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1. Introduction

Since its first appearance in 1959, HIV has posed a serious threat to public health, both
within the United States and internationally. Although treatments for the disease have
become increasingly effective, a cure remains elusive. Of growing concern is the uneven
incidence of HIV across demographic groups – and in particular, within America’s incar-
cerated population, where the rate of HIV infection remains six times the national aver-
age [1]. Compounding the problem, rates of intravenous drug use among incarcerated
individuals frequently exceed 30% [4], providing an avenue for not just occasional but
widespread transmission of HIV via contaminated needles. The recent U.S. opioid epi-
demic also raises some concerns about rising HIV infection rates caused by intravenous
drug use.

Here we present a stochastic model for the spread of HIV within a community that ex-
plicitly accounts for the spread of disease via contaminated needles as well as via sexual
transmission. Stochastic models are particularly valuable for understanding epidemic be-
havior because, even within a single population, different outbreaks of the same disease
do not behave identically. Such models allow us to capture naturally occurring random
variation among individuals within a population, while also effectively modeling large-
scale behavior of the disease. Our model takes its inspiration from existing models for the
spread of diseases such as malaria [5], which are not ordinarily transmissible directly be-
tween individuals, but instead rely on a vector species (such as the mosquito) to transmit
the infection.

∗ Corresponding author
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2. Compartmental Stochastic Model for the Spread of HIV

Our work extends the stochastic model for HIV developed by Gani, Blount, & Yakowitz
(1997). This compartmental model assumes a fixed population of individuals, with reg-
ular inflows and outflows of a fixed number of individuals. It operates in discrete time
(this makes it more computationally tractable than an analogous model in continuous
time). We choose a prison as the real-world analogue of a community of individuals that
satisfies these constraints.

The defining feature of compartmental models is that, to make the behavior of the disease
easier to track, the population is divided into multiple mutually exclusive groups whose
respective sizes evolve over time. In the Gani, Blount and Yakowitz model, there are two
such groups. The first, the suceptibles, is comprised of those who are not HIV-positive
but could potentially contract the disease. The second group, the infected class consists
of those who are HIV positive. At each discrete unit of time, the number of individuals
within each group, or compartment, is tracked. Thus at any given time we can determine
the overall behavior of the disease. However, the infection status of any individual is not
of interest.

Because there is no possibility for recovery from or immunity to HIV, individuals move
from the class of susceptible individuals into the class of infected individuals and remain
there. This model captures the overall dynamics of the spread of HIV within a closed
system. We will develop and extend this model in Section 3 to specifically capture the
actions of unsafe intravenous drug use on the spread of the disease.

2.1. Elaboration ofModel. Here we present the model given by Gani, Blount, & Yakowitz.
In a population of N individuals with a regular turnover of n < N individuals an each
time step t, there are two possible routes by which the total number of infections within
the prison, I(t), can increase and one by which it can decrease.

Individuals may become infected as a result of contact with another infected individ-
ual. We assume that individuals make a single sexual contact at each time step and mix
homogeneously; that is, each individual is equally likely to have contact with all other
individuals. (This is in contrast to concrete scenarios in which individuals often make
contact with friends and family more often than strangers.) We further assume that in-
fections are independent of one another. For each of the N − I(t) susceptible individuals
in the population at time t, the probability p of being infected in a given time step is
proportional to the size of the infected class; that is, p = βI(t) for some positive constant
β. Let M(t) be the number of infections created by this mixing. Further, we assume that
infections are independent from person to person. This gives that M(t) has a binomial
distribution with N − I(t) total trials and success (e.g., infection) probability βI(t). We
denote this as

M(t) ∼ Bin(N − I(t),βI(t)).
Individuals may also enter the system (as a result of the regular turnover) already having
contracted an HIV infection, which occurs within the world outside the model at some
rate µ. Viewing the event of a single individual entering the model with an existing infec-
tion as a single Bernoulli trial with probability of success µ, we have that the total number
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Figure 1. Population Flow in a Stochastic Compartmental Model

of infected individuals entering the model, B(t), at any given time step also follows a bi-
nomial distribution:

B(t + 1) ∼ Bin(n,µ).

At each time step the same number n individuals leave the population as enter it. We
assume that these individuals are selected uniformly at random from the population.
Let the number of individuals leaving the population at time step t who are infected
with HIV be denoted D(t). Conditional on I(t), this distribution is hypergeometric. The
hypergeometric distribution describes the probability of k successes in n draws from a
finite population of size N that contains exactly K successes, as when counting the num-
ber k of red candies drawn when n total candies are drawn without replacement from
a bowl containing K red candies and N white candies. Such a distribution is denoted
Hypergeom(K,N,n)

In this model, we view an infected individual who is selected to leave the prison as being
a “success” and a susceptible individual as a “failure”; at each time step, n prisoners total
are selected to leave the prison, giving us

D(t + 1) ∼Hypergeom(I(t) +M(t),N − I(t)−M(t),n).

The number of infected individuals within the population at time t+1 is equal to the size
of the infected class at time t plus new infections from mixing and new infections from
immigration minus the number of infected prisoners who have left the prison:

I(t + 1) = I(t) +M(t) +B(t)−D(t).

The dynamics of this compartmental model are illustrated in Figure 1. The model defies
an exact analysis. Results are typically derived through simulation. For a detailed dis-
cussion of the analysis and results in this particular model, see Gani, Yakowitz & Blount
(1997).

While this model does a good job providing insights into the overall behavior of HIV
within a population, it cannot be used to analyze the disparities in the ways in which
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HIV affects populations that use intravenous drugs differently from those that do not.
To address this, we introduce a model of our own that is designed to to capture this
information.

3. Treating HIV as a Vector-Host Disease

To capture the role of shared needles in transmitting HIV within a population, we look
to vector-host models for the spread of diseases such as malaria. Vector-host diseases
are transmitted not through person-to-person contact, but rather through the action of a
vector species. For example, in the case of malaria, mosquitoes are considered the vectors
and humans are considered hosts; a mosquito becomes infected after biting an infected
human, and an infected mosquito can then spread the disease to a susceptible human by
biting them. In this way, the disease spreads only from vector to host and from host to
vector.

We treat intravenous needles for HIV as if they were mosquitoes for malaria, that is as
vectors for the disease. This allows us to adapt the standard compartmental model for
HIV transmission to specifically capture this action. Unlike traditional vector-host mod-
els, however, our model also allows the disease to be transmitted without the action a
vector (from human to human, via organic contact).

Individuals in the population are separated by drug-use status (i.e., whether or not they
use intravenous drugs). Henceforth, we use a superscript d to denote variables and pa-
rameters associated with the drug-using group of individuals. We must track the vectors
(i.e., the needles) in this model. We will denote variables and parameters associated with
the needles in the population with a superscript v. In denoting total population sizes, for
example,N is taken to mean the number of individuals who do not use drugs,N d the size
of the drug-using group, and N v the number of needles available within the population.

At each discrete time step, all individuals mix uniformly and spread infection. Following
that is a simultaneous inflow and outflow of individuals from the population. Finally,
a drug-use phase of infection occurs: drug-using individuals each choose a needle uni-
formly at random to use drugs during this phase. We assume that the population of
human individuals is of fixed size N +N d . We also assume that there are a constant num-
ber N v of needles within the prison at any time, of which nv are randomly selected and
exchanged for uninfected needles at each time step.

As in the previous model, assume that individuals make a single sexual contact during
each time step after mixing homogeneously. Infections that result from mixing between
infected and uninfected individuals (conditioned on the number of infected individuals
at the previous time step) follow, as before, a binomial distribution:

M(t) ∼ Bin(N − I(t),β · (I(t) + Id(t)))

Md(t) ∼ Bin(N d − Id(t),β · (I(t) + Id(t)))

We explicitly assume here that contacts between individuals are exclusively sexual con-
tacts. The means of these variables, conditioned on the number of infectives present in
the drug-free and drug-using populations, are given below. These means follow directly
from properties of the binomial distribution.
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E[M(t)] = (N − I(t)) · β · (I(t) + Id(t))

E[Md(t)] = (N d − Id(t)) · β · (I(t) + Id(t))

Following these initial infections, individuals who use drugs interact with the population
of needles, and infections are transmitted between those populations. Although it may
not be immediately obvious, such infections follow an identical mechanism of action as
infections transmitted through sexual contact. The probability of contacting an infection
is, as before, proportional to the size of the infected class. We have Bv(t) as the number
of needles infected by drug users and Qd(t) as the number of drug users infected through
contact with infected needles. The random variables associated with these movements
(conditioned on Id(t − 1) and Iv(t − 1)) are as follows:

Bv(t) ∼ Bin(H–Iv(t),ζ · Id(t))

Qd(t) ∼ Bin(N d–(Id(t) +Md(t)),η · Iv(t))

where ζ represents the rate of disease transmission from infectious drug users to suscep-
tible needles and η represents the rate of disease transmission from infectious needles to
susceptible drug users. The corresponding expectations are:

E[Bv(t)] = (H–Iv(t)) · (ζ · Id(t))

E[Qd(t)] = (N d–(Id(t) +Md(t))) · (η · Iv(t))

Following internal transmission of HIV, the model now considers the simultaneous inflow
of infected humans and outflow of both infected humans and infected needles. These
variables are calculated in much the same way as they were in the previous model:

B(t) ∼ Bin(n,µ)

Bd(t) ∼ Bin(nd ,µ)

D(t) ∼HyperGeom(N,I(t) +M(t),n)

Dd(t) ∼HyperGeom(N d , Id(t) +Md(t) +Qd(t),nd)

Dv(t) ∼HyperGeom(H,Iv(t) +Bv(t),nv)

The expectations of these variables, which follow as properties of the binomial and hy-
pergeometric distributions, are as follows:

E[B(t)] = n ·µ

E[Bd(t)] = nd ·µ

E[D(t)] =
n
N

(I(t) +M(t))

E[Dd(t)] =
nd

N d
(Id(t) +Md(t) +Qd(t))

E[Dv(t)] =
nv

H
(Iv(t) +Bv(t))
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This information allows us to calculate the mean of I(t+1) and Id(t+1) conditioned on I(t)
and Id(t) respectively; however, the closed form expression for this quanity is extremely
cumbersome. The dependence of, for example, M(t) on Id(t) and, in turn, on Qd(t), Bv(t),
and so on, makes using such a formula without the assistance of computational software
undesirable.

We do, however, include a recursive decomposition of the conditional expectations of I(t)
and Id(t), which is the basis for numerical computations:

E[I(t + 1)|I(t)] = I(t) +E[M(t)] +E[B(t)]−E[D(t)]

E[Id(t + 1)|Id(t)] = Id(t) +E[Md(t)] +E[Bd(t)] +E[Qd(t)]−E[Dd(t)]

4. Model Insights

In this section we discuss the behavior of the model as revealed by our simulation study.
Simulations were conducted using the computer software package R. The code used can
be found in the Appendix.

The general behavior of all three populations (drug users, non-drug users, and needles)
follows the pattern approximating logistic growth that manifests in the traditional com-
partmental model for the spread of HIV. The logistic behavior can be seen in Figure 2. At
the beginning of the outbreak, disease incidence is low. It then increases sharply, exhibit-
ing near exponential growth. Finally a plateau is reached at a certain level of infectivity.

Figure 2. Incidence of HIV among drug users, non-drug users and needles
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Figure 3. 95% confidence intervals for the incidence of HIV among drug
users and non-drug users

Of interest is the behavior of the three populations relative to one another. In all simu-
lations, a high rate of infection among the vector population (needles) precipitates high
levels of infection in the drug-using population, which in turn precipitates high levels of
infectivity among the population that does not use drugs.

Comparison to the conventional model developed earlier also shows that when the dis-
ease is allowed to spread through vector channels as well as through sexual contact, even
the population of individuals that does not use drugs experiences a comparatively el-
evated incidence of disease when vector transmission is allowed, even though they are
never exposed to the vectors directly. This is a result of continued sexual contact with a
population for which the disease has a higher rate of transmissibility.

The stochastic model allows for finding 95% confidence intervals for the proportion of
drug users and non-drug users who are infected at each time step. The results (Figure 3)
show that in at least 95% of cases, the drug-using population has a higher final incidence
of HIV than the non-drug-using population.

4.1. The impact of a needle exchange program on epidemic dynamics. One way the
increased levels of HIV transmission (in the presence of drug use) have been addressed
in applied situations is by implementing a needle exchange program. In theory, this
limits the rate of infection in the population of needles and therefore reduces the gap
between infection in drug-using and drug-avoiding groups within a population. Because
this model has a built-in rate at which needles leave the population (and are replaced by
new and therefore uninfected needles when they do so), we can examine the effect of a
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hypothetical needle exchange program on the incidence of HIV within the population.
In the most extreme (and effective) case, when every needle is exchanged before it can be
shared with another individual, the two human populations will have probabilistically
identical behavior. However, achieving such a high level of regular turnover may be
difficult or impossible in reality, either because doing so is prohibitively expensive, or
because drug users are reluctant to exchange their needles. .

Figures 4 and 5 illustrate the effect of increasing the rate of needle exchange within the
population to 25% and 50% respectively. When a quarter of all needles are exchanged
each month, the gap between the drug-using and non-drug-using populations persists.
When half of all needles are exchanged, the percentage of infected needles drops pre-
cipitously and the two human populations have similar levels of infectivity throughout
the epidemic. Analyzing the mean behavior of these processes reveals that increasing the
availability of uninfected needles within the population is associated with a correspond-
ing increase in the average length of time the disease takes to reach half its carrying
capacity within the population (illustrating an exponential growth period that both be-
gins later and occurs more slowly than in the case in which there is no attempt to reduce
the availability of infected needles).

4.2. Reduced Sexual Transmissibility. Thus far, we have assumed that the disease is not
treated in any way (and, critically, that individuals do not change their behavior when in-
fected with HIV). In reality, however, a number of treatments for HIV exist and infected
individuals rarely continue the same behavior when they learn that they have tested pos-
itive for the disease. Anti-retroviral drugs reduce the quantity of the virus present within
an individual (and, therefore, the likelihood of transmission during sexual contact); quar-
antine reduces contact between infected and susceptible individuals; and convincing in-
dividuals to practice safe sex reduces the incidence of unprotected sexual contact. All
of these treatment methods have the net effect of reducing the transmissibility of HIV
within the population.

To illustrate the effect exchanging needles has on a population with a greatly reduced
rate of sexual transmission of the disease, we simulate outbreaks where 25% and 50% of
needles are exchanged at each time step for uninfected ones.

The impact of reducing the transmissibility of HIV via intravenous drug use is greatly
magnified when sexual transmissibility is reduced (thus allowing transmission of the
disease via intravenous drug use to play an outsize role in the spread of the disease).
Examining Figures 6 and 7, it is quite clear that increasing the availability of uninfected
needles within the population is associated with a corresponding increase in the average
length of time the disease takes to reach half its carrying capacity within the population.
And while the impact of a needle exchange program was modest in the absence of any
other measures to mitigate the outbreak, the impact of such an exchange is several times
larger when intravenous drug use is the primary avenue of transmission for the disease.
It is also quite clear (and true for the mean of the process) that exchanging a larger pro-
portion of needles had the effect of reducing the prevalence of HIV among individuals
who do not use drugs.
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Figure 4. Incidence levels for drug users, non-drug users and needles, 25%
of needles exchanged each month.

Figure 5. Incidence levels for drug users, non-drug users and needles, 50%
of needles exchanged each month.
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Figure 6. Infection rates with reduced sexual transmissibility paired with
25% of needles cleaned per month

Figure 7. Infection rates with reduced sexual transmissibility paired with
50% of needles cleaned per month
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4.3. Model Sensitivity. The parameters of greatest concern to anyone interested in the
model’s application are 1) the probability that an infected drug user passes the disease
to a needle during the course of drug use (denoted by ζ), 2) the rate of transmissibility
of the disease through sexual contact (denoted by β), 3) the probability that a drug user
contacts HIV after using a contaminated needle (denoted by η). While the values of the
parameters used in the previous sections are derived from previous research, we use one-
at-a-time (OAT) testing to check the model’s sensitivity to perturbations in parameter
values. In OAT testing, we change the value of a single parameter and hold all others
constant. We then observe simulation results for a wide range of possible parameter
values and assess the impact of changing any given parameter.

We test ζ for values between 0.55 and 0.95 and η for values between 0 and 1. We find that
the model is robust to changes in the values of these parameters, with the final proportion
of infected prisoners remaining nearly constant for all values. Of particular interest is
the size of the gap between the proportion of infected drug users and non-drug users; for
modest perturbations, this gap does not change significantly.

We test β for values between 2 and 5, values suggested by the body of research on HIV.
The model is quite sensitive to changes in the sexual transmissibility of the disease. How-
ever, this is not immediately concerning. β does not directly impact the transmissibility
of HIV via vectors. Furthermore, epidemiologists expect some variation in the trans-
missibility of a disease within different communities (as a result of different behavior or
immunological makeup). This variation is reflected in varying values of β and results in
different epidemics. Refer back to section 4.2 for a discussion on the pairing of a low
sexual transmissibility with high vector transmissibility.

5. Summary

The contribution of this study is to extend and adapt the basic compartment model of
Gani, et al. to allow for both person-to-person and vector-to-person transmission of HIV
within a closed community. Doing so allows us to better understand the behavior of
individuals who are at high and low risk of becoming infected.

Our model shows that allowing individuals to exchange previously-used needles for clean
ones reduces both the outsize level of infection within the drug-using population and the
equilibrium level of infection present in the population that does not use drugs. This is
consistent with the actual implementation of such programs, but it provides quantitative
insight into the reach of the effect of such endeavors.

The model leaves room for future development and analysis. Much remains to be done
in the analysis of the AIDS epidemic, especially as rates of intravenous drug use climb in
proportion to the ongoing opioid epidemic. However, this model is novel in its capacity
to bridge the gap between a conventional understanding of the spread of HIV and a more
nuanced approach that can be used to help target prevention therapies at the individuals
at highest risk of contacting the disease.



MJUM Vol. 2 No. 1 (2017) Page 12

6. Acknowledgments

This paper developed from our Senior Comprehensive Exercise (Comps) at Carleton Col-
lege in the Fall and Winter of 2015-2016. We would like to sincerely thank our Comps ad-
visor, Professor Bob Dobrow, PhD, as well as the Carleton College Mathematics and Sta-
tistics Department, and our friends and family for their guidance and support throughout
this learning experience.



MJUM Vol. 2 No. 1 (2017) Page 13

References

[1] Bhunu, C., & Mushayabas, S. (2011). HIV/AIDS Transmission Dynamics in Male Prisons. Global View
of HIV Infection.

[2] Brauer, F. (2008). Compartmental Models in Epidemiology. Mathematical Epidemiology Lecture Notes
in Mathematics, 19–79.

[3] Carson, E. A. (2014). Prisoners in 2013. Bureau of Justice Statistics.
http://www.bjs.gov/content/pub/pdf/p13.pdf

[4] Dolan, K., Wodak, A., Hall, W., & Kaplan, E. (1998). A Mathematical Model of HIV Transmission in
NSW Prisons. Drug and Alcohol Dependence, 50(3), 197–202.

[5] Driessche, P. V. D., & Watmough, J. (2008). Further Notes on the Basic Reproduction Number. Mathe-
matical Epidemiology Lecture Notes in Mathematics, 159–178.

[6] Gani, J., Blount, M., & Yakowitz, S. (1997). The Spread and Quarantine of HIV Infection in a Prison
System. SIAM J. Appl. Math, 57(6), 1510–1530.

[7] Heimer, R., & Abdala, N. (2000). Viability of HIV-1 in Syringes: Implications for Interventions Among
Injection Drug Users. Aids, 10(7).

[8] HIV in the United States: At A Glance. (2015, September 29). Centers for Disease Control and Preven-
tion. http://www.cdc.gov/hiv/statistics/overview/ataglance.html.

[9] Juergens, Ralf, Nowak, Manfred, & Day, Marcus. “HIV and Incarceration: Prisoners and Detention”.
Journal of the International AIDS Society, 14(26)

[10] Kaplan, E. H., & Heimer, R. (1992). A Model-Based Estimate of HIV Infectivity Via Needle Sharing.
Journal of Acquired Immune Deficiency Syndromes, 5(11).

[11] Lopman, B. A., French, K. MC, Baggaley, R., Gregson, S., & Garnett, G. P. (2006). HIV-contaminated
Syringes Are Not Evidence of Transmission. AIDS, 20(14), 1905.

[12] Prison and AIDS: UNAIDS Point of View. (1997) Joint United Nations Programme on HIV/AIDS 1997.
http://www.unaids.org/sites/default/files/media asset/prisons-pov en 0.pdf.
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7. Appendix

7.1. Index of Parameters.

Parameter Description Value Citation
N Population (no drugs) 1562
n Monthly Turnover (no drugs) 53 [3]
N d Population (uses drugs) 938 [4]
nd Monthly Turnover (uses drugs) 32 [3]
µ USA HIV Rate 0.004 [8]
R0 Reproduction Number 3 [13]
β Transmission Rate 0.00001 [13]

(human-to-human)
N v Needle Population 938
nv Monthly Turnover 94
ζ Transmission Rate 0.85 [11, 10]

(human-to-needle)
η Transmission Rate 0.065 [10]

(needle-to-human)

7.2. Code For Vector-Host Model.

# General parameters:

r <- 200 # number of steps in the simulation

N <- 1562 # population of non drug-users

Nd <- 938 # population of drug users

n <- 53 # population turnover per step

(no drug use)

nd <- 32 # population turnover per step

(drug use)

mu <- 0.004 # incidence of the disease in the

population outside ours

r0 <- 3 # R_0

beta <- r0 * (n / N) * (1 / (N - n)) # transmissibility parameter

zeta <- 0.85 # P(infectious drug user passes

disease to needle | contact)

eta <- 0.065 # P(susceptible drug user gets

disease from needle | contact)

theta <- 0.1 # P(disease does not survive on the

needle)

############################################################################

## Storage for simulation data:

# Needle Population:
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H <- 938 # population of needles

IV <- c(0, rep(NA, r)) # infected needles

Biv <- rep(NA, r) # new needles infected with HIV

Div <- rep(NA, r) # HIV+ needles which are replaced or on which

the infection dies

newYd <- rep(NA, r) # new infections created by needle use

susIV <- rep(NA, r) # susceptible needles used by HIV+ drug users

infIV <- rep(NA, r) # infective needles used by HIV- drug users

# Drug-free Host Population:

M <- rep(NA, r) # new infections created by mixing (no IV

contact)

B <- rep(NA, r) # storage for HIV-positive births and

immigrants

D <- rep(NA, r) # storage for HIV-positive deaths and

emigrants

Y <- c(6, rep(NA, r)) # storage for HIV+ individuals in the

population with 25 initially infected

# Drug-using Host Population:

drugshiv <- rep(NA, r) # number of HIV+ drug users

Md <- rep(NA, r) # storage for new infections created by

mixing (non-intravenous contact)

Mdi <- rep(NA, r) # storage for new infections created by

mixing with needles

Bd <- rep(NA, r) # storage for HIV-positive births and

immigrants

Dd <- rep(NA, r) # storage for HIV-positive deaths and

emigrants

Yd <- c(0, rep(NA, r)) # storage for HIV+ individuals in the

population with 25 initially infected

###########################################################################

## Run the simulation:

for(i in 1:r){

## Mixing phase:

M[i] <- rbinom(1, N - Y[i] + Nd - Yd[i], beta * (Y[i] + Yd[i]))

# infections transmitted NOT through drug use (organically)

Md[i] <- rhyper(1, M[i], N + Nd - Y[i] - Yd[i] - M[i], Nd - Yd[i])

# of those, which infections took place in drug users

M[i] <- M[i] - Md[i]

# the remainder of infections took place in non-drug users
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## Drug-use phase:

Mdi[i] <- rbinom(1, Nd - (Yd[i] + Md[i]), eta*(IV[i])/H)

Biv[i] <- rbinom(1, H - IV[i], zeta*(Yd[i] + Md[i])/Nd)

## Natural population turnover phase:

B[i] <- rbinom(1, n, mu)

# infectious "births" among non drug users

Bd[i] <- rbinom(1, nd, mu)

# infectious "births" among drug users

D[i] <- rhyper(1, Y[i] + M[i], N - (Y[i] + M[i]), n)

# infectious "deaths" among non drug users

Dd[i] <- rhyper(1, Yd[i] + Md[i] + Mdi[i], Nd - (Yd[i] + Md[i] +

Mdi[i]), nd)

# infectious "deaths" among drug users

Div[i] <- rbinom(1, IV[i] + Biv[i], theta)

# needles on which the disease dies

## Count total infected before continuing to next step in simulation

Yd[i+1] <- Yd[i] + Md[i] + Bd[i] - Dd[i] + Mdi[i]

# total infected drug users

IV[i+1] <- IV[i] - Div[i] + Biv[i]

# total infectious needles

Y[i+1] <- Y[i] + M[i] + B[i] - D[i]

# total infectious non-drug users

}
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