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Abstract. The minimum number of proper subrings needed to cover a ring R is called the
covering number of R. In this paper, we compute the covering number of certain finite rings.
When the ring is not coverable, we provide an element that generates the whole ring.

1. Introduction

It is well known in group theory that no group is the union of two of its proper subgroups.
However, it is possible to write certain groups as a union of three or more of their proper
subgroups. Given a group G, a cover of G is defined to be a set of proper subgroups
whose union is all of G. If such a cover exists, then the minimum number of proper
subgroups needed to cover G is called the covering number of G. The covering number of
certain families of finite groups can be found in the literature. For example, the covering
number of some symmetric and alternating groups was calculated in [2] and [5].

The same notion of covers and covering numbers can be extended to rings. Since groups
cannot be covered by two proper subgroups, then a ring cannot be covered by two proper
subrings. Hence the next covering number to consider is three. Lucchini and A. Maròti
[3] described all possible ways to write a ring as the union of three of its proper subrings.
In [6], the author described the necessary conditions for a finite semisimple ring to be
coverable and gave formulas for the covering numbers in certain cases.

Determining that a ring is coverable and determining its covering number are distinct
problems. For example, the matrix ringsM2(Zp) are noncommutative and thus coverable
(See Theorem 4.1) but finding their covering numbers is more challenging. The unpub-
lished work of Lucchini and Maròti [4] provides a formula for σ (Mn(q)) over a field with
q elements, but their published version [3] did not include that result. It is not clear
whether their formula works in all cases. However, if we restrict n to 2 and q to a prime

p, their formula gives σ (M2(Zp)) = p2−p
2 + p + 1. In a correspondence with Werner [7],

he confirmed this formula and communicated a proof of this result ([7]). The authors of
[4] and [7] give a procedure for finding the covers which we utilize in our computations
to verify this formula. The key idea evolves around finding the subrings that stabilize
the linear subspaces of the two-dimensional vector space F

2
p . To complete the cover, the

∗ Corresponding author
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other subrings have generating elements (see Definition 2.2) with irreducible minimal
polynomial. Note that for p = 2, 3, this formula gives 4, 7 respectively which we verify
through finding the needed subrings. For p = 3, Python code was used to generate these
subrings. We provide our work for p = 2,3:

Example 1.1. We prove that σ (M2(Z2)) = 4. The subrings needed to cover M2(Z2) are

S1 =
{[
a b
0 d

]
: a,b,d ∈Z2

}
, S2 =

{[
a b
c 0

]
: a,b,c ∈Z2

}
,

S3 =
{[
a b
c a+ b − c

]
: a,b,c ∈Z2

}
, and

S4 =
〈[

0 1
1 1

]〉
=

{[
0 0
0 0

]
,

[
1 0
0 1

]
,

[
1 1
1 0

]
,

[
0 1
1 1

]}
.

Example 1.2. We prove that σ (M2(Z3)) = 7. The subrings needed to cover M2(Z3) are:

T1 =
{[
a b
0 d

]
: a,b,d ∈Z3

}
, T2 =

{[
a 0
c d

]
: a,c,d ∈Z3

}
,

T3 =
{[
a b
c a+ b − c

]
: a,b,c ∈Z3

}

T4 =
{[

0 0
0 0

]
,

[
0 0
1 1

]
,

[
0 0
2 2

]
,

[
0 1
0 2

]
,

[
0 1
1 0

]
,

[
0 1
2 1

]
,

[
0 2
0 1

]
,

[
0 2
1 2

]
,

[
0 2
2 0

]
,

[
1 0
0 1

]
,

[
1 0
1 2

]
,

[
1 0
2 0

]
,

[
1 1
0 0

]
,

[
1 1
1 1

]
,

[
1 1
2 2

]
,

[
1 2
0 2

]
,

[
1 2
1 0

]
,

[
1 2
2 1

]
,

[
2 0
0 2

]
,

[
2 0
1 0

]
,

[
2 0
2 1

]
,

[
2 1
0 1

]
,

[
2 1
1 2

]
,

[
2 1
2 0

]
,

[
2 2
0 0

]
,

[
2 2
1 1

]
,

[
2 2
2 2

]}

T5 =
〈[

0 2
1 0

]〉
=

{[
0 0
0 0

]
,

[
1 0
0 1

]
,

[
2 0
0 2

]
,

[
0 1
2 0

]
,

[
1 1
2 1

]
,

[
2 1
2 2

]
,

[
0 2
1 0

]
,

[
1 2
1 1

]
,

[
2 2
1 2

]}

T6 =
〈[

0 1
1 2

]〉
=

{[
0 0
0 0

]
,

[
0 1
1 2

]
,

[
0 2
2 1

]
,

[
1 2
2 2

]
,

[
2 1
1 1

]
,

[
2 2
2 0

]
,

[
1 1
1 0

]
,

[
2 0
0 2

]
,

[
1 0
0 1

]}

T7 =
〈[

0 1
1 1

]〉
=

{[
0 0
0 0

]
,

[
1 0
0 1

]
,

[
2 0
0 2

]
,

[
2 1
1 0

]
,

[
0 1
1 1

]
,

[
1 1
1 2

]
,

[
1 2
2 0

]
,

[
2 2
2 1

]
,

[
0 2
2 2

]}
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In contrast, showing that a ring is not coverable is an easier problem. It was stated in [6,
Lemma 1.4] that a ring is coverable if and only if R , 〈a〉 for all a ∈ R. For example, the
ring Zn, n ∈ N, is generated by the identity element which means that Zn = 〈1〉 is not
coverable. Thus, to show a ring R is not coverable, we only need to find an element a ∈ R
such that R = 〈a〉. In this paper we compute the covering number of a variety of coverable
rings. We also give examples of rings that are not coverable. In these cases, we find an
element that generates (see Definition 2.2) the whole ring. Given prime numbers p and q,
we consider the following rings: commutative rings of order pq, noncommutative rings
of order p2, and the quotient ring Zp[x]/(f ) when f is a polynomial of degree 2.

2. Preliminaries

A ring is a set R with two binary operations, addition (+) and multiplication (·). These
two operations are associative, addition is abelian, it has an inverse operation, and is
distributive over multiplication. A ring is commutative if ab = ba for all a, b ∈ R. A ring
with unity is a ring which has a multiplicative identity element. A field is a commutative
ring with unity in which every nonzero element has a multiplicative inverse. A subring
of R is a subset of R that is a ring itself under these operations. A subset I of a ring R is
called an ideal if it is an abelian group under addition and for any i ∈ I and r ∈ R, ri ∈ I
and ir ∈ I . The quotient ring R/I is the set of equivalence classes (cosets) a+ I , a ∈ R, such
that a+ I = b+ I if and only if a−b ∈ I . Multiplication and addition of cosets is defined by
multiplying and adding the representatives of these cosets. These operations are known
to be well-defined. If R is a commutative ring and a ∈ R, the set Ra is an ideal called the
ideal generated by a and it is denoted by (a) = Ra.

Definition 2.1. A ring R is coverable if it is equal to the union of proper subrings. The
covering number of a ring R, denoted by σ (R), is the minimum number of subrings needed
to cover R. If R is not coverable, we say σ (R) =∞.

The following definition will be needed throughout this paper:

Definition 2.2. For a ∈ R, the subring generated by a is the set of elements of the form

cna
n + cn−1a

n−1 + · · ·+ c1a,

where n ≥ 1 and each ci ∈Z. This subring will be denoted by 〈a〉. Note that this is not the
cyclic subgroup of R× when a is a unit. We say R is generated by a if R = 〈a〉.

3. Commutative rings of order pq

In this section, we discuss the covering of some commutative rings of order pq where p
and q are primes. The main result is:

Theorem 3.1. For primes p and q, we have

σ (Zp ×Zq) =
{

3 p = q = 2
∞ otherwise.

Furthermore, σ (Zpq) =∞, and σ (R) =∞ if R , Z2 ×Z2 is a commutative ring with unity of
order p2.
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We first motivate this theorem through the following examples:

Example 3.2. The ring Z2×Z2 is the union of its subrings 〈(1,0)〉 = {(1,0), (0,0)}, 〈(1,1)〉 =
{(1,1), (0,0)}, and 〈(0,1)〉 = {(0,1), (0,0)}, and therefore the covering number σ (Z2×Z2) = 3
by [6, Example 1.5].

Example 3.3. Let p = 3. By [6, Theorem 3.5], Z3×Z3 is not coverable. We show that Z3×
Z3 = 〈(1,2)〉. Let y = (1,2), then y2 = (1,1). To generate the elements of the subring 〈(1,2)〉,
we use the linear combinations a(1,2) + b(1,1) ∈ Z3 ×Z3 with a,b ∈ Z. By reducing the
coefficients modulo 3, the linear combinations give all the elements of Z3×Z3. Similarly,
we can check Z5 ×Z5 = 〈(1,4)〉.

We generalize this example for any p ≥ 3:

Lemma 3.4. If p ≥ 3, Zp ×Zp = 〈(1,p − 1)〉 and σ (Zp ×Zp) =∞.

Proof. By [6, Theorem 3.5], the ring Zp ×Zp is not coverable thus σ (Zp ×Zp) = ∞. We
also find a generating element. Let y = (1,p − 1), then y2 = (1,1) (mod p) which is the
identity element of Zp×Zp. Then any element of 〈y〉will simplify to a linear combination
a(1,p − 1) + b(1,1) = (a + b,a(p − 1) + b) where 0 ≤ a,b ≤ p − 1. These linear combinations
will give all elements of Zp ×Zp, therefore Zp ×Zp = 〈(1,p − 1)〉 and σ (Zp ×Zp) =∞ for
p ≥ 3. �

The next required step in proving Theorem 3.1 is considering the case p , q:

Lemma 3.5. For distinct primes p and q, Zp ×Zq = 〈(1,1)〉 and σ (Zp ×Zq) =∞.

Proof. By [6, Corollary 2.2], if {Ri : 1 ≤ i ≤ t} is a collection of finite rings with |Ri | = p
ni
i ,

where pi are pairwise distinct, then
∏t
i=1Ri is coverable if and only if at least one Ri is

coverable. Thus for distinct primes p and q, the ring Zp ×Zq is not coverable since both
Zp and Zq are not coverable, and hence σ (Zp ×Zq) = ∞. We also show that (1,1) will
generate this ring. Let (x,y) ∈Zp ×Zq. We want to find an integer n such that

(x,y) = n(1,1) = (n (mod p),n (mod q))

Therefore, we want to solve the system

n ≡ x (mod p)

n ≡ y (mod q)
Since p and q are relatively prime, the Chinese Remainder Theorem guarantees an integer
solution for n. Therefore, Zp ×Zq = 〈(1,1)〉. �

For the second part of Theorem 3.1, we discuss the commutative ring Zpq of order pq:

Lemma 3.6. For primes p and q, σ (Zpq) =∞.

Proof. Since Zn = 〈1〉 for any n ∈N, then Zpq = 〈1〉 which proves σ (Zpq) =∞. �

For the last part of Theorem 3.1, we need the following:

Lemma 3.7. If R ,Z2 ×Z2 is a commutative ring with unity of order p2, then σ (R) =∞.
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Proof. It is well known that there are four finite commutative rings with unity of order
p2. They are: the finite field Fp2 , Zp2 , Zp ×Zp, and Zp[x]/(x2).

The rings Zp×Zp (p ≥ 3) and Zp2 were handled in Lemmas 3.4 and 3.6. The ring Fp2 is not
coverable because Fp2 = 〈a〉 where a is a generator of the cyclic group of units of Fp2 . The
quotient ring Zp[x]/(x2) is not coverable because it is equal to the subring 〈x + 1 + (x2)〉.
In such quotient ring, we will write a coset f (x) + I as f (x). Let y be the coset y = x + 1,
then using x2 = 0, we can inductively show that yk = kx+ 1 (mod p), k ∈N. It follows that
yp = 1. Thus,

∑p
k=1 aky

k will generate all elements of Zp[x]/(x2). �

We conclude this section by proving Theorem 3.1.

Proof. Suppose p = q = 2. Then Example 3.2 shows Z2×Z2 is coverable and σ (Z2×Z2) = 3.
The case p = q ≥ 3 and p , q are handled respectively by Lemmas 3.4 and 3.5. The second
part of Theorem 3.1 is proved in Lemmas 3.6 and 3.7. �

4. Noncommutative rings of order p2

In this section, we discuss noncommutative rings of order p2. We have:

Theorem 4.1. Every noncommutative ring of order p2 is coverable.

Proof. Every noncommutative ring is coverable since any subring 〈a〉, a ∈ R, is commuta-
tive and hence will not be equal to R (See [6, Lemma 1.4]). �

It would be interesting to find the subrings that would cover these rings. According to
[1],

Proposition 4.2. There are two noncommutative rings (without a unity) of order p2:

E = 〈a,b;pa = pb = 0, a2 = a,b2 = b,ab = a,ba = b〉

F = 〈a,b;pa = pb = 0, a2 = a,b2 = b,ab = b,ba = a〉

We consider the case p = 2. The ring E is covered by the subrings 〈a〉, 〈b〉, and 〈a + b〉.
Thus, σ (E) = 3. Similarly, σ (F) = 3. In fact, these two rings have matrix realizations as
follows. Consider the subrings of the matrix ring M2(Z2) of 2× 2 matrices over Z2:

R =
{[

0 0
0 0

]
,

[
0 1
0 0

]
,

[
1 0
0 0

]
,

[
1 1
0 0

]}
,

R′ =
{[

0 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
0 1

]
,

[
0 1
0 1

]}
.

Both rings R � F and R′ � E are non-commutative of order 4. Each nonzero element in R
or R′ generates a subring of order 2. Thus both R and R′ have covers by three subrings
(See [3, Examples 2.3, 2.4]). Therefore, σ (R) = σ (R′) = 3. We have not looked at the cases
when p ≥ 3.
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5. Quotients of polynomial rings

In Lemma 3.7, we proved that Zp[x]/(x2) is not coverable. This motivated us to look at
other quotient rings of the polynomial ring Zp[x]. Let f be a polynomial of degree 2 in
Zp[x]. Without any loss of generality, we can assume f to be monic. If f is irreducible,
then the quotient ring Zp[x]/(f ) is a finite field which is not coverable since it can be gen-
erated by any generator of the cyclic group of units. If f is a monic reducible polynomial
of degree 2, then assume f = (x+ a)(x+ b) where a,b ∈Zp. Our main result in this section
is:

Theorem 5.1. Let a,b ∈Zp, then

σ
(
Zp[x]/(f )

)
=

{
3 p = 2, f = x(x+ 1)
∞ otherwise.

We handle these cases in a series of lemmas. We previously handled the case (a,b) = (0,0)
in Lemma 3.7. We also handle the case p = 2 separately:

Lemma 5.2. σ (Z2[x]/(f )) =
{

3 f = x(x+ 1)
∞ f = x2 or f = (x+ 1)2.

Proof. Note that Z2[x]/(x(x + 1)) � Z2 ×Z2 where the isomorphism takes 0 to (0,0), 1 to
(1,1), x to (1,0), and x + 1 to (0,1). Since Z2 ×Z2 is coverable, then Z2[x]/(x(x + 1)) is
coverable. In particular, since Z2 ×Z2 is the union of its subrings 〈(1,0)〉,〈(0,1)〉, and
〈(1,1)〉, then Z2[x]/(x(x + 1)) is equal to the union of its subrings 〈x〉,〈x + 1〉, and 〈1〉.
Therefore σ (Z2[x]/(x(x+ 1))) = 3. We note that this ring is isomorphic to the ring in [3,
Example 2.1].

From the proof of Lemma 3.7, we have Z2[x]/(x2) = 〈x + 1〉 and σ
(
Z2[x]/(x2)

)
= ∞. For

the last case, take y = x then y2 = x2 = −2x − 1 = −1. Thus the linear combinations
a1y + a2y

2 will generate all elements of Z2[x]/((x + 1)2). Therefore, Z2[x]/((x + 1)2) = 〈x〉
and σ

(
Z2[x]/((x+ 1)2)

)
=∞. �

From now on, we can assume p ≥ 3. We start by a motivating example:

Example 5.3. The ring Z3[x]/(x(x + 1)) is not coverable because it is equal to the sub-
ring 〈x + 2〉. Similarly, Z5[x]/(x(x + 1)) is equal to the subring 〈x + 4〉. Consider the ring
Z3[x]/(x(x+2)). In this ring, we have x2 = x (as cosets). Let y = x+1, then y2 = x2+2x+1 = 1.
The linear combination Ay +B, A,B ∈ Z3, will generate all elements of the quotient ring.
Therefore, Z3[x]/(x(x+ 2)) = 〈x+ 1〉 and thus it is not coverable.

More generally,

Lemma 5.4. If p ≥ 3 is prime and b ∈ Zp \ {0}, then Zp[x]/(x(x + b)) = 〈x + p − b〉 and
σ (Zp[x]/(x(x+ b))) =∞.

Proof. Let y = x+ p − b ≡ x − b (mod p). Then we can inductively show that for k ≥ 1,

yk = (−1)k−1(2k − 1)bk−1x+ (−b)k .
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By Fermat’s Little Theorem, 2p−1 ≡ 1 (mod p) and bp−1 ≡ 1 (mod p). Since p−1 is even, we
have yp−1 ≡ 1 (mod p).

Any element in Zp[x]/(x(x+ b)) is of the form Ax+B+ I where I = (x(x+ b)) and A,B ∈Zp

under the condition x2 = −bx. The linear combinations, with ck ∈Zp,

p−1∑
k=1

cky
k =

p−1∑
k=1

ck((−1)k−1(2k − 1)bk−1x+ (−b)k) =
p−1∑
k=1

ck(−1)k−1(2k − 1)bk−1x+ ck(−b)k

will generate all the elements of Zp[x]/(x(x + 1)) since b is invertible modulo p. The first
term in the sum will give the terms of degree 1 in the cosets while the second term will
give the constant term in the cosets. �

The only case left is when f = (x+ a)(x+b) where both a and b are nonzero. We verify the
theorem using the following example:

Example 5.5. Consider the ring Z3[x]/((x+1)(x+2)) where we have x2 = 1. Let y = x, then
y = x2 = 1 which implies that Z3[x]/((x+ 1)(x+ 2)) = 〈x〉 and thus it is not coverable.

Similarly, consider the ring Z5[x]/((x + 2)(x + 3)) where we have x2 = 4. let y = x, then
y = x2 = 4 which implies that Z5[x]/((x+ 2)(x+ 3)) = 〈x〉 and thus it is not coverable.

More generally,

Lemma 5.6. Let p ≥ 3 be a prime and a,b ∈Zp with both a,b , 0. ThenZp[x]/((x+a)(x+b)) =

〈x〉 and σ
(
Zp[x]/((x+ a)(x+ b))

)
=∞.

Proof. Let y = x. Then y2 = x2 = −(a + b)x − ab since x2 + (a + b)x + ab = 0. By taking any
linear combination Ay +By2, A,B ∈Zp, we have

Ay +By2 = Ax+B(−a− b)x+B(−ab) = x(A− aB− bB)− abB.

To generate any element xs + t ∈ Zp[x]/((x + a)(x + b), for some s, t ∈ Zp, we need to solve
−abB = t and A − aB − bB = s. Since a−1 and b−1 exist in Zp, the first equation gives
B = −a−1b−1t and the second equation gives A = s − b−1t − a−1t. Thus any element of
Zp[x]/((x + a)(x + b)) can be written as Ax +Bx2 which implies Zp[x]/((x + a)(x + b)) = 〈x〉
and σ

(
Zp[x]/((x+ a)(x+ b))

)
=∞. �

We conclude by noting that Lemmas 5.2, 5.4, and 5.6 prove Theorem 5.1. These com-
putations leave, however, some unanswered questions: what happens if we increase the
degree of f or what happens if we replace p by a prime power pn? For example, it was
shown in [6] that if f is monic and irreducibe, then the local ring Zpn[x]/(f ) is not cover-
able. Another direction could be studying the covering number of some noncommutative
rings (see Section 4) or some infinite rings.
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