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Abstract. In order to study the economic impact of an earthquake prediction system, we
use probabilistic methods to model the expected cost per life saved from a prediction sys-
tem. We improve upon previous work by directly modeling the expected cost per life saved,
E[C/L], rather than the ratio of the expected cost to the expected number of lives saved,
E[C]/E[L]. The latter is shown to always be an underestimate of the former. The model is
applied numerically to the San Francisco Bay area and the expected cost per life saved from
an earthquake prediction system over a 50 year period is found to be $3.3 million. While
the amount is quite high, it is substantially lower than the corresponding expected cost per
life saved of $6.3 million from expenditures in earthquake engineering to improve build-
ing codes. Therefore, we conclude that earthquake prediction systems provide a valuable
public good.

1. Introduction

This work is motivated by the question of whether or not earthquake prediction systems
are actually worth investing in, as the cost of operating such systems is quite large com-
pared to the number of lives which may be saved and, furthermore, false predictions may
cause large-scale public panics and substantial economic losses. Some argue that it is
more effective to just invest in the research and development of infrastructure which can
withstand earthquakes, rather than trying to predict earthquakes before they occur [2].

We build upon Paté’s research [4] in order to evaluate the economic impact of an earth-
quake prediction system. Paté used the expected cost per life saved from an earthquake
prediction system as a measure of the economic impact. The cost of an earthquake predic-
tion system is modeled as a net of direct costs of the prediction system and indirect costs
from false predictions, minus the costs which are prevented from correct predictions. The
direct costs include the research, development, and implementation of the prediction sys-
tem, as well as the annual cost of operation of the system. The indirect costs from a false
prediction include the loss of labor force due to migration, the loss of capital, and the
temporary decrease in consumption, as well as the cost of protective measures taken by
individuals, businesses, and the government. The costs which are prevented from correct
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predictions include avoided property damage and avoided loss of economic production.
The total net cost is computed over a 50 year period.

However, Paté approximated the expected cost per life saved from an earthquake predic-
tion system by the ratio of the expected cost to the expected number of lives saved. We
improve upon Paté’s research by directly modeling the expected cost per life saved, and
we show in Theorem 1 that Paté’s approximation underestimates the true expected cost
per life saved. Furthermore, Paté modeled the cost and lives saved as deterministic func-
tions of the occurring magnitude, predicted magnitude, and lead time of the prediction.
Instead, we model the cost and lives saved as random functions of the occurring mag-
nitude, predicted magnitude, and lead time of the prediction, which is a more realistic
model of the underlying processes.

2. Probabilistic Model

In 1935, Charles Richter developed a logarithmic scale to measure the quantity of energy
released by an earthquake. However, the Richter scale was replaced in the 1970s with the
Moment Magnitude Scale, which is also logarithmic and similar to the Richter scale, but
is more accurate for measuring large earthquakes [1]. The Moment Magnitude Scale is the
standard used by the United States Geological Survey, and all earthquake magnitudes in
this paper will be assumed to be measured in the Moment Magnitude Scale. Although the
scale for earthquake magnitudes is continuous, we discretize the range into six categories
with 0-4 as one category since these magnitudes are too small to cause damage or loss of
life. Hence, we define the following discrete random variables:

MO = Magnitude of occurring earthquake,
with possible values in {0-4, 4-5, 5-6, 6-7, 7-8, 8+}

MP = Magnitude of predicted earthquake,
with possible values in {4-5, 5-6, 6-7, 7-8, 8+}

T = Lead time between the prediction and the occurring
earthquake, with possible values short (order of a day),
medium (order of a month), and long (order of a year).

For the predicted magnitude, MP , we exclude the category 0-4 since a magnitude in this
range would be unnecessary to predict. We let p(mO,mP , t) denote the joint probability
mass function of MO, MP , and T . The joint probability mass function has the property
that

p(mO,mP , t) = p(mO) · p(mP , t|mO)

= p(mO) · p(mP |mO) · p(t|mO,mP )

= p(mO) · p(mP |mO) · p(t|mP ) (1)

where the last equality comes from Paté’s assumption that given the occurring magnitude
and the predicted magnitude, the lead time only depends upon the predicted magnitude.
The three terms in (1) can be approximated using data for the geographical region of
interest.
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We let C denote the cost of an earthquake prediction system and L denote the number
of lives saved. The cost, C, is actually a net cost satisfying C = CP −CA, where CP is the
direct and indirect costs of the prediction system andCA is the avoided cost from a correct
prediction. In Paté’s work, CP , CA, and L are modeled as deterministic functions of MO,
MP , and T . However, we model CP , CA, and L to be random functions of MO, MP , and
T . We utilize a stochastic model because not every earthquake with a given magnitude
and given prediction parameters will have the same exact cost and number of lives saved.
Thus, we model CP , CA, and L with the following probability distributions:

CP ∼Normal(µP ,σP ) (2)

where µP and σP are deterministic functions of MP and T ,

CA ∼ Exp(αβ) (3)

where β is the mean cost of damages after an earthquake occurs if there were no earth-
quake prediction system and hence is a deterministic function of solelyMO, and α repre-
sents the proportion of damages avoided due to the prediction system and is a determin-
istic function of MO, MP , and T , and

L = L̃+ 1, L̃ ∼ P oisson(γλ) (4)

where λ is the mean number of casualties after an earthquake occurs if there were no
earthquake prediction system and hence is a deterministic function of solely MO, and
γ represents the proportion of casualties avoided due to the prediction system and is a
deterministic function of MO, MP , and T .

The cost of the prediction system, CP , is modeled as a continuous random variable follow-
ing a Normal distribution since we expect this cost to be fairly concentrated symmetri-
cally about the mean value. On the other hand, the avoided cost from a correct prediction,
CA, is modeled as a continuous random variable following an Exponential distribution
because we expect the cost of damages following an earthquake to have a distribution for
which the probability decays rapidly for large values. Note that we model the number of
lives saved, L, as a discrete random variable with a minimum value of one since if there
are no lives saved, the cost per life saved is infinite.

3. Cost Per Life Saved

In Paté’s work, the expected cost per life saved from an earthquake prediction system is
approximated by the ratio of the expected cost to the expected number of lives saved.
However, in Section 3.1 we directly compute the expected cost per life saved using the
probability model defined in the previous section and then in Section 3.2 we show that
Paté’s approximation underestimates the true value. In, Section 3.3 we also give bounds
on the variance of the cost per life saved.

3.1. Expected Cost Per Life Saved. By properties of conditional expectation [7],

E
[C
L

]
= E

[
E

[
C
L

∣∣∣∣∣MO,MP ,T

]]
.

We now apply the assumption that given MO, MP , and T , the cost and number of lives
saved are independent. Note that this does not imply that the cost and number of lives
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saved are independent, but rather that the dependence between the cost and number of
lives saved is solely through the values of MO, MP , and T . Hence,

E
[C
L

]
= E

[
E [C|MO,MP ,T ] ·E

[
1
L

∣∣∣∣∣MO,MP ,T

]]
.

Now since the number of lives saved, L = L̃+ 1, with L̃ ∼ P oisson(γλ),

E

[
1
L

∣∣∣∣∣MO,MP ,T

]
= E

[
1

L̃+ 1

∣∣∣∣∣MO,MP ,T

]
=
∞∑
k=0

1
k + 1

·
e−γλ · (γλ)k

k!
=

1− e−γλ

γλ

where λ is a deterministic function of solely MO and γ is a deterministic function of MO,
MP , and T . Note that this expression holds for γλ > 0. When γλ = 0, which it will in the
case of a small earthquake with MO in the range of 0-4 or in the case where there is no
prediction, E

[
1
L |MO,MP ,T

]
= 1.

Since the net cost C = CP −CA with CP ∼Normal(µP ,σP ) and CA ∼ Exp(αβ),

E [C|MO,MP ,T ] = µp −αβ

where µP is a deterministic function of MP and T , α is a deterministic function of MO,
MP , and T , and β is a deterministic function of solely MO. Thus, the expected value of
the cost per life saved is

E
[C
L

]
=E

[
(µP −αβ)

(
1− e−γλ

γλ

)]
=
∑
t

∑
mP

∑
mO

[(µP (mP , t)−α(mO,mP , t)β(mO))

· 1− e
−γ(mO,mP ,t)λ(mO)

γ(mO,mP , t)λ(mO)
· p(mO) · p(mP |mO) · p(t|mP )] (5)

where the dependencies upon MO, MP , and T have now been denoted explicitly. Since
there are 6 possibilities for the value ofMO, 5 possibilities forMP , and 3 for T , in order to
obtain a numerical value for the expected cost per life saved for a particular geographical
region of interest, α and γ would need to be numerically approximated for all 90 combi-
nations ofMO, MP , and T , as well as µP for all 15 combinations ofMP and T , and β and λ
for all 6 possibilities ofMO. As mentioned previously, we would also need to numerically
approximate p(mO) for the 6 possible values of MO, p(mP |mO) for the 30 combinations of
MO and MP , and p(t|mP ) for the 15 combinations of MP and T .

3.2. Comparison to Previous Work. Paté’s approximation to the expected cost per life
saved with the ratio of the expected cost to the expected number of lives saved, i.e.,

E
[C
L

]
≈ E[C]
E[L]

,
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contains two errors. Firstly, the cost and number of lives saved are not independent, and
hence

E
[C
L

]
, E[C] ·E

[1
L

]
.

The second error in the approximation is due to the fact that

E
[1
L

]
,

1
E[L]

.

In the following theorem, we show that the ratio of the expected cost to the expected
number of lives saved is in fact an underestimate to the true expected cost per life saved.

Theorem 1. The expected cost per life saved from an earthquake prediction system is
always greater than or equal to the ratio of the expected cost to the expected number of
lives saved; i.e.,

E
[C
L

]
≥ E[C]
E[L]

.

Proof. By properties of covariance [7],

E
[C
L

]
= E[C] ·E

[1
L

]
+Cov

(
C,

1
L

)
(6)

Since 1
L is a convex function, by Jensen’s Inequality [6],

E
[1
L

]
≥ 1
E[L]

. (7)

Now when more lives are saved, there is also the tendency to have more avoided damages,
meaning that C is smaller when L is larger, which in turn implies that

Cov
(
C,

1
L

)
≥ 0. (8)

Combining (6), (7), and (8), we obtain the desired result. �

Since the expected cost per life saved can be utilized in public policy decision making,
an underestimate of the cost could have significant consequences, while our model of the
expected cost per life saved can help give a more accurate assessment of the true economic
impact of earthquake prediction systems.

3.3. Variance of Cost Per Life Saved. Since there is no guarantee that the actual cost per
life saved from an earthquake prediction system is close to the expected value, it is helpful
to have an idea of the variance of the cost per life saved. By properties of variance [7],

V
(C
L

)
= E

[(C
L

)2]
−
(
E
[C
L

])2
.
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Since we already modeled E[CL ] in Section 3.1, it only remains to compute E[(CL )2]. By our
previous assumption that C and L are independent given MO, MP , T , we have that

E

[(C
L

)2]
=E

[
E

[
C2

L2

∣∣∣∣∣MO,MP ,T

]]
=E

[
E
[
C2|MO,MP ,T

]
·E

[ 1
L2 |MO,MP ,T

]]
. (9)

Using our probabilistic model for C given in equations (2) and (3),

E[C2|MO,MP ,T ] = (µP −αβ)2 + (σP )2 + (αβ)2. (10)

Using our probabilistic model for L given in equation (4),

E

[
1
L2

∣∣∣∣∣MO,MP ,T

]
=
∞∑
k=0

1
(k + 1)2 ·

e−γλ ·γλk

k!
.

While this sum cannot be computed explicitly in closed form, we can give the following
lower and upper bounds:

∞∑
k=0

e−γλ · (γλ)k

(k + 2)!
≤ E

[
1
L2

∣∣∣∣∣MO,MP ,T

]
≤
∞∑
k=0

2 ·
e−γλ · (γλ)k

(k + 2)!
.

The summations for the lower and upper bounds can now be computed explicitly, in
order to obtain the following bounds:

1− e−γλ −γλe−γλ

(γλ)2 ≤ E
[

1
L2

∣∣∣∣∣MO,MP ,T

]
≤

2− 2e−γλ − 2γλe−γλ

(γλ)2 . (11)

Note that these expressions for the lower and upper bounds hold for γλ > 0. When
γλ = 0, as it does in the case of a small earthquake with magnitude in the range 0-4 or
in the case of no prediction, E[ 1

L2 |MO,MP ,T ] = 1, which is the limiting value of the upper
bound as γλ→ 0. Also note that Jensen’s Inequality gives the lower bound

E

[
1
L2

∣∣∣∣∣MO,MP ,T

]
≥ 1

(E[L|MO,MP ,T ])2 =
1

(γλ+ 1)2

but the lower bound given in (11) is larger, and hence more useful, for all γλ ≥ 1. By
plugging in the expression for the conditional expectation of C2 given in (10) and the
bounds for the conditional expectation of 1

L2 given in (11) into the formula for E[(CL )2]
given in (9), we can obtain bounds for E[(CL )2], which in turn will result in bounds for
the variance of the expected cost per life saved from an earthquake prediction system.
In order to obtain numerical values for the bounds on the variance, the same parameters
as in Section 3.1 would need to be numerically approximated, as well as σP for all 15
combinations of possible values for MP and T .

4. Numerical Example: San Francisco Bay Area

We now apply our model for the expected cost per life saved to the San Francisco Bay
Area, which is a highly seismic zone between the San Andreas fault and the Hayward-
Calaveras fault [4]. We use the same numerical estimates for µP , α, β, γ , λ, and the joint
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mO 0-4 4-5 5-6 6-7 7-8 8+
Probability p(mO) 0.5 0.2 0.l5 0.1 0.042 0.008

Initial Mean Damages β(mO) 0 2 50 500 10,000 25,000
Initial Mean Casualties λ(mO) 0 1 10 200 4,000 15,000

Table 1. The probability that the magnitude of an occurring earthquake is
in the specified range, as well as the mean damages in millions of dollars
and the mean number of casualties if there were no earthquake prediction
system, for each magnitude range, in a given year for the San Francisco Bay
Area.

probability mass function of MO, MP , and T as calculated by Paté in [3]. Note that for
some of the parameters, Paté gave estimates for a “low case,” “base case,” and “high case”
scenario. We use the “base case” estimates for all of our numerical approximations. Since
in Paté’s work, the cost and number of lives saved are deterministic functions of MO, MP ,
and T , the three different cases were used for sensitivity analysis. However, since in our
model the cost and number of lives saved are random functions of MO, MP , and T , we
utilize the “low case” and “high case” estimates to approximate the additional parameter
needed for the variance of the cost per life saved, namely σP .

Table 1 lists the estimates for p(mO), the probability that an occurring earthquake has
a specified magnitude, as well as β(mO) and λ(mO), the mean damages in millions of
dollars and mean number of casualties, respectively, for each occurring magnitude range
in the case of no earthquake prediction system. These estimates are taken directly from
Table 60 of [3]. The estimates of the other parameters can be found in Tables 61-70 of [3].
Plugging all of the numerical approximations into the model for the expected cost per life
saved given in (5), we obtain an expected cost per life saved of $136.7 million. From the
bounds on the variance given in Section 3.3, we obtain a range for the standard deviation
of $521.4 million to $570.4 million. Thus, the cost per life saved has an extremely high
expected value with an even higher degree of variability.

Computing the expected cost and expected number of lives saved separately, we obtain a
total expected cost of $173.8 million and a total expected number of lives saved of 228,
giving a ratio of $0.76 million. The ratio of $0.76 million drastically underestimates the
true expected cost per life saved of $136.7 million mainly because of the lack of indepen-
dence between the cost and lives saved. The cost is highest when there are few lives saved
and smallest when there are many lives saved due to more prevented damages; hence, the
true expected cost per life saved is much higher than the ratio of expected values due to
the high cost per life saved for small earthquakes or no predictions. In fact, based upon
the estimated parameters, there is a 53.6% chance of having no lives saved due to either
an occurring earthquake with magnitude 0-4, which has no loss of life, or an earthquake
with magnitude above 4, but no prediction and hence no avoided casualties.

Now the expected cost per life saved of $136.7 million is calculated over a period of only
one year, so in order to have a more robust idea of the expected cost per life saved due to
an earthquake prediction system, it is helpful to consider the expected cost per life saved
over a period of N years. Following Paté’s work, we compute the expected cost per life
saved over a period of 50 years. We let C = C1 +C2 + ...+C50 where Ci is the cost for year
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i and all the Ci ’s are independent, identically distributed random variables following the
probability model outlined in Section 2. Similarly, we let L = L1 + L2 + ... + L50 where
Li is the number of lives saved for year i and all the Li ’s are independent, identically
distributed random variables following the probability model outlined in Section 2. The
advantage of Paté’s approximation is that the ratio of the expected cost to the expected
number of lives saved over a 50 year period is equal to simply the ratio of the expected
cost to the expected number of lives saved for one year; i.e.,

E[C1 +C2 + ...+C50]
E[L1 +L2 + ...+L50]

=
50 ·E[Ci]
50 ·E[Li]

=
E[Ci]
E[Li]

.

As for the true expected cost per life saved over a 50 year period, we have the following
inequality:

E[Ci]
E[Li]

≤ E
[
C1 +C2 + ...+C50

L1 +L2 + ...+L50

]
≤ E

[
Ci
Li

]
.

Thus, the true expected cost per life saved over a 50 year period is somewhere in between
$.76 million and $136.7 million. Exact calculation of the true expected value would re-
quire summing over the joint probability mass function of the 50 years, which is compu-
tationally intractable. Hence, we employ Monte Carlo simulation [5] to obtain an estimate
of $3.3 million for the expected cost per life saved from an earthquake prediction system
over a 50 year period in the San Francisco Bay Area.

Based upon constraints of available data, all of the estimates used were calculated in
“1978 dollars” for a 50 year period from 1978-2028 assuming constant $30 million an-
nual funding for earthquake prediction system operating costs, constant building codes,
constant level of prediction accuracy, fixed probability distribution of an occurring earth-
quake’s magnitude, no inflation, and no population or economic growth. In [4], Paté also
assumed flat annual funding, constant building codes, fixed magnitude probabilities, and
no inflation, but did take into account increased prediction accuracy over the 50 year pe-
riod due to advances in seismology, as well as a 2% growth rate and a 7% social rate
of discount, obtaining a total expected cost of $4.6 billion and an expected 2943 lives
saved, producing a ratio of $1.56 million for the expected cost to the expected number of
lives saved over the 50 year period. While this is larger that the ratio of expected values
we calculated of $.76 million, it still substantially underestimates the true expected cost
per life saved. Note that taking into account these additional measures would only have
increased our estimate of $3.3 million, especially since we utilized the prediction proba-
bilities from the end of Paté’s 50 year period where the accuracy is highest. Taking into
account lower accuracy during the beginning of the 50 year period increases the cost per
life saved because of high expenditures due to false predictions.

In [4], Paté also approximated the expected cost per life saved from expenditures in earth-
quake engineering to improve building codes over the 50 year period from 1978-2028 and
obtained an estimate of $6.3 million. Comparing this approximation to her approxima-
tion of $1.56 million for the expected cost per life saved from an earthquake prediction
system, Paté concluded that earthquake prediction systems are economically competitive
and worth investing in. Now the approximation to the expected cost per life saved from
improved building codes again made the error of using the ratio of the expected cost to
the expected number of lives saved (the expected cost was $2.58 billion with an expected
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number of lives saved of 412). However, by the same reasoning as in Theorem 1, the ratio
of expected values underestimates the true expected cost per life saved from improved
building codes. Thus, we can safely conclude that our estimate for the expected cost
per life saved from an earthquake prediction system of $3.3 million is smaller than the
corresponding value for improved building codes.

Since we are nearing the end of this 50 year period, future work could compare the actual
cost per life saved from earthquake prediction systems in the San Francisco Bay Area from
1978-2028 to the expected value computed here, as well as to the actual cost per life saved
from improved building codes. In addition, future work could update the estimates for
the parameters in the model based upon current levels of funding, current building codes,
advances in earthquake prediction accuracy, and demographic and economic changes in
the area, as well as adjust the model for inflation.

5. Conclusion

With limited budgets, government agencies are faced with hard decisions about which
sectors and projects to prioritize funding in order to achieve the desired goals. When it
comes to protecting the public from earthquake hazards, the two principal approaches
government agencies can pursue are earthquake prediction and improved building codes.
The expected cost per life saved is a useful measurement for evaluating various ap-
proaches when making public policy decisions. We improved upon previous work by
directly modeling the expected cost per life saved from an earthquake prediction system,
rather than using the ratio of the expected cost to the expected number of lives saved,
which we showed is always an underestimate of the true value. In addition, while pre-
vious work modeled the cost and number of lives saved as deterministic functions of the
occurring earthquake’s magnitude, predicted magnitude, and lead time of the prediction,
we more realistically modeled the cost and number of lives saved as random functions.

We applied our model to the San Francisco Bay Area and obtained an expected cost per
life saved of $3.3 million over the 50 year period from 1978-2028. While the amount
is quite high, it appears to be substantially lower than the corresponding expected cost
per life saved from expenditures in earthquake engineering to improve building codes.
Therefore, we conclude that earthquake prediction systems provide a valuable public
good, at least in the San Francisco Bay Area. Future work could compare the expected cost
per life saved from an earthquake prediction system across various geographic regions.

Furthermore, since our proof that the ratio of the expected cost to the expected number of
lives saved underestimates the true value likely applies to many other sectors in addition
to earthquake prediction systems, we hope that our model here will encourage future
work with cost-benefit analyses to directly model the expected cost per life saved. While
the expected cost per life saved requires more sophisticated probabilistic analysis than
the ratio of the expected values, having a more accurate assessment of the true value is
important for making sound public policy decisions.
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