length of ACD

_
is 180°. Then by Lemma 3.4, m∠ACD is 90°.
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Since 4ACD has right angle ∠ACD, and the orthocenter is the intersection of altitudes, its
orthocenter is on vertex C. Similarly, 4ABD has an orthocenter on B. Call the orthocenter
of 4CBD point Z. Next, let the intersection of the altitude from C with BD be point Q.
Let the intersection of the altitude from B with CD be point R.

Figure 5. Diagram representing Case 1: 4ABC is acute.

Case 1: 4ABC is acute.

We have m∠CQD = 90° =m∠BRD because CQ and BR are altitudes. Also, ∠CDQ � ∠BDR
by the Vertical Angle Theorem. By Lemma 2.1 (AA Similarity), 4CDQ ∼ 4BDR and
∠DCQ � ∠DBR. Call this angle measure θ. Then m∠ACZ = 90° + θ = m∠ABZ. Also,
because BQ is an altitude, m∠CQB = 90°. Similarly, m∠CRB = 90°. In addition, ∠CDB �
∠QDR by the Vertical Angle Theorem.

Consider �ACDB and �DRZQ. From Lemma 3.6, we know

m∠DQZ +m∠QZR+m∠ZRD +m∠RDQ = 360° =m∠ACD +m∠CDB+m∠DBA+m∠BAC.

Since m∠ZRD = 90° = m∠ACD, ∠RDQ � ∠CDB, and m∠DQZ = 90° = m∠DBA, then
∠QZR � ∠BAC. Recall that ∠ACZ � ∠ABZ. By Lemma 2.8, since opposite angles are
congruent then �ABZC is a parallelogram. Therefore, CZ � AB and AC � ZB. Also,
CB � CB. Then by SSS, 4ABC � 4ZCB.

Case 2: 4ABC is right.

Refer to Figure 6a. Without loss of generality, assume m∠A = 90°. Then Lemma 3.4 gives
that CB is a diameter of β. Thus m∠BDC = 90°, so the orthocenter of 4BCD is at D.
We know m∠ABD = m∠BDC = m∠DCA = m∠CAB = 90°. Then �ABDC is a rectangle, so
AC � BD and AB � CD. Also, CB � CB. Then by SSS, 4ABC � 4DCB.

Case 3: 4ABC is obtuse.
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(a) Used for case 2, when 4ABC is right. (b) Used for case 3, with obtuse 4ABC.

Figure 6. Figures used in the proof of Corollary 3.7.

Refer to Figure 6b. Without loss of generality, assume the triangle is obtuse at ∠A. We
know m∠ACD = 90° = m∠ABD. Additionally, ∠CZR � ∠BZQ by the Vertical Angle The-
orem. Then by AA, 4CZR ∼ 4BZQ, so ∠RCZ � ∠QBZ. Call this angle measure θ. Then
m∠ACQ = 90°−θ =m∠ABR. The remainder of the proof parallels case 1.

Therefore, in all cases the orthocenters of 4ABD,4ACD, and 4BCD create a triangle
congruent to 4ABC, namely 4ZCB. �

4. Circumcenter Theorem

Our final theorem uses triangle circumcenters and incenters. Although the incenter is
not on the Euler line, it is a significant point in a triangle. We only need a few extra
definitions and theorems for the proof of the circumcenter theorem:

Definition 4.1. The incenter of a triangle is the intersection of the angle bisectors of the
triangle. It is also the center of the incircle, which is tangent to each side of the triangle.

Lemma 4.2. (ASA) Triangles are congruent if two pairs of corresponding angles and a pair of
opposite sides are congruent in both triangles.

Lemma 4.3. The chords of congruent inscribed angles in congruent circles are congruent.

Lemma 4.4. Inscribed angles subtended by the same arc are congruent.

Lemmas 4.3 and 4.4 are a result of the Inscribed Angle Theorem, which states that the
measure of an inscribed angle is half of the measure of the arc that it intersects.

Theorem 4.5. Given 4ABC, its incenter I , and circumscribed circle α, if lines are made con-
necting A,B, and C to I , then the other intersections of those lines and α are the circumcenters
of 4CBI,4ACI, and 4ABI , respectively.

Proof. Refer to Figure 7. Let the second intersections of AI,BI and CI and α be X,
Y , and Z, respectively. We will show that these intersections are the circumcenters of
4CBI,4ACI, and 4ABI .
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Figure 7. A demonstration of Theorem 4.5.

Consider 4CBI and point X. Since AI is an angle bisector of ∠CAB, then ∠CAX � ∠BAX.
By Lemma 4.3, the chords CX and BX are congruent.

We know that m∠AIC = 180° − m∠ACI − m∠CAI . Thus, because ∠AIC and ∠CIX are
supplementary angles,

m∠CIX = 180°− (180°−m∠ACI −m∠CAI)
= m∠ACI +m∠CAI. (4)

Because ∠BAX and ∠BCX share chord XB, by Lemma 4.4 ∠BAX � ∠BCX. Then

∠BCX � ∠CAX (5)

as AX is an angle bisector of ∠BAC. Also directly from an angle bisector,

∠ACI � ∠ICB. (6)

Substituting equations (5) and (6) into m∠ICX =m∠ICB+m∠BCX gives

m∠ICX =m∠ACI +m∠CAX,

which we know from equation (4) is ∠CIX.

Thus ∠ICX � ∠CIX. Then 4CIX is isosceles and CX � IX.

Finally, we now know that IX � CX � BX. This means that X is the center of a circle
circumscribed around 4CBI , so X is the circumcenter of 4CBI . Similarly, Y is the cir-
cumcenter of 4ACI and Z is the circumcenter of 4ABI . �

5. Conclusion

Our journey down the Euler line took us to new discoveries related to the important
points on that line. Some of these evoke connections to previously known theorems.
Exploring the centroid led to a similar triangle which had sides a third the size of the
original triangle. This result is reminiscent of the well-known fact that the medial trian-
gle of 4ABC, made by connecting the midpoints of each side, is inversely similar to 4ABC
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and creates four congruent triangles that are a fourth the size of the original. From Corol-
lary 2.10 we saw two centroids which were found to be collinear, with one two-thirds the
length to the other. This conclusion echoes the two-third distance of the centroid of a
triangle along the segment connecting the circumcenter and orthocenter, as proven by
Euler. Future studies could uncover additional interesting area and collinearity connec-
tions related to the extraordinary centroid.

As we saw in Theorem 3.7, associating the circumcircle of a triangle to orthocenters re-
sulted in a remarkable triangle congruence. In Theorem 4.5, linking the circumcircle
to the incenter resulted in other unanticipated circumcenter relations. Further research
could explore what additional relationships there are between various centers of a tri-
angle and intersections on the circumcircle. Mathematicians’ fascination with this type
of geometry has persevered for generations; it is common material in college geometry
courses yet there is clearly still more to discover!
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