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Abstract. In this work we interpret the vertices of a weighted directed graph as players on
a soccer team. A weighted directed arrow between two vertices represents the number of
successfully completed passes between the corresponding players. We use various central-
ity measures, both established and new, to study the Manhattan College women’s soccer
team, the Jaspers. We also utilize a Borda Count voting system to compare the play style
of the Jaspers to those of several professional teams.

1. Background

The passing network of a soccer team is a weighted directed graph in which each of the
eleven vertices corresponds to a player. A weighted directed arrow from vertex i to vertex
j represents the number of successfully completed passes from player i to player j. This
gives rise to the weighted adjacency matrix A, where Aij is the number of passes from
player i to player j. For illustrative purposes, we portray in Figure 1 the passing network
and associated matrix for a team of three players. Arrowheads are represented by heavier
rule at one end of an edge. Note, for example, that the arrow from player 1 to player 2
has a weight of 3 and that A1,2 = 3, both indicating that player 1 successfully passed to
player 2 three times.

(a)

 0 3 1
0 0 2
0 0 0


(b)

Figure 1. A passing network for a team with 3 players and its associated
adjacency matrix.
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We wish to quantify both player and team performance. To do this we use five network
invariants: closeness, betweenness, PageRank, clustering, and defensive score. The first
three were used by Peña and Touchette in their analysis of the 2010 Men’s World Cup
Soccer Tournament [6]; they are discussed in depth in [7, chapters 7 and 8]. The final four
teams in the 2010 Men’s World Cup were Germany, Netherlands, Spain, and Uruguay.
Three of these teams displayed notably high average clustering scores. In addition, Spain,
the winner of the tournament, had uniformly low betweenness scores, which Peña and
Touchette observed as evidence of a well-balanced passing strategy.

2. Centrality Measures

Two players on a team are considered “close” to one another if numerous successful
passes flow between them. We define the length of an arrow in a passing network as
the inverse of its weight. The geodesic distance from player i to player j, denoted dij , is
given by the length of a shortest path from vertex i to vertex j, where the length of a path
is obtained by adding the lengths of the arrows comprising it. If there is no path from
vertex i to vertex j, then the distance from i to j is infinite. Looking again at Figure 1, we
see that the arrow from player 1 to player 3 has length 1. However, the path from player
1 to player 3 that goes through player 2 has length 5

6 , making this the shorter path. It is
worth noting here that distance between players is not necessarily symmetric. We have
seen that d13 = 5

6 , but d31 is infinite, since there is no sequence of passes from player 3 to
player 1. In the passing network of a collegiate soccer team, however, it is unlikely that a
pair of players will have infinite distance between them.

Formally now, the closeness score of player i, denoted by clo(i), is defined as the inverse
of her average geodesic distance to and from every other player. Since for each player we
can consider paths to or from each of the 10 other players on the team, we have

clo(i) =
20∑

j,i
dij +

∑
j,i

dji
.

Another important attribute of an individual player is her ability to help the team move
the ball from one player to another in the shortest amount of passes. The betweenness
score of player i, denoted by bet(i), quantifies how often a player lies on a shortest path
between other players. If nijk denotes the number of geodesic paths from j to k going
through i and gjk gives the total number of geodesic paths from j to k, then

bet(i) =
1

90

∑
j,k,i

nijk
gjk

.

The factor 1/90 normalizes the score since there are 90 possible (j,k) pairs. Returning
to our simplified example in Figure 1, our normalization factor would be 1

2 , giving us
bet(1) = bet(3) = 0 and bet(2) = 1

2 .
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Note that closeness and betweenness are similar notions, but there is a subtle difference
between them. Closeness measures how easy it is to get the ball to or from a particular
player, while betweenness measures the extent to which a player helps her teammates
move the ball between other players. Ideally, one would want every player on a team to
have a high closeness score. This would mean that all players are well-connected, mak-
ing it easy for the team to move the ball from player to player. To interpret a player’s
betweenness score, we view it holistically. While it is not bad for an individual player to
have a high betweenness score, it may harm the team if she is an outlier. If she is, this may
indicate that the team relies too much on that particular player. A more even distribution
of betweenness scores, even if none is particularly high, suggests a more cohesive team.
A more balanced team could lose a player to injury, penalty, or good defense and not have
its performance suffer.

A player is said to be “important” if other “important” players pass to her. This recur-
sive notion of importance is measured by PageRank centrality, which is the basis of the
algorithm by which Google initially ranked webpages [3]. In the original context, a web-
page is deemed important if other important pages link to it. The PageRank of a player i,
denoted by Page(i), satisfies

Page(i) = p
∑
j,i

Aji

degout(j)
Page(j) + q,

where degout(j) is the total number of passes made by player j, also called the weighted
out-degree of player j. Likewise, degin(j) denotes the weighted in-degree of player j
and counts the number of passes received by player j. The weighted in-degree will be

used in our next measure. In the formula for PageRank, note that the coefficient
Aji

degout(j)

is the percentage of passes player j makes to player i, so
Aji

degout(j)
Page(j) computes the

percentage of player j’s importance that she gives to player i. The parameter p repre-
sents the probability that a player will keep the ball versus passing it to another player.
By assigning a positive value to q, we ensure that each player has a positive PageRank.
We have used the values declared by Peña and Touchette of p = 0.85 and q = 1 in order
to compare our results to theirs. More accurate scores would result from using player
dependent probabilities, but such information was not available to us. For a thorough,
yet accessible explanation of the linear algebra involved in the computation of PageRank,
which includes an explanation of the necessity of the parameter q, see [4].

The notion of clustering originates in undirected, unweighted graphs. In such a graph,
the clustering coefficient of a vertex i, denoted by clust(i), gives the probability that a
pair of randomly selected neighbors of i are adjacent to each other. Hence,
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clust(i) =
the number of pairs of neighbors of i that are adjacent

the number of pairs of neighbors of i

=
2ti

deg(i)(deg(i)− 1)
,

where ti is the number of triangles involving vertex i and deg(i) is the degree of i.

Defining clustering coefficients for a weighted directed graph is more complicated. In
fact, there is no consensus in the literature concerning how this should be done. A com-
parison of several commonly used definitions is found in [9] and [5]. We are interested
here in directed triples of distinct players, (i, j,k), where j passes to i and k, and i passes
to k, such as we see in Figure 1. We call such a triple a directed triangle around i, and
introduce the following:

Definition: In the passing network of a soccer team, the clustering coefficient of player i,
is

clust(i) =
1

degout(i)degin(i)−E2
ii

∑
j,k

3
√
AjkAjiAik

max(A)
.

The numerator in the sum above is the geometric mean number of passes in a directed
triangle around i, which is nonzero if and only if the triple (i, j,k) does indeed define a
directed triangle around i. The denominator is the maximum number of passes between
any two players. Hence, the sum is a weighted count of all the directed triangles around
i. As explained in Table I of [5], the denominator of the term outside the sum is the max-
imum possible number of directed triangles around i that could be formed by pairs of
the neighbors of i. Here E denotes the incidence matrix for the underlying undirected
network; i.e., Eij = 1 if Aij , 0 and Eij = 0 otherwise. Since E2

ii gives the number of paths
of length 2 in the unweighted graph that begin and end at i, subtracting this term elimi-
nates degenerate triangles.

The clustering coefficient of player i, tells us how well she helps complete directed trian-
gles around her. Hence, it gives an indication of how well a player helps her teammates to
bypass well-defended passing lines. Note that in a particular triple, the alternative path
created by player i may not be the shortest one. However, if a player has a high cluster-
ing score, she is consistently providing an alternate path to move the ball between other
players. It is highly desirable for a team to have a high average clustering score, as this
indicates a resilient passing network, against which the opposing team may have trouble
defending.

Our last measure is simple but revealing. To identify players who are good defenders, we
look at the difference between the number of passes originating with a particular player
and the number of passes terminating with her. Formally we have,
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Definition: The defensive score of player i is

def(i) =
∑
i,j

Aij −
∑
i,j

Aji .

If def(i) is positive, then we may assume that player i is winning the ball from the other
team; hence, she is a good defender. The converse is not necessarily true. A player may
be quite good at winning the ball from the other team, but then makes passes that are
intercepted, or takes shots at goal, possibly resulting in a negative defensive score. While
having passes intercepted is not desirable, one cannot conclude from a negative defensive
score that a player is a poor defender.

3. The Passing Data

3.1. Collecting It. For their analysis of the 2010 World Cup, Peña and Touchette obtained
the passing data directly from the website of the International Federation of Association
Football (FIFA). Unfortunately, neither the National Collegiate Athletic Association (the
NCAA) nor the Metro Atlantic Athletic Conference (the MAAC) provides such data to
the public. Hence, we relied on three Jasper team members, Kaelyn Angelo, Alexandra
Iovine, and Janie Schlauder, who watched hours of film to collect the passing data. We
are grateful for their expertise, as our analysis would not have been possible without their
contributions.

As stated earlier, an arrow in the passing network represents the successfully completed
passes from one player to another. Since we collected our own data, we first needed to
define what we consider to be a successfully completed pass. In our analysis, we consider
only completed passes that are clearly directed from one player to another. That is, if a
Jasper kicks the ball upfield with no clear target teammate, this pass is not counted, even
if the Jaspers retain possession. Under certain circumstances when the ball goes out of
bounds, a player throws the ball back onto the field to restart the play. A throw-in, when
clearly directed at a particular teammate, is counted as a completed pass. The collected
passing data is available in appendix A.

3.2. Processing It. Our analysis made use of iPython Notebook, a web-based interactive
computational environment. To simplify data manipulation, we created a Game and Ag-
gregated Game class. Then, to compute the network-theoretic measures and to produce
the various graphics, we used version 1.9.1 of the NetworkX package.

4. Analyzing the Jaspers

4.1. Substitutions and The Positional Approach. According to official FIFA rules [1], a
team is permitted to make at most three player-substitutions during a single match, and
a substituted player takes no further part in the match. Hence, at most 14 players may
participate in a match. Moreover, once a player is assigned to a position, he will likely
play in only that position throughout his time on the field. Hence, there is nearly a one-
to-one correspondence between players and positions. The Manhattan College Jaspers,
however, are governed by a different organization. The NCAA allows a team to substitute
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up to 11 players at a time [2]. Further, a player who has been taken off the field during the
first period may re-enter the match during the second period, and a player who is taken
off the field during the second period may re-enter during that same period.

According to the data available on gojaspers.com, the Jaspers played 18 matches during
the 2013–2014 season. On average, the Jaspers fielded 16 players per match, which is two
players greater than the maximum allowed in a professional match. Moreover, this aver-
age does not account for players exiting and reentering the field during a match. In light
of this, we take a positional approach in our analysis. That is, we redefine the passing
network so that the vertices represent positions, rather than players. We acknowledge, of
course, that each player brings her own skills and style to a particular position. However,
each position plays a particular role, so we find it reasonable to assume that a player will
adapt as necessary. Since in distinct matches a different collection of players may occupy
a particular position, we have chosen to aggregate the passing data over several matches.
The passing network was then created by weighting each arrow with the arithmetic mean
number of passes per match.

4.2. The Jaspers’s passing network. The formation a soccer team assumes on the field
is the most basic expression of its style of play. Each formation includes a goalkeeper;
the remaining 10 players are distributed among defensive, midfield, and offensive posi-
tions. Since the forwards are positioned closest to the opponent’s goal, one might assume
they are the team’s most offensive players; however, any player on the team may make
a direct attempt at scoring. Likewise, since the play on the field is dynamic, any player
may find herself defensively positioned, able to stop the other team from taking a shot
at goal. The Jaspers utilized several formations throughout the 2013-2014 season. Most
often, they used a 4-4-2 formation, which is comprised of the goalkeeper, four defend-
ers (left and right outside backs, left and right center backs), four midfielders (left and
right wing midfielders, left and right center midfielders), and two forwards (high and
underneath forwards). Our analysis focuses on eight of the matches played in the 4-4-2
formation. The opponents for these matches were: College of the Holy Cross (9/3), Uni-
versity of Rhode Island (9/8), Wagner College (9/14), Delaware State University (9/16),
Marist College (9/21), Iona College (9/25), Niagara University (9/28), and Monmouth
University (10/2). In Figure 2 we show the aggregated passing network for these eight
matches. Note that we use the thickness of the arrows to represent number of passes; i.e.,
a thicker arrow corresponds to a higher number of passes.

We observe heavy activity along the sides of the field, with the passes between the left
outside back (LOB) and the left wing midfielder (LWM), and between the right outside
back (ROB) and the right wing midfielder (RWM) far outweighing any other pairings. To
interpret this activity in a larger context, we turn to the centrality measures.

http://www.gojaspers.com/SportSelect.dbml?SPSID=52473&DB_LANG=C&SPID=5441&DB_OEM_ID=12500&Q_SEASON=2013
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Figure 2. The Jaspers’s Passing Network

4.3. Measuring the Jaspers. Table 1 summarizes the data for each position. The integer
in brackets following each score indicates its ranking among the scores for that measure.

Recall that a high closeness score identifies a player as easy to reach. We observe that
the high-ranked and low-ranked players are dispersed throughout the formation. That
is, there are no pockets of the team that are difficult to reach. Additionally, the team
displayed a well-balanced passing strategy, as indicated by a mean betweenness score of
.81 with a standard deviation of .45. This inference will be confirmed in a forthcoming
section, when we compare the Jaspers’s performance to that of other teams. As Peña
and Touchette observed, an imbalance in betweenness can be problematic for a team. If
players with exceptionally high betweenness scores are identified by the opposing team,
the opposition may then concentrate their defensive efforts around these players. While
there were no players with exceptionally high betweenness scores, we do see that the
underneath forward (UF) had a locally-high score relative to the high forward (HF) and
the center midfielders. Hence, the team is clearly open to an isolated player attack. To
aid us in visualizing this, we arrange the rankings from Table 1 into Measure-Ranked
Formation Diagrams (MRFDs), as seen in Figure 3.
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Player clo(i) bet(i) Page(i) clust(i) def(i)

HF 0.82 [1] 0.26 [2] 0.12 [8] 9.39 [10] −6.75 [2]
UF 1.63 [8] 1.34 [7] 0.11 [7] 3.13 [4] −4.50 [3]
RWM 1.63 [8] 0.39 [3] 0.13 [9] 7.66 [9] −10.63 [1]
RCM 1.30 [4] 0.52 [4] 0.09 [5] 4.31 [7] 3.63 [8]
LCM 0.95 [2] 0.52 [4] 0.08 [4] 2.55 [1] 3.00 [7]
LWM 1.82 [9] 1.22 [6] 0.12 [8] 3.23 [5] −10.63 [1]
ROB 1.90 [10] 1.22 [6] 0.10 [6] 5.07 [8] 13.88 [10]
RCB 1.03 [3] 0.98 [5] 0.07 [3] 3.70 [6] 0.00 [4]
LCB 1.60 [7] 0.98 [5] 0.05 [2] 2.59 [2] 2.38 [6]
LOB 1.43 [5] 1.34 [7] 0.10 [6] 3.70 [6] 8.75 [9]
G 1.54 [6] 0.12 [1] 0.04 [1] 2.98 [3] 0.88 [5]

Table 1. Computed scores for individual positions. Note that clustering
and betweenness are expressed as percentages.

(a) Closeness (b) Betweenness

(c) PageRank (d) Clustering

(e) Defensive

Figure 3. The Jaspers’s MRFDs
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We now turn to PageRank, our notion of importance or popularity. A useful interpre-
tation, as noted by Peña and Touchette, is that PageRank gives the probability that a
particular player will have possession of the ball after a reasonable number of passes has
been made. We see from the PageRank MRFD, Figure 3c, that the Jaspers clearly prefer to
have the ball in the front of the field. This makes intuitive sense, of course, as possessing
the ball near the opposition’s goal would increase the Jaspers’s chance of scoring. What
is not so clear is why the Jaspers prefer to have the ball on the right side of the field. A
simple Google search yields various theories regarding right-footed players and passing
preference, but all evidence cited is anecdotal.

During a match, the player in possession of the ball can be in one of two states. She is
either free to progress the ball forward, or she is being actively defended. As we have just
observed from the PageRank scores, a Jasper in possession of the ball who is free to move
will aim to put the ball in the front right portion of the field. The high betweenness rank-
ing of the underneath forward, as seen in Figure 3b, suggests that she is instrumental in
accomplishing this aim. If the player in possession of the ball is being heavily defended,
she may look for help from the players on her right. This is told to us by the clustering
coefficients, which identify players who help their teammates reroute the ball around de-
fenders. We see in Figure 3d that the clustering scores are significantly higher for the
players on the right side of the field.

Next we note that the outside backs had the highest defensive scores, Figure 3e. Curi-
ously, the players with the lowest defensive scores are their neighbors, the left and right
wing midfielders. While this does not say they are poor defenders, it does say they are
prone to losing possession of the ball. Pairing this information with the passing network
(Figure 2) paints a picture of what likely happened during those matches. The outside
backs may have stolen the ball from the opposition, moved it upfield through the wing
midfielders, who then lost possession. Note that this loss could have happened for a va-
riety of reasons. For example, one of these players could have lost the ball to an opposing
defender, or she could have attempted a cross, which is a medium to long-range pass
aimed toward the general vicinity of the opponent’s goal.

4.4. The Round of 17. Next we were interested in determining if the Jaspers’s play style
shares characteristics with any of the professional teams analyzed by Peña and Touchette.
We began with Table 2, which was constructed by inserting the Jaspers’s data into the
table given in [6]. Thus, we obtain the “Round of 17”. Before performing any of the
computations, we naively assumed that the Jaspers’s average number of passes would be
far lower than those of the professional teams, given the disparity in skill and fitness level.
We were surprised to see that this score for the Jaspers is exactly the median. It was also
notable that for all three measures of connectivity, the Jaspers have the highest scores.
Upon further reflection, though, we realized that this is likely due to our aggregation of
the Jaspers’s passing data over eight matches.

What is remarkable, and not so influenced by the aggregation of the passes, is the Jaspers’s
average betweenness score of 0.81 with a standard deviation of 0.45, as noted earlier. This
is vastly different from the mean average betweenness of the professional teams, which
is 3.6. At the moment it is unclear why this difference is present. In future work we
plan to compare the Jaspers to the teams from the 2015 Women’s World Cup and to other
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Team P k ku bet Cq

Argentina 227 4 5 2.7 8
Brazil 321 5 7 2.0 8
Chile 120 0 1 5.1 6
England 239 2 3 3.6 7
Germany 220 2 2 4.6 6
Ghana 184 3 4 3.5 8
Japan 180 1 5 3.3 8

Jaspers 4-4-2 199 6 9 0.8 10

Korea Rep. 227 3 5 2.6 8
Mexico 225 0 0 1.9 7
Netherlands 266 5 7 1.9 8
Paraguay 103 0 2 7.5 5
Portugal 175 3 4 4.1 7
Slovakia 166 3 6 3.0 7
Spain 417 3 5 1.9 9
USA 160 1 4 4.6 7
Uruguay 117 2 3 4.8 6

Table 2. Data for the teams in the 2010 Men’s World Cup Round of 16,
taken from Table 1 in [6], plus The Jaspers’s scores. P : average number
of passes; k: edge connectivity; ku : undirected connectivity; bet: average
betweenness (expressed as a percentage); Cq: largest clique. The highest
two values for the connectivity measures (k, ku , Cq) and the lowest average
betweenness (bet) are highlighted.

collegiate teams, in order to determine if those teams display a similarly well-balanced
passing strategy.

4.5. Similarity. To obtain a more robust comparison between the Jaspers and the Top 16,
we make use of a modified Borda Count voting method [8]. This is a preferential voting
scheme in which voters rank candidates on the basis of preference. Traditionally, each
candidate is awarded one point for each last place ranking, two points for each next-to-
last ranking, and so on. The candidate with the largest point total is declared the winner.
A Borda Count is viewed as a consensus-based voting system. That is, it tends to select
the candidate who is most broadly acceptable to the electorate, rather than the candidate
who is preferred by the majority. In our scenario, the teams that played in the same
formation as the Jaspers are the candidates. We take the weighted arrows of the Jaspers’s
passing network to be the voters. If there is no arrow between two vertices, we consider it
to have zero weight. Hence, there are 110 voters, who will choose the team whose passing
network is most similar to the Jaspers’s network. For each arrow in the Jaspers’s network,
a team in which the corresponding edge has the least difference in weight is given the
highest ranking. The rankings then decrease as the magnitude of the difference in the
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weights increases. Note that in our system, a voter may give the same ranking to different
candidates. In this way, our scheme differs from a standard Borda Count. The Borda
Count for each team will be called its similarity score.

The official FIFA website for the 2010 World Cup provides the tactical line-up and ac-
tual formation for each match of the tournament. In the Round of 16, there were three
teams whose formations closely resembled the Jaspers’s 4-4-2 formation: Germany, Spain,
USA. These teams, therefore, are the candidates in our Borda Count. Using the passing
distributions from the FIFA website, we created the passing networks seen in Figure 4.
Referring to the Jaspers’s data in appendix A and recalling that the Jaspers played eight
games in the 4-4-2 formation, we see that the arrow in the Jaspers’s passing network from
the left outside back to the left wing midfielder has a weight of 11. We consider this
weighted arrow to be one of our 110 “voters”. Now we use the FIFA data to determine
that the corresponding arrow in the passing network for Germany has weight 8. In the
passing network for Spain it has weight 6, and for the USA it has weight 3. Hence, this
voter ranks Germany, Spain, and USA as 1st, 2nd, and 3rd, respectively. When the rank-
ings for each arrow were tallied, Spain earned a similarity score of 56, USA was much
closer with a similarity score of 107, and Germany was the winner with a similarity score
of 110. While the German team is the most similar to the Jaspers among the three teams
considered here, differences in their passing networks are readily apparent. In particular,
the passing network for Germany shows much more activity in the center of the field. We
also note differences between MRFDs for Germany, Figure 5, and the Jaspers, Figure 3.
In particular, we note that Germany’s betweenness scores are much higher on the right,
while the Jaspers’s are slightly higher on the left. Also of note are the high PageRank
scores for Germany’s left center back and right outside back. On the other hand, all of
the Jaspers’s most popular players are at the front of the field. For both teams, the high
forward had the highest clustering score. The other high clustering scores for the Jaspers
are heavily weighted on the right side of the field. However, the German team presents a
more even distribution of its players’ clustering scores.

5. Future Work

In future work, we may look more closely at the differences noted in the previous sec-
tion to understand how they arise. Armed with the knowledge that the Jaspers’s passing
network bears resemblance to network of the very successful German team, a coach may
wonder how to strengthen this resemblance. Of course, this strategy of simply emulating
a successful team ignores the fact that the Jaspers aren’t the only team on the field. An-
other project could involve simultaneously analyzing the networks and measures of both
opponents in a given match. Additionally, one could apply these techniques to other col-
legiate sports, such as field hockey or lacrosse, that possess a similar network structure.

http://www.fifa.com/worldcup/archive/southafrica2010/matches/index.html
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(a) Germany (b) Spain

(c) USA

Figure 4. Candidates for the Borda Count Comparison
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(a) Closeness (b) Betweenness

(c) Pagerank (d) Clustering

(e) Defensive

Figure 5. Germany’s MRFDs
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Appendix A. Passing Data

Players HF UF RWM RCM LCM LWM ROB RCB LCB LOB G

HF 0 29 32 16 4 29 13 0 6 12 0
UF 31 0 32 16 15 22 10 5 4 6 1
RWM 29 26 0 17 5 3 47 20 0 1 0
RCM 18 31 31 0 21 12 28 22 5 7 0
LCM 10 13 13 23 0 26 5 5 14 31 0
LWM 29 13 5 5 20 0 0 1 9 39 1
ROB 40 26 82 31 5 2 0 49 3 2 8
RCB 15 10 25 10 6 4 18 0 12 11 18
LCB 2 8 5 9 7 12 2 15 0 17 18
LOB 21 19 4 10 25 88 2 7 24 0 6
G 0 5 6 5 7 9 10 4 3 9 0

Table 3. The Jaspers’s aggregated passes.
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[6] Javier López Peña and Hugo Touchette. A network theory analysis of football strategies. In C. Clanet

(ed.), Sports Physics: Proc. 2012 Euromech Physics of Sports Conference, p. 517-528, Éditions de l’École
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[9] Jari Saramäki, Mikko Kivelä, Jukka-Pekka Onnela, Kimmo Kaski, and János Kertész. Generalizations of

the clustering coefficient to weighted complex networks. Physical Review E, 75(2), feb 2007.

http://www.fifa.com/aboutfifa/officialdocuments/doclists/laws.html
http://www.fifa.com/aboutfifa/officialdocuments/doclists/laws.html
http://www.ncaa.org/championships/playing-rules/soccer-rules-game
http://www.ncaa.org/championships/playing-rules/soccer-rules-game


MJUM Vol. 1 No. 1 (2015) Page 15

Student biography

Andre Oliveira (aoliveira@wesleyan.edu) Andre graduated from Manhattan College in
May 2015 with majors in Mathematics and Computer Science. He currently attends Wes-
leyan University, where he is pursuing a PhD in Mathematics. When he’s not program-
ming or thinking about Mathematics, Andre can be found on a rugby pitch.

mailto:aoliveira@wesleyan.edu

	1. Background
	2. Centrality Measures
	3. The Passing Data
	3.1. Collecting It
	3.2. Processing It

	4. Analyzing the Jaspers
	4.1. Substitutions and The Positional Approach
	4.2. The Jaspers's passing network
	4.3. Measuring the Jaspers
	4.4. The Round of 17
	4.5. Similarity

	5. Future Work
	6. Acknowledgements
	Appendix A. Passing Data
	References
	Student biography

