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AsstrACT. We generalize a construction of families of moderate rank elliptic curves over
Q to number fields K/Q. The construction, originally due to Scott Arms, Alvaro Lozano-
Robledo and Steven J. Miller, invokes a theorem of Rosen and Silverman to show that
computing the rank of these curves can be done by controlling the average of the traces of
Frobenius; the construction for number fields proceeds in essentially the same way. One
novelty of this method is that we can construct families of moderate rank without having
to explicitly determine points and calculating determinants of height matrices.

1. INTRODUCTION

If E is an elliptic curve over Q, then the associated group of rational solutions, the
Mordell-Weil group E(Q), is finitely generated. The rank of this group is a very interesting
and well-studied quantity in modern number theory; the famous Birch and Swinnerton-
Dyer conjecture states that its rank equals the order of vanishing of the elliptic curve’s
L-function at the central point. We assume the reader is familiar with the basics of the
subject; good references are [Knl [Sil},[Si2} [SiTal.

It is unknown if the rank of an elliptic curve over Q can be arbitrarily large. It is an
interesting and difficult problem to find examples or families of curves with large rank.
To date the best known results are due to Elkies, who constructed an elliptic curve of rank
at least 28 (or exactly 28 subject to the Generalized Riemann Hypothesis [KSW]]) and a
family of elliptic curves of rank at least 18; see [BMSW] for a survey of recent results on
the distribution of ranks of curves in families, and conjectures for their behavior.

Many of the constructions of high rank families of elliptic curves begin by forcing points
to lie in the curves, and then calculating the associated height matrices to verify that they

* Corresponding author



MJUM Vol. 2 (2016-2017) Page 2

are linearly independent (see for example [Mesl], Mes2, [Nall]). We pursue an alterna-
tive approach introduced by Arms, Lozano-Robledo and Miller [AL-RM||. Briefly, their
strategy is to use a result of Rosen and Silverman [RoSi], which converts the problem
of constructing families of elliptic curves with large rank to finding associated Legendre
sums that are large. While in general these sums are intractable, for some carefully con-
structed families these can be determined in closed form, which allows us to determine
the rank of the families without having to list points and compute height matrices. Our
main result is to generalize the work in [AL-RM] from elliptic curves over Q to elliptic
curves over number fields. Specifically, we show the following.

Theorem 1.1. Let K be a number field. Then there exists an elliptic curve € over K(T) with
j(€) € Q(T) such that the rank of £ over K(T) is exactly 6.

By specializing to T =t for some t € K, we obtain curves & over K from the curve &
over K(T). Silverman’s specialization theorem [Si2, Theorem 11.4] tells us that for all but
finitely many t € T, the rank can only possibly increase.

Corollary 1.2. Let K be a number field. There are infinitely many elliptic curves over K with
rank at least 6.

Remark. Arms et al. [AL-RM]| construct infinitely many elliptic curves over Q with rank
at least 6. By base-extending these curves to K, we may trivially obtain infinitely many
elliptic curves over K with rank at least 6. Our contribution is to construct curves that are
defined over K but not defined over Q; this is evident because the j-invariant of curves
we construct in Theorem lies in K(T) but not in Q(T).

2. Tue CONSTRUCTION

Let K be a number field and Oy its ring of integers. Let £ be the elliptic curve over K(T)
defined by

E: v +a(T)xy+as(T)y = x> +ay(T)x* + ay(T)x +ag(T),
where a;(T) € Og(T). By Silverman’s specialization theorem [Si2, Theorem 11.4], for all
but finitely many ¢ € Og the Mordell-Weil rank of the fiber & over K is at least that of the
rank of £ over Og(T). Therefore, if we can compute the rank of £, we have a family of
infinitely many curves &; over K with at least the rank of £.

To that end, for £ as above and p a prime of good reduction in Ok (we do not consider the
bad primes here), we define the average

1
Asp) = OZ/ a(p), (1)
K/p
where N(p) = |Ox/p| and a;(p) = N(p) + 1 — #&;(Ox/p). Nagao [Na2l] conjectured that these
sums are related to the rank of the family of elliptic curves. Rosen and Silverman proved
this conjecture when £ is a rational elliptic surface [RoSi|]. Specifically, whenever Tate’s
conjecture holds (which is known for K3 surfaces over certain fields [Sr]) we have

lim = Y ~Ac(p)log(N(p) = rank E(K(T) (2)

X—o0
p: N(p)<X
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Below we study certain carefully chosen families where we are able to prove that A¢(p) =
—6 for almost all primes p, thus proving these families have rank 6. To calculate the limit
(2), we appeal to the Landau Prime Ideal Theorem, a generalization of the Prime Number
Theorem.

Theorem 2.1 (Landau Prime Ideal Theorem [Lanl]). We have
Y log(N(p) ~ X.

p: N(p)<X
Assuming we can produce &£ such that A¢(p) = —6 for almost all p, then combining the
Landau Prime Ideal Theorem with equation (2)) it follows that
rank £(K(T)) = 6,
which completes the proof of Theorem

So it remains to show that we can produce an £ such that A¢(p) = —6. As in Equation 2.2
of [AL-RM], define

v? = f(x,T) = x°T?+2g(x)T —h(x)
gx) = x*+ax’+bx+c (3)
hix) = (A-1)x>+Bx*>+Cx+D
Dr(x) = g(x)2 +x7h(x).

Notice that Dy (x) is one-quarter of the discriminant of f(x,T), considered as a quadratic
polynomial in T. When we specialize to a particular ¢t € Ok, we write D;(x) for the one-
quarter of the discriminant of f(x,t). As a degree six polynomial in x, write ry,7,,..., 7 for
the roots of Dr(x). We will see that the number of distinct, nonzero roots of D (x) control
the rank of the curve.

In order to show our claim for the elliptic curve v = f(x, T), we must pick six distinct,
nonzero roots of Dy(x) which are squares in Og. We also need the analogue of equation
2.1 from [AL-RM] for number fields, which can be stated as follows. For a, b both not zero
mod p and N(p) > 2, then for t € O

at? + bt +c (N(p)-1)(%) if (b*—4ac) e p
B e R <4>
p

1O p otherwise.

Note that is already demonstrated when Og/p = [, is a finite field of prime order
p in Lemma A.2 of [AL-RM] (they give two proofs; the result also appears in [BEW]).
Therefore, it suffices to show (4) when Ox/p = IF; is a finite field of order q = p" for p
prime and r > 1; we do so in Proposition [3.1|in the next section.

Write [F, = Og/p for the residue field of Ok at p. We have for the fiber of the elliptic surface
y2=f(x,T)at T =t

342 _
as(p) = — Z (f(’;:t)):_ Z (xt +2gl(3x)t h(x) ,
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where (E) is the Legendre symbol of the residue field Og/p.

Now we study =N (p)Ae(p) = Lteog/p () = Ly tc0x/p (@) to calculate Ag(p), as in equa-

2ct—D )
. )

tion (I). When x € p, the t-sum vanishes unless c € p — it is just ZteOK/p(

Assume now x € p. Then by (4), we have

Y (x3t2+2g(x)t—h(x)):{(N(p)—1)(§) if D, (x) € p

p - (x—3) otherwise.

teOx/p
If the roots rq,1,,...,7 are squares in O, then their contribution to the rank will be

:
(N(D)—l)(g)'

Ti

If the r; are not squares, then (F) will be 1 for half of the primes of Og and -1 for the
other half, and therefore yield no net contribution to the rank.

So assume that we may choose coefficients a,b,c, A, B, C, D such that Dy (x) has six distinct,
non-zero roots r; € Ok, each of which is a square. Write r; = p? fori = 1,...,6. Then

flx, t)) B Z (x3t2 +2g(x)t - h(x))

-N(pAs(p)= )

x€Ok/p P xeOk/p p
teOk/p teOk/p
,t ,t
-y (f(x ))+ y (f(x ))
. p . p
x: Dy(x)ep x: Dy(x)ep
teOk/p teOk/p
x3)
=6(N(p)—1)- —
(N(p)-1) .Z ( .
x: Dy(x)ep

=6(N(p)—1)+6=6N(p)
Hence, —N(p)Ag(p) = 6N (p). Therefore Ag(p) = -6, completing the proof of Theorem[1.1]

Now we must find a,b,¢,A,B,C,D € Ok such that Dr(x) has six distinct, nonzero roots
= pizz
Dr(x) = g(x)2+ x*h(x)
= Ax® + (B+2a)x® + (C + a® + 2b)x* + (D + 2ab + 2¢)x>
+ (2ac + b?)x? + (2bc)x + ¢? (5)
= A(x® + Rsx® + Ryx* + R3x® + Ryx? + Rix + Ry)
= A(x—p7)(x — p3)(x — p3)(x — p3)(x — p3)(x ~ p)

In practice, we will choose roots pl.2 and then determine the polynomial D7 (x); and from
it, the coefficients a,b,c, A, B, C, D. Note that in the above we are free to choose B,C, D, so
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matching coefficients for the x>, x* and x> terms do not add any additional constraints.
So we must simultaneously solve the following three equations in Ok:

2ac+b? = R5A,
2bC = RlA,
C2 = RoA

So long as this system of Diophantine equations is solvable in Ok, we may construct such
an elliptic surface. In section [4 below, we provide some examples of elliptic surfaces over
number fields.

3. QuADRATIC LEGENDRE SuMS

The following proposition on quadratic Legendre sums in finite fields is the generaliza-
tion of Lemma A.1 from [AL-RM] to number fields (see also [BEWI|). Let g = p” be an odd
prime power, and assume O/p = [F, is a finite field with g elements. Let (5) denote the
[F,-Legendre symbol which indicates whether or not an element of [F, is a square.

Proposition 3.1. If a € Ok is not zero modulo p, then

Z(at2+bt+c):{(q—l)(§) if b>—4ac=0mod p

q otherwise.

a
tel, q

Proof. The first case is straightforward, as if b? — 4ac = 0 mod p, then at’ +bt+c = a(t —
t’)? for some t’ € [F;, and each of the terms in the sum except t’ contribute (%), and t’

contributes 0.

For the other case, when b2 — 4ac z 0 mod p, we first reinterpret the sum as counting
points on the conic C : s> = at? + bt + ¢ in the following way:

#C(IF,) = Z(l+(%)) =q+S.

tekF,

Here S is the sum of interest. It is well-known that a nondegenerate conic of this partic-
ular form always has a rational point over I, when g is a power of an odd prime [E], [Su,
Theorem 3.4]. From this, we may parameterize all rational points using some line that
does not meet the original rational point. This gives at most g + 1 points on the curve.
However, this parametrization introduces a denominator that is possibly quadratic in ¢,
which means at most 2 rational points on the line might not correspond to rational points
on the curve. Thus we have

g-1 < #C(IFq) < q+1,
which gives
-1 <S5 <1
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To determine the value of S, we compute it modulo p. By Euler’s criterion in finite fields:

S = Z(at2+bt+c)% = Z(g)tq‘l+r(t) —(S)+Zri2ti,

teIFq teIFq 1 tequ

where r(t) is a polynomial of degree < g — 1, and r; are the roots of D;(p), as above. Each
of the inner sums ZteIFq t' is 0, since i < q —1, so one of the terms is nonzero, but the sum

is stable under multiplication by any of its summands. Thus S = —(g) (mod p). Since

-1<5<1,wehave S :—(%), as desired. O

4. ExAMPLES

Let K be an arbitrary number field. Theorem claims that we may produce elliptic
curves of rank 6 over K; we provide a recipe to produce these curves over number fields
in this section.

As in [AL-RM| Section 2.2], we choose A = 64R8 for simplicity. This choice is convenient,
because it allows us to solve

c?2 =64R) =c =8R}

2bc =64RJR; =b =4RyR,

2ac+b* =64R}R, =a =4RyR,-R%

Additionally, we may solve for B,C, D in terms of R,...,Rs. Altogether, we have

a=4RyR, - R?

b=4RyR,

¢ = 8R}

A = 64R} (6)
B=ARs-2a

C=AR,—a*-2b
D = ARz —2ab-2c

The above determines the coefficients of the elliptic curve defined by the equations (3) in
terms of the roots r; = pi2 of the discriminant Dr(x), as in (5.

Expanding the first line of (3], we arrive at the following equation for the elliptic curve.
v2=x>+(2aT - B)x* + 2bT - C)(T? +2T = A+ 1)x+ (2cT —=D)(T>+ 2T -A+1)>  (7)
To produce curves over K, we may use the following recipe:

e choose six squares r; = pf,..., e = pé in K to be the roots of Dr(x);

solve for R, ..., R5 as the coefficients of the degree-six polynomial Dp(x);

use (6) to find a,b,¢, A, B,C, D;

plug these values into (7)) to determine the equation for the elliptic curve.
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e Specialize at T =t for some ¢t € K. For generic choices of ¢, this specializes to
an elliptic curve of rank at least 6, by Silverman’s specialization theorem [Si2}
Theorem 11.4].

We carry out this procedure for a few choices of number fields below. The interested
reader may find a Sage [S] worksheet for these computations in the attached data files.

Example 4.1. Let K = Q. In [AL-RM, Theorem 2.1], a rank 6 elliptic surface £ over Q(T)
with equation as in (7) and r, = €2, for £ = 1,2,...,6.

a =166601111104, A =8916100448256000000,
b =-1603174809600, B =-811365140824616222208,
c =2149908480000, C =26497490347321493520384,
D =-343107594345448813363200.

Example 4.2. Choose K = Q(i), i = V-1. Then with the choices p; =1+, p; = s for
s=2,3,...,6; rg:pz,we find

a=-353892105216+ 5282205696001
b=2112882278400—-2149908480000i

¢ =-8599633920000

A =-713288035860480000001

B =153634690402938169196544 + 3802857711153214390272001

C =166616532655598905196544 +166085373946419295027200i
D =-1191348658308947587891200-7893819601700939366400001

Via (7), this determines a rank 6 elliptic curve £ over K(T) = Q(i)(T). The j-invariant of
this curve is j(£) = p(T)/q(T), where p(T) and q(T) are degree 9 and 10 polynomials in T,
respectively. The leading coefficient of p(T) is

P9 =17575652563096624654081015917110624256000000
+166827764000346382053533572770299904000000001.

In particular, j(£) € K(T), but j(€) € Q(T). The complete j-invariant can be found in the
attached data files.

Example 4.3. Choose K = Q(Cs), where (s is a fifth root of unity. Then with the choices
2
Ty = p€’

P1=Cs p2=0C2 p3=032, p4=1+Cs, ps=1+02, pg=1+C2.
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the coefficients are

a=5503-8C2+41(5+25

b=-1203 402 +20C5 - 48
c=-24C2 + 1605 - 24

A =-83203-320C2 -320(5 - 832
B=2312C3+3693C2 - 861(5+5117
C =-2040C3 +1837C2 - 2397(5 + 573
D = 2440C3 + 15202 + 14085 + 1664

This determines a rank 6 elliptic curve £ over K(T) = Q(Cs)(T) via (7). The j-invariant for
this elliptic curve is

.oy P(T)
E)=—=
j(€) a(T)
where p(T) and q(T) are degree 9 and 10 polynomials in T, respectively. The leading

coefficient of p(T) is
Po = —1203674209337006199645159424(;2 +470942041 084292914570780672C52
—1034969760873268271839698944(5 —272969531667632951696109568.

Notice that j(€) € K(T), but j(£) ¢ Q(T). The complete j-invariant can be found in the
attached data files.

5. ACKNOWLEDGMENTS

This work was supported by NSF grants DMS-1347804, DMS-1265673, Williams College,
and the PROMYS program. The authors thank Alvaro Lozano-Robledo, Rob Pollack and
Glenn Stevens for their insightful comments and support. Thanks also to the referee for
their careful reading of an earlier version of this paper.

REFERENCES

[AL-RM] S. Arms, A Lozano-Robledo and S. J. Miller, Constructing one-parameter families of elliptic curves
with moderate rank, Journal of Number Theory 123 (2007), no. 2, 388-402.

[BEW] B. Berndt, R. Evans and K. Williams, Gauss and Jacobi Sums, Canadian Mathematical Society
Series of Monographs and Advanced Texts, Vol. 21, Wiley-Interscience Publications, John Wiley
& Sons, New York, 1998.

[BMSW]  B. Bektemirov, B. Mazur, W. Stein and M. Watkins, Average ranks of elliptic curves: Tension be-
tween data and conjecture, Bull. Amer. Math. Soc. 44 (2007), 233-254.

[E] N. Elkies, The rationality of conics over finite fields, online lecture notes (2013). Retrieved 23 April
2017.http://www.math.harvard.edu/~elkies/M256.13/conicfq.pdf

[KSW] Z. Klagsbrun, T. Sherman and J. Weigandt, The Elkies Curve has Rank 28 Subject only to GRH,
arXiv preprint (2016). https://arxiv.org/abs/1606.07178,

[Kn] A. Knapp, Elliptic Curves, Princeton University Press, Princeton, NJ, 1992.

[Lan] E. Landau, Neuer beweis des primzahlsatzes und beweis des primidealsatzes, Mathematische An-
nalen 56 no. 4 (1903), 645-670.


http://www.math.harvard.edu/~elkies/M256.13/conicfq.pdf
https://arxiv.org/abs/1606.07178

MJUM Vol. 2 (2016-2017) Page 9

[Mes1]
[Mes2]

[Nal]
[Na2]

[RoSi]
[S]

[Sil1]
[Si2]
[SiTa]

[Su]

[Sr]

J. Mestre, Courbes elliptiques de rang > 11 sur Q(T), C. R. Acad. Sci. Paris, ser. 1, 313 (1991),
139-142.

J. Mestre, Courbes elliptiques de rang > 12 sur Q(T), C. R. Acad. Sci. Paris, ser. 1, 313 (1991),
171-174.

K. Nagao, Construction of high-rank elliptic curves, Kobe J. Math. 11 (1994), 211-219.

K. Nagao, Q(T)-rank of elliptic curves and certain limit coming from the local points, Manuscr.
Math. 92 (1997), 13-32.

M. Rosen and J. Silverman, On the rank of an elliptic surface, Invent. Math. 133 (1998), 43-67.
SageMath, the Sage Mathematics Software System (Version 7.6.0), The Sage Developers, 2017,
http://www.sagemath.org.

J. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics 106, Springer-
Verlag, Berlin - New York, 1986.

J. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Mathematics
151, Springer-Verlag, Berlin - New York, 1994.

J. Silverman and J. Tate, Rational Points on Elliptic Curves, Springer-Verlag, New York, 1992.

A. Sutherland, Introduction  to  Arithmetic ~ Geometry, course  notes, MIT
OpenCourseWare (2013). https://ocw.mit.edu/courses/mathematics/
18-782-introduction-to-arithmetic-geometry-fall-2013/lecture-notes/

V. Srinivas, The Tate conjecture for K3 surfaces: a survey of some recent progress. Acta Math. Viet.
39 no. 4 (2014), 69-85.


http://www.sagemath.org
https://ocw.mit.edu/courses/mathematics/18-782-introduction-to-arithmetic-geometry-fall-2013/lecture-notes/
https://ocw.mit.edu/courses/mathematics/18-782-introduction-to-arithmetic-geometry-fall-2013/lecture-notes/

MJUM Vol. 2 (2016-2017) Page 10

STUDENT BIOGRAPHIES

David Mehrle: (Corresponding author: dmehrle@math.cornell.edu) is currently a gradu-
ate student at Cornell University.

Tomer Reiter graduated Carnegie Mellon University to spend a year studying at Cam-
bridge University as a Gates-Cambridge scholar. He is now a graduate student at Emory
University, where he studies number theory with Ken Ono.

Joseph Stahl is now a graduate student at Berkeley, where he intends to study number
theory. Prior to that, he spent a year at Bonn on a Fulbright scholarship.

Dylan Yott is a graduate student at Berkeley studying number theory with Xinyi Yuan.


mailto:dmehrle@math.cornell.edu

	1. Introduction
	2. The Construction
	3. Quadratic Legendre Sums
	4. Examples
	5. Acknowledgments
	References
	Student biographies

