
The Minnesota Journal of Undergraduate Mathematics

Sponsored by
School of Mathematics

University of Minnesota
Minneapolis, MN 55455

The longest branch of the tree of
irreducible numerical semigroups with

odd Frobenius number

Taryn M. Laird and José E. Martinez
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Abstract. A 2011 paper by Blanco and Rosales describes an algorithm for constructing a
directed tree graph of irreducible numerical semigroups of fixed Frobenius numbers. In
this paper we show that for odd Frobenius numbers the corresponding tree has a unique
longest branch.

1. Introduction

In [1] , Blanco and Rosales present an algorithm so that given any Frobenius number, one
can construct a directed tree graph whose vertices are the irreducible numerical semi-
groups with that Frobenius number. The authors of this paper showed in [3] that for each
odd Frobenius number greater than 11 the corresponding tree has a branch that is always
constructed the same way. Based on many examples, the authors conjectured that this
branch was the unique longest branch in the tree. In this paper, we verify this conjec-
ture and therefore determine a formula for the height of any such tree. In Section 2 we
present basic information about numerical semigroups. Section 3 provides an overview
of the algorithm of Blanco and Rosales and Section 4 introduces new results.

2. Numerical Semigroups

We begin by presenting some basic information associated with numerical semigroups.

Let N denote the set of nonnegative integers. A numerical semigroup is a set S ⊂ N such
that 0 ∈ S, S is closed under addition, and the complement of S is finite. That is, a
numerical semigroup is an additive submonoid S of N such that N \ S is finite. We
say {a1, a2, . . . , an} is a generating set for S if S ={k1a1 + k2a2 + . . . + knan|k1, k2, . . . , kn ∈ N},
and we call each ai a generator of S. If no proper subset is a generating set for S, we say
{a1, a2, . . . , an} is the minimal generating set and we write S = 〈a1, a2, . . . , an〉, 0 < a1 < a2 < . . . <
an. The elements of the minimal generating set are called minimal generators. It is well
known in the literature that every numerical semigroup has a unique minimal generating
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set. The Frobenius number of a numerical semigroup S, denoted F(S), is the largest integer
not in S. The multiplicity of S, denoted m(S), is the smallest positive element of S.

Example 2.1. Consider the set of nonnegative integers {0,5,7,8,10,12,13,14,15 . . .} This
is a numerical semigroup with minimal generating set 〈5,7,8〉. Note that F(S) = 11 and
m(S) = 5.

We will be looking at the two following types of numerical semigroups.

Definition 2.2. A numerical semigroup S is said to be symmetric if F(S) is odd and if
x ∈Z \ S, then F(S)− x ∈ S.

Definition 2.3. A numerical semigroup S is said to be pseudo-symmetric if F(S) is even
and if x ∈Z \ S, then either x = F(S)

2 or F(S)− x ∈ S.

Example 2.4. Consider, S = 〈5,7,8,9〉 = {0,5,7,8,9,10,12,→}. Here F(S) = 11, which is
odd, as required. In addition, for every integer x < S we have F(S) − x ∈ S as depicted in
Figure 1 below. For example, note that 6 < S, and that we have 11− 6 = 5 ∈ S. We leave it
to the reader to verify that for every x ∈Z \ S, F(S)− x ∈ S. Hence S is symmetric. Figure
1 provides visual motivation for the use of the word symmetric to describe these types of
numerical semigroups.

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 1

Example 2.5. Consider S = 〈4,7,9〉 = {0,4,7,8,9,11,13→} and note that F(S) = 10, which
is even. As indicated in Figure 2, for every integer x < S we have either x = F(S)

2 or F(S)−x ∈
S, and so S is pseudo-symmetric.

0 1 2 3 4 5 6 7 8 9 10 11

Figure 2

Irreducible Numerical Semigroups. We are now prepared to formally define the specific
family of numerical semigroups that we have been investigating.

Definition 2.6. A numerical semigroup S is irreducible if it cannot be expressed as an
intersection of two numerical semigroups that properly contain S. For a given Frobenius
number F, the set of all irreducible numerical semigroups with Frobenius number F is
denoted I(F).
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It has been shown in [4] that a numerical semigroup is irreducible if and only if it is sym-
metric or pseudo-symmetric. Given a positive integer F, the following theorem of Blanco
and Rosales defines a particular element of I(F). This irreducible numerical semigroup
plays an important role in the remainder of this paper.

Theorem 2.7. For every positive integer F, there exists a unique irreducible numerical semi-
group C(F) whose generators are all larger than F

2 . Moreover,

C(F) =
{
{0, F+1

2 ,→}\ {F} if F is odd,
{0, F2 + 1,→}\ {F} if F is even.

=
{
〈F+1

2 , F+3
2 , . . . ,F − 1〉 if F is odd,

〈F2 + 1, F2 + 2, . . . ,F − 1,F + 1〉 if F is even.

Example 2.8. Using the above theorem we will now construct the unique irreducible
numerical semigroup for Frobenius number 17.

C(17) = {0, 17 + 1
2

,→}\ {17}

= {0,9,10,11,12,13,14,15,16,17,18,→}\ {17}
= {0,9,10,11,12,13,14,15,16,18,→}
= 〈9,10,11,12,13,14,15,16〉

3. Trees Of Irreducible Numerical Semigroups

The following is the algorithm introduced by Blanco and Rosales in [1] for finding all
irreducible numerical semigroups with a given Frobenius number.

Theorem 3.1. Let F be a positive integer. Then the elements of I(F) comprise a directed tree
graph, denoted G(I(F)), with root C(F). If S is an element of I(F), then the children of S are
S \{x1}∪{F−x1}, S \{x2}∪{F−x2}, . . . , S \{xr}∪{F−xr}), where {x1, . . . ,xr} is the set of minimal
generators of S such that for each x ∈ {x1, . . . ,xr} the following conditions are satisfied:

(1) F
2 < x < F

(2) 2x −F < S

(3) 3x , 2F

(4) 4x , 3F

(5) F − x < m(s)

When a minimal generator, x, of S ∈ G(I(F) satisfies the five conditions, we say that x
spawns a child of S. A minimal generator of a given vertex that does not spawn a child is
said to be nonspawning . Note that condition 5 implies that the spawning generators of a
branch must be increasing.

In a directed tree graph, a vertex with no children is called a leaf. A branch is the shortest
path from the root vertex to a leaf. The vertices that appear in a branch will be referred
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to as the children in the branch. We will sometimes refer to a specific child in a branch by
its position in the path. The first child in a branch is the first vertex that appears in the
path after the root vertex. In the context of this paper an odd branch is a branch whose
children are all spawned by odd minimal generators.

Example 3.2. To build G(I(15)) we begin by constructing the root, C(15):

C(11) = {0, F(S) + 1
2

,→}\ {F} = {0,8,9,10,11,12,13,14,16,→}

= 〈8,9,10,11,12,13,14〉.

Using Theorem 3.1, we find that the following minimal generators spawn children of the
root C(15) in G(I(15)).

x1 = 8 : (〈8,9,10,11,12,13,14〉 \ {8})∪ {7} = {0,7,9,10,11,12,13,14,16,→} = 〈7,9,10,11,12,13〉
x2 = 9 : (〈8,9,10,11,12,13,14〉 \ {9})∪ {6} = {0,6,8,10,11,12,13,14,16→} = 〈6,8,10,11,13〉

x3 = 11 : (〈8,9,10,11,12,13,14〉 \ {11})∪ {4} = {0,4,8,9,10,12,13,14,16,→} = 〈4,9,10〉

Continuing the algorithm in this manner we find that 〈7,9,10,11,12,13〉 has a child
〈6,7,10,11〉, spawned by 9. Then 〈4,6,13〉 is a child of 〈6,8,10,11,13〉 spawned by 13,
and 〈2,17〉 is a child of 〈4,6,13〉 spawned by 13. The entire tree G(I(15)) is shown in
Figure 3 below, with vertices and edges labeled accordingly.

〈8,9,10,11,12,13,14〉

〈7,9,10,11,12,13〉 〈6,8,10,11,13〉 〈4,9,10〉

〈6,7,10,11〉 〈4,6,13〉

〈2,17〉

88 99 1111

99 1111

1313

Figure 3

In order to study these trees in more detail, the authors used code in Mathematica to run
through the algorithm. Images of the resulting trees were generated using QtikZ and are
shown below in Figures 4 – 7.



MJUM Vol. 2 No. 1 (2016) Page 5

S1

S2 S3 S4 S5 S6 S7 S8 S9

S10S11 S12

S13

S14 S15S16 S17 S18 S19

S20S21S22

S23 S24 S25 S26 S27

S28S29 S30S31 S32 S33

S34 S35 S36 S37 S38 S39

S40S41 S42S43 S44

S45

S46

S47 S48 S49 S50

S51S52

S53 S54 S55 S56 S57

S58S59S60 S61 S62

S63 S64 S65 S66 S67 S68 S69

S70 S71S72

S73

S74 S75 S76S77 S78 S79 S80 S81

S82S83S84 S85

S86 S87 S88 S89 S90 S91

S92S93

S94

S95S96 S97 S98S99 S100 S101 S102 S103

S104S105 S106

Figure 4. Tree of Frobenius Number 34

Figure 5. Tree of Frobenius Number 22

Figure 6. Tree of Frobenius Number 23

Figure 7. Tree of Frobenius Number 31

We have found that trees associated with even and odd Frobenius numbers - which we
will refer to as “even trees” and “odd trees,” respectively, differ in structure. Namely, the
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odd trees (with Frobenius number greater than 11) always have a unique longest branch
(this is proven in the next section) and the even trees do not appear to have a longest
branch (in the non trivial cases). As mentioned in [3], this infinite family of trees is rather
difficult to analyze: as the Frobenius numbers increase, the number of vertices in the trees
gets large very quickly, and yet the number of vertices does not monotonically increase.
However, when the trees are categorized according to even and odd Frobenius numbers
the height of the trees appear to follow a predictable pattern. This is explored further in
the next section.

4. New Results

In [3] it is shown that for each odd Frobenius number F, the tree of irreducible semigroups
G(I(F)) has a branch whose children are spawned by all of the odd minimal generators of
C(F). The following results show that this branch is the unique longest branch in G(I(F)).
We will refer to this branch as the odd branch .

Lemma 4.1. Let F = 2k + 1, k > 5. For each minimal generator of C(F) that spawns a child in
a branch there is a unique minimal generator that cannot spawn a child in the same branch.

Proof. Let F = 2k + 1 for some k > 5. Then we have C(F) = 〈k + 1, . . . ,2k〉. Let B denote a
branch of G(I(F)). There are two cases: either k + 1 spawns the first child in B, or k + 1
does not spawn a child in B.
Suppose k+1 spawns the first child in B. Then F−(k+1) = k is an element of the remaining
children in B. Note that each integer k + 1, . . . ,2k can be written as the sum of k and
exactly one of 1, . . . , k. Let 1 < n ≤ k and suppose k + n spawns a child in B. Then the
integer F − (k + n) = k + 1 − n is an element of the remaining children in B. Note that
1 ≤ k + 1−n < k, so k + 1 ≤ k + (k + 1−n) < 2k, and hence, one of k + 2, . . . ,2k is no longer a
minimal generator in the remaining children of B. Note that the mapping

k +m 7→ 2k + 1−m, f or m ∈ {1, . . . , k}
is a bijection from the set of minimal generators to itself. Thus, each spawning minimal
generator k+m in a branch has a unique nonspawning minimal generator partner k+1−m.
For the second case, suppose k + 1 does not spawn a child in B. Then every child in B
contains k + 1. Each of k + 2, . . . ,2k can be written as the sum of k + 1 and exactly one of
1, . . . , k − 1. Let n ∈ {1, . . . , k − 1} and note that when k + n ∈ {k + 2, . . . ,2k} spawns a child in
B, then k + 1 − n ∈ {1, . . . , k − 1} is an element of the rest of the children that form B. Let
n ∈ {2, . . . , k}. Then the mapping

k +n 7→ 2k + 2−n
is a bijection from {k + 2, . . . ,2k} to itself. Thus each spawning minimal generator has a
unique nonspawning minimal generator partner. �

Corollary 4.2. Let F = 2k + 1 for some k > 5. Let l be the length of the longest branch of
G(I(F)). Then l ≤ b k2c.

Proof. Note that C(F) has k minimal generators. If a minimal generator is its own non-
spawning partner, then it cannot spawn. Thus, by the previous lemma, the length of a
branch of G(I(F)) must be less than or equal to b k2c. �
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For brevity, we introduce another term. If a minimal generator is made nonspawning in
a branch then we say that it is sterilized .

Theorem 4.3. Let F = 2k + 1, k > 5. The odd branch is the unique longest branch of G(I(F))
with length b k2c.

Proof. To prove that the odd branch is the unique longest branch we must show that all
other branches have length less that b k2c. Let B be a branch of G(I(F)). We have two cases
to consider: either k + 1 spawns the fist child in B, or k + 1 does not spawn a child in B.

Case 1: Suppose k + 1 spawns the first child in B. Assume k + 2 also spawns a child in the
B. Then both k and k −1 are in the remaining children in B. Let 1 < n < b k2c. Note that the
nonspawning minimal generator partner of k + n is 2k + 1− n. Since k + 2 has spawned a
child in B then 2k − n is also sterilized when k + n spawns a child. Note that 2k − n is the
minimal generator partner of k + n+ 1. Hence, if k + n+ 1 does not spawn a child then B
has length less than b k2c. If k + n+ 1 spawns a child, then the minimal generator partner
of k+n+ 2 is sterilized. If the next consecutive minimal generator does not spawn a child
then the length of B is less that b k2c. Note that if n = b k2c, then 2k−n = k+b k2c. Thus, k+b k2c
is nonspawning. Hence, the length of B is less than b k2c.

Assume k + 2 is nonspawning in B. The minimal generator partner of k + 2 is 2k −1. Note
that 2k − 1 can spawn a child in B if no evens have spawned children. This is because
F− (2k−1) = 2, and so if an even generator spawns then both k+2 and 2k−1 are sterilized
and by the lemma the length of B must be strictly less than b k2c. (If no even minimal
generators spawn children in B then either B is the odd branch or B is some smaller
branch).

It follows that all branches in which k+1 spawns a child have length less than b k2c, except
for the odd branch which has length b k2c.

Case 2: Assume k + 1 does not spawn a child in B. Note that there are then k − 1 minimal
generators that may spawn children. By the Lemma we find that the length of B must be
less than or equal to bk−1

2 c <
k
2 . So the length of a branch in which k+1 spawns no children

must be less than b k2c.

Thus, the odd branch is the unique longest branch of the tree G(I(F)). �

Example 4.4. The result of the previous theorem is illustrated in Figure 8, which shows
the tree G(I(23)) with the children and spawning generators of the longest branch labeled.
The root of the tree is 〈12,13,14,15,16,17,18,19,20,21,22〉. Note how each of the odd
minimal generators of the root spawns a child in the longest branch.
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Figure 8

5. Open Questions

An obvious question to ask is “can one produce a formula for the number of vertices in
a given tree?” This is, of course, simply a rephrasing of a problem in commutative alge-
bra, namely, determining the number of irreducible numerical semigroups with a given
Frobenius number. It has been shown in [2] that the number of irreducible numerical
semigroups with odd Frobenius number F has a lower bound of 2[F/8] where [F/8] is the
integer part of F

8 .

By examining many examples of the even trees we have found that those trees do not
have a unique longest branch. Numerous examples strongly suggest that a formula for
the height of the even trees does exist but this has yet to be proven. The interested reader
may refer to the last section of [3] for more information.
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[1] Victor Blanco and José Carlos Rosales. The tree of irreducible numerical semigroups with fixed Frobe-
nius number. Forum Math., 25(6):1249–1261, 2013.
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