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Abstract. We describe two new algorithms for determining the Galois group of an irre-
ducible polynomial of degree six defined over the rational numbers. Both approaches are
based on the absolute resolvent method, which involves analyzing polynomials defining
subfields of the original polynomial’s splitting field. Compared to the traditional algorithm
for degree six Galois groups due to Cohen, our methods can be considered improvements
since one uses fewer resolvents and the other uses lower degree resolvents.

1. Introduction

The well-known quadratic formula shows that quadratic polynomials are “solvable by
radicals.” That is, their roots can be expressed using only the following three items:

(1) the polynomial’s coefficients

(2) the four basic arithmetic operations (+,−,×,÷)

(3) radicals (square roots, cube roots, etc.)

In the 16th century, Italian mathematicians proved that cubic and quartic polynomials
are also solvable by radicals. However the same is not true for polynomials of degree
five and higher, a fact first proved in the 19th century. But how can we determine which
polynomials are solvable by radicals?

One answer to the above question is given by Galois theory, an area of mathematics named
in honor of French mathematician Evariste Galois. The work of Galois showed that we can
attach a group structure to a polynomial’s roots. We call this group the Galois group of
the polynomial. Properties of the Galois group encode arithmetic information concerning
the polynomial’s roots. For example, the polynomial is solvable by radicals if and only if
its Galois group is solvable.

∗ Corresponding author
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Therefore, an important problem in computational algebra involves designing and im-
plementing algorithms that can determine a polynomial’s Galois group. Methods for ac-
complishing this task have been in existence for more than a century. In fact, the original
definition of the Galois group implicitly contained a technique for its determination. For
a degree n polynomial, this approach essentially involves analyzing an auxiliary polyno-
mial of degree n! (cf. [12, p.189]). Methods that are more computationally feasible are
clearly needed.

Most modern implementations make extensive use of resolvent polynomials. These are
polynomials that define subfields of the original polynomial’s splitting field (see [11]).
The resolvent method can be divided into two approaches: (1) the absolute resolvent
method, which deals with general groups, and (2) the relative resolvent method, for when
the Galois group is known to have a certain structure ahead of time.

This paper employs absolute resolvents to study Galois groups of degree six polynomials.
Note, the traditional approach for degree six polynomials, due to Cohen [4], also uses
absolute resolvents. Following previous research on quartic and quintic polynomials ( [1,
2]), we analyze all possible resolvents for degree six polynomials. Our work results in two
new algorithms for computing the Galois group of an irreducible degree six polynomial
defined over the rational numbers that are more efficient than Cohen’s.

One algorithm is based on Cohen’s method, but removes the need to factor a degree 10
resolvent. Instead we count quadratic subfields of the polynomial’s stem field; note that
computing subfields is a straightforward task (see [13]). Our second algorithm uses a
single degree 30 resolvent along with the discriminant of the original polynomial. We also
prove that unlike the case for quartic and quintic polynomials, there is no single absolute
resolvent the degrees of whose irreducible factors completely determine the Galois group
of irreducible degree six polynomials. Therefore, our algorithm that uses two resolvents
is the best possible scenario.

The remainder of the paper is organized as follows. In Section 2 we provide a brief intro-
duction to Galois theory along with an explicit computation, not using resolvents, of the
Galois group of a degree six polynomial. In Section 3 we give an introduction to resolvent
polynomials, including a discussion of the most widely-used resolvent; namely, the dis-
criminant. Section 4 gives the details of Cohen’s algorithm as well as our modification of
his algorithm. In the final section, we discuss our new approach that uses two resolvents
to determine the Galois group, and we prove there is no way to use only the degrees of
the irreducible factors of a single resolvent to compute the Galois group of an irreducible
degree six polynomial.

2. Overview of Galois Theory

In this section, we give a very brief overview of Galois theory in our context. More details
can be found in any standard text on abstract algebra (such as [5]).

Let f (x) be an irreducible degree n polynomial defined over the rational numbers Q. Let
ρ be a root of f in the complex numbers C. Let F be the n-dimensional vector space over
Q with basis {1,ρ, . . . ,ρn−1}. Since f is irreducible, F is a field, called the stem field of
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Table 1. Roots of the polynomial f (x) = x6 +3 expressed as linear combina-
tions of powers of one root ρ. Also included are the corresponding elements
of the automorphism group of f ’s stem field as permutations of the roots.

Root Linear Combination Automorphism Cycle
1 −ρ σ1(ρ) = −ρ σ1 = (12)(34)(56)
2 ρ σ2(ρ) = ρ σ2 = id
3 (−ρ4 − ρ)/2 σ3(ρ) = (−ρ4 − ρ)/2 σ3 = (164)(235)
4 (−ρ4 + ρ)/2 σ4(ρ) = (−ρ4 + ρ)/2 σ4 = (15)(24)(36)
5 (ρ4 − ρ)/2 σ5(ρ) = (ρ4 − ρ)/2 σ5 = (146)(253)
6 (ρ4 + ρ)/2 σ6(ρ) = (ρ4 + ρ)/2 σ6 = (13)(26)(45)

f . We say F is a degree n extension of Q. Furthermore, F is the smallest subfield of the
complex numbers C that contains ρ and Q.

Arithmetic in F can be accomplished via polynomial remainders and GCD (greatest com-
mon divisor) computations. In particular, let b = b0 + b1ρ + · · · + bn−1ρ

n−1 and c = c0 +
c1ρ + · · · + cn−1ρ

n−1 be any two elements in F. Let B(x) = b0 + b1x + · · · + bn−1x
n−1 and

C(x) = c0 +c1x+ · · ·+cn−1x
n−1, so that b = B(ρ) and c = C(ρ). We can identify the product bc

as a element of F by using the Division Algorithm to compute polynomials Q(x) and R(x)
such that B(x)C(x) = f (x)Q(x)+R(x) where 0 ≤ degree(R) < n. Then R(ρ) is the desired rep-
resentation of bc in F. Similarly, suppose b , 0, which is equivalent to gcd(B(x), f (x)) = 1.
We can identify 1/b as an element of F by using the Euclidean Algorithm to compute
polynomials U (x) and V (x) such that U (x)B(x) + f (x)V (x) = 1. In this case, 1/b =U (ρ).

The automorphisms Aut(F) of F are the collection of all field isomorphisms σ : F → F
such that σ fixes Q; that is, σ (a) = a for all a ∈ Q. Under the operation of function
composition, Aut(F) forms a group. Since F is generated by powers of ρ, it follows that
each σ ∈ Aut(F) is completely determined by where it sends ρ. Furthermore, each such σ
must send ρ to a root of f that is contained in F.

Therefore, elements in Aut(F) correspond precisely with the roots of f that are contained
in F, and each automorphism permutes the roots of f . In the case where F contains all n
roots of f , Aut(F) is called the Galois group of f . Otherwise, the Galois group of f is the
automorphism group of the splitting field of f ; that is, the smallest subfield of C that
contains Q and all n roots of f .

Example 2.1. For example, let f (x) = x6 + 3, ρ a root of f , and F the stem field of f
(with powers of ρ as a basis). We can determine how many roots of f are contained in its
stem field by factoring f over F and searching for linear factors; the root of each linear
factor is a root of f in F. Note that many computer algebra systems are capable of such a
factorization (e.g., [9]). In this case, we find that F contains all six roots of f . Thus Aut(F)
contains six elements, each sends ρ to one of the other six roots. Since F contains all roots
of f , Aut(F) is the Galois group of f . In Table 1, we list all the roots (labeled 1 – 6) and
all the automorphisms (labeled σ1 – σ6).

Since we have labeled the roots, we can identify Aut(F) as subgroup of S6; i.e., as a per-
mutation group. The element σ2 acts as the identity, since it sends ρ to itself. The element
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σ1 sends root 2 to 1, and vice versa. To see where σ1 sends root 3, recall that each auto-
morphism acts trivially on Q. Thus we have

σ1(3) = σ1((−ρ4 − ρ)/2)

= (−σ1(ρ)4 − σ1(ρ))/2

= (−(−ρ)4 − (−ρ))/2

= (−ρ4 + ρ)/2
= 4

So σ1 sends root 3 to root 4. Similary, σ1 sends root 4 to root 3, root 5 to root 6, and root
6 to root 5. In cycle notation, we have σ1 = (12)(34)(56).

Each of the previous computations is straightforward. However, occasionally it is neces-
sary to use polynomial long division to determine how an automorphism permutes the
roots. For example, suppose we wish to determine where σ3 sends root 6. As before, we
have

σ3(6) = σ3((ρ4 + ρ)/2)

= (σ3(ρ)4 + σ3(ρ))/2

= (((−ρ4 − ρ)/2)4 + (−ρ4 − ρ)/2)/2

= ρ16/32 + ρ13/8 + 3ρ10/16 + ρ7/8− 7ρ4/32− ρ/4

The remainder of this quantity when divided by f (ρ) = ρ6 + 3 is:

= (−ρ4 + ρ)/2
= 4

So σ3 sends root 6 to root 4. Table 1 lists the cycle notations for each of the six permu-
tations. Notice that the Galois group of f has six elements: the identity, two elements of
order 3, and three elements of order 2. This proves that the Galois group of f is isomor-
phic to S3 the symmetric group of order 6.

We note that the Galois group of f (x) = x6 + 3 was relatively straightforward to compute,
precisely because the stem field of f and the splitting field of f were equal. This is not
always the case. For example, the stem field of g(x) = x6 + 2x + 2 contains only one root
of g, which can be verified by factoring g(x) over its stem field and searching for linear
factors. However, as we show later in Section 4, the Galois group of g(x) is S6. This means
the splitting field of g(x) has degree 6! = 720. Therefore, the approach to compute Galois
groups taken above would be significantly more computationally expensive. The use of
absolute resolvents is one way to improve this.

The Fundamental Theorem. As we have seen, we can attach two structures to an irre-
ducible polynomial: (1) its splitting field and (2) its Galois group. But more is true, as
the Fundamental Theorem of Galois Theory states. Theorem 2.2 contains a statement
of the Fundamental Theorem in our context, along with several properties of the Galois
correspondence. For proofs, see [5].
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Table 2. The 16 conjugacy classes of transitive subgroups of S6. Generators
are for one representative in each conjugacy class.

T Name Generators Size
1 C6 (12)(34)(56), (135)(246) 6
2 S3 (123)(456), (14)(26)(35) 6
3 D6 (12)(34)(56), (135)(246), (35)(46) 12
4 A4 (34)(56), (12)(56), (135)(246) 12
5 C3 × S3 (456), (123), (14)(25)(36) 18
6 C2 ×A4 (56), (34), (12), (135)(246) 24
7 S+

4 (34)(56), (12)(56), (135)(246), (35)(46) 24
8 S−4 (34)(56), (12)(56), (135)(246), (3546) 24
9 S3 × S3 (456), (123), (23)(56), (14)(25)(36) 36

10 E9 oC4 (456), (123), (23)(56), (14)(2536) 36
11 C2 × S4 (56), (34), (12), (145)(236), (35)(46) 48
12 A5 (12346), (14)(56) 60
13 E9 oD4 (465), (45), (123), (23), (14)(25)(36) 72
14 S5 (15364), (16)(24), (3465) 120
15 A6 (12345), (456) 360
16 S6 (123456), (12) 720

Theorem 2.2 (Fundamental Theorem of Galois Theory). Let K be the splitting field of an
irreducible polynomial f of degree n defined over the rational numbers, and let G be the Galois
group of f . There is a bijective correspondence between the subfields of K and the subgroups
of G. Specifically, if F is a subfield of K , then F corresponds to the set of all σ ∈ G such that
σ (a) = a for all a ∈ F. Similarly, if H is a subgroup of G, then H corresponds to the set of all
a ∈ K such that σ (a) = a for all σ ∈H .

The Galois correspondence has the following properties (among others).

(1) If H1 and H2 are subgroups of G that correspond to subfields F1 and F2 respectively,
then H1 ≤H2 if and only if F2 ⊆ F1.

(2) If F defines a subfield of K of degree d over Q, then F corresponds to a subgroup H ≤ G
of index d.

(3) Let F be a subfield of K defined by the polynomial g and let H ≤ G be subgroup corre-
sponding to F. The splitting field of g corresponds to the largest normal subgroup N of
G contained inside H ; i.e., the kernel of the permutation representation of G acting on
G/H . The Galois group of g is isomorphic to G/N .

(4) If we label the roots of f as ρ1, . . . ,ρn, thenG can be identified with a transitive subgroup
of Sn, well-defined up to conjugation.

(5) If we label the roots of f as ρ1, . . . ,ρn, then the stem field of f (generated by ρ1) corre-
sponds to G1, the point stabilizer of 1 inside G.

Notice that by item (4) above, we must identify the conjugacy classes of transitive sub-
groups of S6 in order to determine the group structure of G. This information is well
known (see [3]). In Table 2, we give information on the 16 conjugacy classes of transitive
subgroups of S6, including their transitive number (or T-number, as in [6]), generators of
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Table 3. The 40 conjugacy classes of intransitive subgroups of S6. Genera-
tors are for one representative in each conjugacy class.

# Generators Size
1 id 1
2 (56) 2
3 (12)(34)(56) 2
4 (34)(56) 2
5 (456) 3
6 (123)(456) 3
7 (34)(56), (12)(56) 4
8 (34)(56), (35)(46) 4
9 (34)(56), (12)(3546) 4

10 (34)(56), (12)(35)(46) 4
11 (34)(56), (3546) 4
12 (56), (34) 4
13 (56), (12)(34) 4
14 (23456) 5
15 (456), (56) 6
16 (456), (23)(56) 6
17 (123)(456), (23)(56) 6
18 (56), (234) 6
19 (56), (12)(34), (13)(24) 8
20 (56), (34), (12) 8
21 (56), (34), (12)(35)(46) 8
22 (56), (34), (35)(46) 8
23 (34)(56), (35)(46), (12)(56) 8
24 (34)(56), (3546), (12)(56) 8
25 (56), (12)(34), (1324) 8
26 (456), (123) 9
27 (23456), (36)(45) 10
28 (34)(56), (35)(46), (456) 12
29 (56), (234), (34) 12
30 (34), (56), (35)(46), (12) 16
31 (456), (123), (23)(56) 18
32 (456), (56), (123) 18
33 (23456), (36)(45), (3465) 20
34 (56), (12)(34), (13)(24), (234) 24
35 (34)(56), (35)(46), (456), (12)(56) 24
36 (34)(56), (35)(46), (456), (56) 24
37 (456), (56), (123), (23) 36
38 (56), (12)(34), (13)(24), (234), (34) 48
39 (12345), (345) 60
40 (15432), (243), (45) 120

one representative, their size, and a more descriptive name based on their structure. The
descriptive names are standard: Cn represents the cyclic group of order n,Dn the dihedral
group of order 2n, En the elementary abelian group of order n, An and Sn the alternating
and symmetric groups on n letters, × a direct product, and o a semi-direct product.

Our study of absolute resolvents also makes use of the 40 conjugacy classes of intransitive
subgroups of S6 as well. Table 3 contains information on these groups, similar in format
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to Table 2. We also include a numbering system for intransitive groups that we reference
later in the paper, but such a numbering system is not standard.

3. The Absolute Resolvent Method

Most modern techniques for computing Galois groups are based on the use of resolvent
polynomials [11]. In short, this method works as follows. Let f (x) be an irreducible
polynomial (over Q) of degree n, and let G be the Galois group of f . Let Gu be a subgroup
of Sn that contains G, and let H ≤ Gu . We form a resolvent polynomial R(x) whose stem
field corresponds to H under the Galois correspondence for Gu . Then as shown in [10],
the Galois group of R(x) is isomorphic to the image of the permutation representation of
G acting on the cosets Gu/H . The irreducible factors of R(x) therefore correspond to the
orbits of this action. In particular, the degrees of the irreducible factors correspond to
the orbit lengths. As such, one effective approach in the absolute resolvent method is to
first compute the orbit sizes of all appropriate actions, enough so that no two transitive
subgroups of Sn have the same data. Then the corresponding resolvent polynomials are
constructed and factored. Computing the Galois group amounts to simply matching the
data from the factored resolvent to its corresponding group’s data.

When Gu = Sn, R(x) is called an absolute resolvent. Otherwise, R(x) is called a relative
resolvent. Since resolvent polynomials are constructed via subgroups of Gu , it follows
that a single absolute resolvent can yield invariant data for all transitive subgroups of
Sn. This fact was exploited in [1, 2] where the authors showed that the degrees of the
irreducible factors of a single absolute resolvent were enough to determine the Galois
groups for degree 4 and degree 5 polynomials, respectively. Clearly the same cannot
be accomplished with relative resolvents, since there is no proper subgroup of Sn that
contains all the transitive subgroups of Sn.

The most difficult task in the resolvent method is constructing the polynomial R(x) that
corresponds to a given subgroup H of Sn. The following result gives one method for
accomplishing such a task. A proof can be found in [10].

Theorem 3.1. Let f (x) be an irreducible polynomial of degree n with integer coefficients, K the
splitting field of f , and ρ1, . . . ,ρn the complex roots of f . Let T (x1, . . . ,xn) be a polynomial with
integer coefficients, and let H be the stabilizer of T in Sn. That is

H = {σ ∈ Sn : T (xσ (1), . . . ,xσ (n)) = T (x1, . . . ,xn)}.

Let Sn//H denote a complete set of coset representatives of H in Sn, and define the resolvent
polynomial R(x) by:

R(x) =
∏

σ∈Sn//H
(x − T (ρσ (1), . . . ,ρσ (n))).

(1) If R(x) is squarefree, its Galois group is isomorphic to the image of the permutation
representation of G acting on the cosets Sn/H .

(2) We can ensure R(x) is squarefree by taking a suitable Tschirnhaus transformation of
f (x) [4, p.324].
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(3) One choice for T is given by:

T (x1, . . . ,xn) =
∑
σ∈H

 n∏
i=1

xiσ (i)

 .
Though this is not the only choice.

Example 3.2 (Discriminant). Perhaps the most well known example of a resolvent poly-
nomial is the discriminant. Recall that the discriminant of a degree n polynomial f (x) is
given by

disc(f ) =
∏

1≤i<j≤n
(ρi − ρj)2,

where ρi are the roots of f . In particular, let

T =
∏

1≤i<j≤n
(xi − xj).

It is well-known that T is stabilized by An [5, p.610]. Notice that a complete set of coset
representatives of Sn/An is {id, (12)}. Also notice that applying the permutation (12) to
the subscripts of T results in −T . In this case, we can form the resolvent polynomial R(x)
as follows,

R(x) =
∏

σ∈Sn/An

(x − σ (T )) = x2 − T 2 = x2 −disc(f ).

In particular, this resolvent factors if and only if the discriminant is a perfect square.

4. The Degree 6 Resolvent Method

We now turn our attention to computing the Galois group in the case where the degree
of f (x) is six. One efficient approach, detailed in [4, §6.3], employs a degree six resolvent
polynomial corresponding to the transitive group T14 = S5 ' PGL(2,5) of S6, which is
itself related to the nontrivial outer automorphism of S6 [8].

This approach uses the discriminant of f , the degrees of the irreducible factors of the
resolvent, as well as the discriminants of all cubic, quartic, and quintic factors of the
resolvent. This information is enough to determine the Galois group of f in all but 4 of
the 16 cases. For these final cases, the approach taken in [4] is to use the discriminant
of f and another resolvent, this one of degree 10 and corresponding to the transitive
group T13 = E9 oD4 of S6. For convenience, Table 4 provides coset representatives and
multivariable functions T that can be used to compute the degree 6 and the degree 10
resolvents. Table 5 provides a summary of how these resolvents factor.

For example, consider the polynomial f (x) = x6 + 2x + 2. The degree six resolvent R6(x)
for f is:

R6(x) = x6 − 36x5 − 540x4 + 25920x3 − 3185984x − 6743936,
which remains irreducible over Q. Thus the Galois group of f is either T10, T13, T15, or
T16, according to Table 5. The discriminant of f is:

disc(f ) = −26 · 89 · 227,
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Table 4. Coset representatives for S6/H for Cohen’s degree 6 and degree 10
resolvent polynomials. This corresponds to transitive groups T14 = S5 and
T13 = E9 oD4, respectively (see Table 2). Also included are multivariable
functions T that are stabilized by each H .

T14 = S5 T13 = E9 oD4
id, (5,6), (4,5), (3,4)

Coset id, (5,6), (4,5), (3,5), (3,4), (4,6) (3,4)(5,6), (3,5,6,4)
Reps (2,3), (2,3)(5,6)

(2,3)(4,5), (2,4,5,3)
x6x3x

2
1x

2
2 + x5x4x

2
1x

2
2 + x5x2x

2
1x

2
3

+x3x2x
2
1x

2
4 + x4x2x

2
1x

2
6 + x6x2x

2
1x

2
5

+x6x4x
2
1x

2
3 + x2

5x4x3x
2
1 + x2

6x5x3x
2
1

+x6x5x
2
1x

2
4 + x4x

2
3x1x

2
2 + x2

5x3x1x
2
2

T +x6x
2
4x1x

2
2 + x2

6x5x1x
2
2 + x2

6x
2
3x1x2 (x1 + x3 + x5)2

+x2
5x

2
4x1x2 + x5x

2
4x1x

2
3 + x6x

2
5x1x

2
3 +(x2 + x4 + x6)2

+x2
6x

2
4x1x3 + x2

6x
2
5x1x4 + x6x5x

2
2x

2
3

+x5x
2
4x3x

2
2 + x2

6x4x3x
2
2 + x6x

2
5x4x

2
2

+x6x
2
4x2x

2
3 + x2

5x4x2x
2
3 + x2

6x
2
5x2x3

+x2
6x5x2x

2
4 + x2

6x5x4x
2
3 + x6x

2
5x3x

2
4

which is clearly not a square in Q. Thus the Galois group is either T13 or T16. Finally,
the degree 10 resolvent R10(x) for f is:

R10(x) = x10 + 1056x7 − 15744x5 + 33024x4 + 135168x2 + 262144x+ 16384,

which remains irreducible over Q. Therefore, the Galois group is T16 = S6. This proves
the splitting field of f forms a degree 720 extension over Q.

Alternative Approach: Quadratic Subfields. As an alternative to constructing and fac-
toring the degree 10 resolvent used in Cohen’s method, we propose instead to compute
quadratic subfields of the stem field of f . There exist efficient algorithms for accomplish-
ing this (cf. [13]). In Proposition 4.1, we show that the number of quadratic subfields of a
polynomial’s stem field is an invariant of its Galois group.

Proposition 4.1. Let f (x) be an irreducible polynomial of degree n, F the stem field of f , and
G the Galois group of f . The number of nonisomorphic quadratic subfields of F is an invariant
of G. That is, if g(x) is any other irreducible polynomial of degree n with Galois group G and
stem field K , then the number of nonisomorphic quadratic subfields of K is the same as for F.

Proof. Let f (x) be an irreducible polynomial of degree n and let ρ1, . . . ,ρn be the complex
roots of f . Let F be the stem field of f generated by ρ1 and let G be the Galois group
of f . Then under the Galois correspondence, F corresponds to G1, the point stabilizer of
1 in G. Therefore, the nonisomorphic quadratic subfields of F corresponds to conjugacy
classes of subgroupsH ofG that containG1. Thus the number of such quadratic subfields
is completely determined by a subgroup computation inside G, proving the result. �

For each of the 16 transitive subgroups of S6, the column Quad in Table 5 indicates
whether there exists a subgroup H such that G1 ≤ H ≤ G, where G1 is the point stabi-
lizer of 1 in G.
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Table 5. A summary of Cohen’s method [4] and a new method for comput-
ing the Galois group of an irreducible degree six polynomial f (x). The col-
umn D6 gives the degrees of the irreducible factors of the resolvent polyno-
mial corresponding to the transitive subgroup T14 of S6. The superscripts
on the factors of degree 3–5 correspond to whether the factor’s polynomial
discriminant is a square (+) or isn’t (−). The column Disc indicates whether
the discriminant of f is a square (+) or not (−). The Column D10 gives the
degrees of the irreducible factor of the resolvent polynomial corresponding
to the transitive subgroup T13 of S6. The final column indicates whether
f ’s stem field has a quadratic subfield or not.

T D6 Disc D10 Quad
T1 1,2,3+ − 1,3,6 Y
T2 1,1,1,3− − 1,3,3,3 Y
T3 1,2,3− − 1,3,6 Y
T4 1,1,4+ + 4,6 N
T5 3+,3− − 1,9 Y
T6 2,4+ − 4,6 N
T7 2,4+ + 4,6 N
T8 1,1,4− − 4,6 N
T9 3−,3− − 1,9 Y

T10 6 + 1,9 Y
T11 2,4− − 4,6 N
T12 1,5+ + 10 N
T13 6 − 1,9 Y
T14 1,5− − 10 N
T15 6 + 10 N
T16 6 − 10 N

For example, let f (x) = x6 − x5 + x4 − x3 − 4x2 + 5. The degree six resolvent, R6(x) for f is:

R6(x) = x6 − 82x5 − 4255x4 + 362235x3 + 3935805x2 − 353299137x+ 3563797189,

which remains irreducible over Q. As before, the Galois group of f is either T10, T13,
T15, or T16. The discriminant of f is:

disc(f ) = 54 · 292,

which is a square in Q. Thus the Galois group is either T10 or T15. Finally, using [9]
we find that the stem field of f does have a quadratic subfield defined by the polynomial
g(x) = x2 − 5x + 5. In fact, if F is the stem field of f generated by a root ρ of f , then g(x)
factors over F as follows:

g(x) = (x −α)(x+α − 5),

where α = 3ρ5 + ρ4 + 4ρ3 + 2ρ2 − 9ρ − 10. The conclusion is that the Galois group of f is
T10 = E9 oC4.

We note that other authors have also used alternative approaches to Cohen’s method. For
example, the approach taken in [7] is to use a degree 15 resolvent (corresponding to the
transitive group T11 = C2 × S4) instead of the degree 6 resolvent used by Cohen. The
author also uses the discriminant and the same degree 10 resolvent Cohen uses. Still in
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this case, it is necessary to use additional resolvents to distinguish half of the groups. So
both Cohen’s method and our modification are more efficient than this one.

5. The Degree 30 Resolvent Method

As stated in Theorem 3.1, we can use information on how resolvent polynomials factor to
determine the Galois group of a degree six polynomial. Cohen’s approach, described in
the last section, utilizes three resolvents as well as the discriminant of the factors of one of
the resolvents. In this section, we develop an algorithm that uses only one resolvent and
the discriminant of the original polynomial. Our final result shows that it is not possible
to use the degrees of the irreducible factors of a single resolvent polynomial to determine
the Galois group; i.e., at least two resolvent polynomials are required. This is unlike the
case for quartic and quintic polynomial, as shown in [1, 2].

All Possible Resolvent Factorizations. Given a transitive subgroup G of S6, our first
step is to determine the factorizations of all possible resolvents arising from a degree 6
polynomial f (x) whose Galois group is G. The function resfactors below will perform
such a task. Written for the program GAP [6], the function resfactors takes as input a
subgroup H of S6 and a transitive subgroup G of S6. It computes the image of the per-
mutation representation of G acting on the cosets S6/H , and then it outputs the lengths
of the orbits of this action. By Theorem 3.1, the output of the function resfactors is
precisely the list of degrees of the irreducible factors of the resolvent polynomial R(x)
corresponding to the subgroup H .

resfactors := function(h, g)

local s6, cosets, index, permrep, orb, orbs;

s6 := SymmetricGroup(6);

cosets := RightCosets(s6,h);

index := Size(cosets);

permrep := Group(List(GeneratorsOfGroup(g),

j->Permutation(j, cosets, OnRight)));

orb := List(Orbits(permrep, [1..index]), Size);

orbs := ShallowCopy(orb);

return(Permuted(orbs, SortingPerm(orb)));

end;

Table 6 shows for each conjugacy class of transitive subgroups of S6 the degrees of the
irreducible factors of the corresponding resolvent polynomial according to the Galois
group of f . Tables 7–9 do the same thing for intransitive subgroups. Note, the multiplic-
ity of each degree is listed as an exponent. For example, the entry 12,22,32,618 means the
resolvent factors as two linears times two quadratics times two cubics times 18 sextics.

The Degree 30 Resolvent Algorithm. We can use the information in the tables to de-
velop algorithms for computing Galois groups of irreducible degree six polynomials. In
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Table 6. The top row contains the transitive subgroups H of S6. The left
column also contains transitive subgroups G of S6. For a particular pair
(H,G), the entry in the table gives the output of the function
resfactors(H,G).

T1 T2 T3 T4 T5 T6
T1 12,22,32,618 23,38,615 1,2,35,67 26,68 12,2,32,65 12,22,64

T2 23,38,615 16,318,610 13,313,63 26,68 12,2,36,63 23,32,63

T3 2,4,65,127 23,613,123 1,2,33,66,12 43,62,123 22,64,12 2,4,62,12
T4 46,128 46,128 43,62,123 14,48,122 44,122 12,44,12
T5 32,6,92,185 32,6,96,183 32,94,18 64,182 12,22,9,18 32,6,18
T6 42,82,244 83,122,243 4,8,122,24 22,84,24 42,8,24 12,82,12
T7 83,244 83,244 4,8,122,24 22,84,122 82,24 2,82,12
T8 83,124,242 46,126,24 43,62,123 22,84,24 42,8,122 2,82,12
T9 62,182,362 62,186 32,92,182 122,182 22,182 62,18

T10 12,363 12,363 6,18,36 122,182 4,36 12,18
T11 8,16,242,48 83,244 4,8,122,24 4,162,24 82,24 2,12,16
T12 203,60 203,60 10,20,30 54,202 202 52,20
T13 12,36,72 12,363 6,18,36 24,36 4,36 12,18
T14 20,40,60 203,60 10,20,30 102,40 202 10,20
T15 120 120 60 302 40 30
T16 120 120 60 60 40 30

T7 T8 T9 T10 T11 T12 T13 T14 T15 T16
T1 23,64 23,34,62 12,32,62 2,63 1,2,32,6 23,6 1,3,6 1,2,3 2 1
T2 23,64 16,36,6 12,36 2,63 13,34 23,6 1,33 13,3 2 1
T3 2,4,62,12 23,32,63 12,32,62 2,6,12 1,2,32,6 2,4,6 1,3,6 1,2,3 2 1
T4 12,44,62 12,44,12 42,62 42,62 1,42,6 14,42 4,6 12,4 12 1
T5 62,18 32,6,92 12,92 2,18 32,9 62 1,9 32 2 1
T6 2,82,12 2,82,2 42,12 8,12 1,6,8 22,8 4,6 2,4 2 1
T7 12,62,82 2,82,12 42,12 42,62 1,6,8 22,42 4,6 2,4 12 1
T8 2,82,12 12,44,12 42,62 8,12 1,42,6 22,8 4,6 11,4 2 1
T9 62,18 62,92 12,92 2,18 32,9 62 1,9 32 2 1

T10 62,92 12,18 2,18 12,92 6,9 62 1,9 6 12 1
T11 2,12,16 2,82,12 42,12 8,12 1,6,8 4,8 4,6 2,4 2 1
T12 52,102 52,20 102 102 5,10 12,52 10 1,5 12 1
T13 12,18 12,18 2,18 2,18 6,9 12 1,9 6 2 1
T14 10,20 52,20 102 20 5,10 2,10 10 1,5 2 1
T15 152 30 20 102 15 62 10 6 12 1
T16 30 30 20 20 15 12 10 6 2 1

particular, we will use the discriminant of the polynomial as well as the degree 30 resol-
vent corresponding to the transitive group T6 = C2 ×A4. Here is a method to construct
this degree 30 resolvent.

A complete set of right coset representatives for S6/T6 is:

(1), (56), (45), (456), (465), (46), (34), (34)(56), (345), (3465), (354), (35),
(23), (23)(56), (23)(45), (23)(456), (23)(465), (23)(46), (234), (234)(56), (2354),
(243), (243)(56), (24563), (2463), (24), (24)(56), (25643), (2563), (2564).
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Table 7. Similar to Table 6, except columns correspond to intransitive sub-
groups of S6.

I1 I2 I3 I4 I5 I6 I7 I8
T1 6120 660 38,656 660 640 26,638 630 630

T2 6120 660 324,648 660 640 26,638 630 630

T3 1260 1230 616,1222 64,1228 1220 43,1219 66,1212 66,1212

T4 1260 1230 1230 64,1228 1220 412,1216 34,1214 66,1212

T5 1840 1820 98,1816 1820 64,1812 64,1812 1810 1810

T6 2430 126,2412 122,2414 122,2414 2410 86,248 62,247 123,246

T7 2430 2415 2415 126,2412 2410 86,248 62,126,244 66,246

T8 2430 2415 1212,249 122,2414 2410 86,248 62,247 123,246

T9 3620 3610 188,366 184,368 122,366 122,366 186,362 186,362

T10 3620 3610 3610 184,368 122,366 122,366 186,362 186,362

T11 4815 243,486 247,484 243,486 485 163,484 12,243,482 123,483

T12 6012 606 606 304,604 604 206,602 154,602 306

T13 7210 364,723 364,723 362,724 24,723 24,723 363,72 363,72
T14 1206 1203 604,120 602,1202 1202 403,120 302,120 603

T15 3602 360 360 1802 1202 1202 902 902

T16 720 360 360 360 240 240 180 180

I9 I10 I11 I12 I13 I14 I15
T1 630 38,626 630 630 34,628 624 620

T2 630 324,618 630 630 312,624 624 620

T3 62,1214 34,612,128 62,1214 62,1214 610,1210 1212 1210

T4 62,1214 62,1214 62,1214 62,1214 62,1214 1212 1210

T5 1810 98,186 1810 1810 94,188 188 62,186

T6 12,247 123,246 12,247 62,124,245 62,122,246 247 126,242

T7 62,122,246 123,246 123,246 123,246 123,246 247 245

T8 12,247 62,1210,242 62,247 12,247 127,244 247 245

T9 182,364 94,184,362 182,364 182,364 186,362 364 12,363

T10 94,364 182,364 182,364 182,364 182,364 364 12,363

T11 12,24,483 123,244,48 12,24,483 12,243,482 123,242,482 483 243,48
T12 302,602 302,602 302,602 302,602 302,602 122,602 602

T13 182,722 182,362,72 36,722 182,362,72 365 722 12,363

T14 60,120 302,602 302,120 60,120 603 24,120 120
T15 902 180 180 180 180 722 120
T16 180 180 180 180 180 144 120

A form which is stabilized by T6 is

T = (x1 + x2 − x3 − x4)(x1 + x2 − x5 − x6)(x3 + x4 − x5 − x6).

An algorithm for determining Galois groups of irreducible degree six polynomials based
on the discriminant and the degree 30 resolvent proceeds as follows. Letting f denote
the degree six polynomial, G its Galois group, d the discriminant of f , and L the list of
degrees of the irreducible factors of the degree 30 resolvent corresponding to T6, we have:

(1) If L = [1,1,2,2,6,6,6,6], then G = C6.

(2) If L = [2,2,2,3,3,6,6,6], then G = S3.
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Table 8. A continuation of Table 7.

I16 I17 I18 I19 I20 I21 I22
T1 620 23,619 620 36,612 32,614 34,613 615

T2 620 23,619 620 318,66 36,612 312,69 615

T3 64,128 2,4,63,128 1210 36,66,123 67,124 32,66,124 63,126

T4 64,128 46,64,126 1210 63,126 32,127 6,127 63,126

T5 62,186 62,186 62,186 96,182 92,184 94,183 185

T6 122,244 83,122,243 122,244 63,243 32,123,242 6,123,242 6,123,242

T7 126,242 42,82,124,242 245 63,243 6,123,242 6,12,243 63,243

T8 122,244 83,122,243 245 63,126 6,123,242 6,125,24 6,12,243

T9 62,182,362 62,182,362 12,363 96,36 185 92,182,36 183,36
T10 62,182,362 62,182,362 12,363 183,36 183,36 92,362 183,36
T11 243,48 8,16,242,48 24,482 63,243 6,123,48 6,12,243 6,12,24,48
T12 304 102,202,302 602 303 152,60 30,60 303

T13 12,36,72 12,36,72 12,36,72 183,36 183,36 92,362 18,362

T14 602 20,40,60 120 303 30,60 30,60 30,60
T15 602 602 120 90 90 90 90
T16 120 120 120 90 90 90 90

I23 I24 I25 I26 I27 I28 I29
T1 615 34,613 32,614 24,612 612 610 610

T2 615 312,69 36,612 24,612 612 610 610

T3 65,125 32,68,123 65,125 42,126 64,124 62,124 62,124

T4 32,62,126 32,127 6,127 48,124 64,124 62,124 62,124

T5 185 94,183 92,184 24,184 184 64,182 6,183

T6 6,12,243 6,12,243 6,12,243 84,242 122,242 12,242 62,122,24
T7 32,62,122,242 6,123,242 6,12,243 84,242 126 62,242 123,24
T8 6,12,243 32,125,24 6,123,242 84,242 122,242 12,242 12,242

T9 185 92,184 183,36 42,362 184 122,182 6,18,36
T10 92,184 183,36 92,362 42,362 184 122,182 6,18,36
T11 6,12,24,48 6,12,243 6,12,24,48 162,48 243 12,48 12,242

T12 152,302 152,60 30,60 204 62,302 302 302

T13 18,362 18,362 18,362 8,72 362 24,36 6,18,36
T14 30,60 152,60 30,60 402 12,60 60 60
T15 452 90 90 402 362 302 60
T16 90 90 90 80 72 60 60

(3) If L = [2,4,6,6,12], then G =D6.

(4) If L = [1,1,4,4,4,4,12], then G = A4.

(5) If L = [3,3,6,18], then G = C3 × S3.

(6) If L = [1,1,8,8,12], then G = C2 ×A4.

(7) If L = [6,6,18], then G = S3 × S3.

(8) If L = [2,12,16], then G = C2 × S4.

(9) If L = [5,5,20], then G = A5.

(10) If L = [10,20], then G = S5.
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Table 9. A continuation of Tables 7 and 8.

I30 I31 I32 I33 I34 I35 I36 I37 I38 I39 I40
T1 33,66 22,66 22,66 66 32,64 65 65 2,63 3,62 62 6
T2 39,63 22,66 22,66 66 36,62 65 65 2,63 33,6 62 6
T3 33,64,12 22,62,122 4,123 62,122 32,66,12 63,12 6,122 2,6,12 3,62 62 6
T4 3,6,123 44,64 44,122 62,122 6,122 32,122 6,122 42,62 3,12 62 6
T5 93,18 22,182 22,182 182 62,92 62,18 62,18 2,18 6,9 62 6
T6 3,6,12,24 82,122 82,122 12,24 6,24 6,24 6,122 62,8 3,12 12 6
T7 3,6,12,24 44,122 82,24 123 6,24 32,122 6,24 42,12 3,12 62 6
T8 3,6,123 82,122 82,24 62,24 6,122 6,24 6,24 8,12 3,12 12 6
T9 93,18 22,182 4,36 182 92,12 62,18 12,18 2,18 6,9 62 6

T10 9,182 22,182 4,36 182 12,18 62,92 12,18 2,18 6,9 62 6
T11 3,6,12,24 82,24 16,24 12,24 6,24 6,24 6,24 8,12 3,12 12 6
T12 15,30 104 202 6,30 30 152 30 102 15 62 6
T13 9,182 4,36 4,36 36 12,18 12,18 12,18 2,18 6,9 12 6
T14 15,30 202 40 6,30 30 30 30 20 15 12 6
T15 45 202 40 36 30 152 30 20 15 62 6
T16 45 40 40 36 30 30 30 20 15 12 6

(11) If L = [2,8,8,12] and d is a square, then G = S+
4 .

(12) If L = [2,8,8,12] and d is not a square, then G = S−4 .

(13) If L = [12,18] and d is a square, then G = E9 oC4.

(14) If L = [12,18] and d is not a square, then G = E9 oD4.

(15) If L = [30] and d is a square, then G = A6.

(16) If L = [30] and d is not a square, then G = S6.

Example 5.1. Here are two examples of our algorithm in action. First, consider the poly-
nomial f (x) = x6 + x4 − 2x3 + x2 − x + 1. The degree 30 resolvent R30(x) = x30 + 1944x28 +
574956x26 + · · · . Over Q, R30 factors as:

R30(x) =(x2 + 23)× (x4 + 1657x2 + 70225)× (x6 + 135x4 − 1458x2 + 19683)×
(x6 + 162x4 + 6561x2 − 452709)× (x12 − 33x10 + · · ·+ 308037601).

The degrees of the irreducible factors are [2,4,6,6,12]. Therefore, the Galois group of
f (x) is T3 =D6.

Finally, consider the polynomial f (x) = x6 − 3x5 + 6x4 − 7x3 + 2x2 + x − 1. The degree 30
resolvent is R30(x) = x30 + 6130272x28 + · · · . Over Q, R30 factors as:

R30(x) =(x2 − 9472)× (x8 + 2150576x6 + · · · )×
(x8 + 2775728x6 + · · · )× (x12 + 1213440x10 + · · · ).

The degrees of the irreducible factors are [2,8,8,12]. Thus the Galois group of f is either
T7 = S+

4 or T8 = S−4 . The discriminant of f is:

disc(f ) = 24 · 373,
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which is not a square. So the Galois group of f is T8 = S−4 .

A Single Resolvent Will Not Work. Our final result shows that it is not possible to use
the degrees of the irreducible factors of a single resolvent polynomial to determine the
Galois group of a degree six polynomial; i.e., at least two resolvent polynomials are re-
quired. Therefore, our algorithm that uses two resolvents minimizes the number of resol-
vents required to compute the Galois group. Recall that Cohen’s approach uses three re-
solvents (plus discriminants of the sextic resolvent’s factors). Moreover, among all meth-
ods that completely determine the Galois group using two resolvents, ours minimizes
the product of their degrees. The proof involves analyzing the columns of Tables 6 – 9.
For example, that no single resolvent suffices follows since every column has at least two
entries that are the same (two such entries cannot be distinguished by that particular
resolvent).

Corollary 5.2. Unlike the scenario for polynomials of degree less than or equal to five, there
is no single absolute resolvent that can determine the Galois group of a degree six polynomial
using the degrees of the resolvent’s irreducible factors.

The Galois group can be determined by two resolvent polynomials, say of degrees d1 and d2. The
minimum product d1d2 is 60 = 2·30, and this is achieved using the the resolvents corresponding
to the transitive groups T15 = A6 and T6 = C2 ×A4.
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