
Paul C. Langley
University of Minnesota, langley@maimonresearch.com

Taeho Greg Rhee
Yale University, tgrhee.research@gmail.com

Follow this and additional works at: http://pubs.lib.umn.edu/innovations

Recommended Citation
http://pubs.lib.umn.edu/innovations/vol8/iss3/13

Paul C. Langley, PhD1 and Taeho Greg Rhee, PhD 2
1College of Pharmacy, University of Minnesota
2Department of Internal Medicine, School of Medicine, Yale University

Abstract
In 2016, a review of modeled cost-effectiveness studies published in the Journal of Medical Economics between January 2015 and December 2015 was presented in INNOVATIONS in Pharmacy. The purpose of this review, together with similar reviews for studies published in calendar 2015 in Value in Health and Pharmacoeconomics, was to consider whether these modeled claims for cost-effectiveness met the standards of normal science: were the claims made credible, evaluable and replicable? A total of 32 studies were identified. None of the studies presented their claims or projections in an evaluable form and none suggested how they might be evaluated. None met the standards of normal science. The claims made for cost-effectiveness were either impossible to verify, or if potentially verifiable, were not presented in an evaluable form. The studies lacked credibility. There was no basis for assessing whether the claims were right or even if they were wrong. The purpose of the present review which covers cost-effectiveness studies published in the Journal of Medical Economics between January 2016 and December 2016 is to revisit this question of the credibility of the claims made against the standards of normal science. A total of 40 cost-effectiveness studies were identified. Although 14 had a timeframe of 5 years or less and had the potential to provide short-term evaluable claims, none addressed the issue of claims evaluation and the possible protocols that would support empirical assessment. Of the balance, 19 presented results as unevaluable lifetime modeled claims. The conclusions from the 2016 review remain unchanged.

Keywords: Journal of Medical Economics, systematic review, cost-outcomes, imaginary worlds, evaluation

Introduction
Some 12 months ago a commentary was published in INNOVATIONS in Pharmacy reviewing, from the perspective of the standards of normal science, modeled technology assessment claims published in the Journal of Medical Economics from January 2015 to December 2015 1. This systematic review concluded that of the 32 cost-effectiveness studies reviewed, none presented their claims or projections in an evaluable form and none suggested how they might be evaluated. None met the standards of normal science. The claims made for cost-effectiveness were either impossible to verify, or if potentially verifiable, were not presented in an evaluable form. The studies lacked credibility and were best seen as constructed imaginary worlds. There was no basis for assessing whether the claims were right or whether they were wrong, and in the majority of cases they would never know, as the timeframe for the analysis guaranteed that the claims were immune to failure. Reviews of studies published in Pharmacoeconomics and Value in Health over the same calendar 2015 period came to the same conclusion 2,3.

The Journal of Medical Economics review pointed out that this lack of scientific credibility is a major concern. If medical economics is to advance through the formulation and testing of hypotheses, then editors of journals should consider whether or not to set standards for the acceptance of publications to include the requirement for evaluable claims and the results of claims assessment. If this is not acceptable, then it should be made clear that published papers are simply imaginary worlds or thought experiments.

These reviews of published studies are part of a series of commentaries in INNOVATIONS in Pharmacy over the last 12 months that have focused on the evidentiary standards for claims assessment required or recommended by technology assessment agencies such as the National Institute for Health and Care Excellence (NICE) in the UK and the Pharmaceutical Benefits Advisory Committee (PBAC) in Australia, professional groups such as the International Society for Pharmacoeconomics and Outcomes Research (ISPOR) and the Academy of Managed Care Pharmacy (AMCP) in the US and independent research groups such as the Institute for Clinical and Economic Review (ICER) 4,5,6,7,8,9,10. The common theme in these commentaries, and papers published earlier in the
The standards proposed and accepted in health technology assessment in the construction of non-evaluable claims should be seen as pseudoscience; as intelligent design rather than natural selection.

In case this characterization might appear as an unnecessarily harsh judgement on standards that have been in place for 30 years or more and which have generated literally thousands of published, peer review studies and evaluations by technology assessment groups, the commentaries recently pointed to the latest version of the guidelines released in March 2017 by the Canadian Agency for Drugs and Technologies in Health (CADTH). The CADTH guidelines made it quite clear that the technology assessment framework is not to be judged by the standards of normal science. Rather, CADTH guidelines are designed to set criteria for the construction of imaginary worlds or simulations to support cost-outcomes claims; to ‘inform’ health system decision makers, not to test hypotheses. Presumably, within disease areas and for specific product comparisons, this additional modeled information will be added to the imaginary modeled claims already published or submitted to other agencies for the same or similar products.

The purpose of this second review of cost-effectiveness studies published in the *Journal of Medical Economics* is to consider whether the standards of normal science continue to be put to one side, with the Journal continuing to accept simulated, non-evaluable claims generated by imaginary worlds. The period covers January 2016 December 2016. This review follows on one recently published which revisited cost-effectiveness claims in *Value in Health* for studies published between January 2016 and December 2016. This will be followed in a forthcoming commentary that will revisit studies published in the same time period in *Pharmacoeconomics*.

Methods

A systematic review, following the PRISMA-P checklist (MeSH terms ‘cost’, ‘cost effectiveness’, ‘Markov’, ‘QALY’) of all papers published in the *Journal of Medical Economics* in calendar 2016 was undertaken. In order to judge whether the modeled claims presented met the standards of normal science four questions were considered:

- Is the study model capable of generating testable claims?
- Did the study attempt to generate testable claims?
- Did the study suggest how the claims might be evaluated?
- Did the study caution readers as to the implications of generating non-testable claims?

Each author independently reviewed the selected studies with consensus agreement reached on the assessment.

A testable claim was defined as one that could be evaluated empirically in a timeframe relevant to the needs of a formulary committee (ideally a period of 2 to 3 years). This period was chosen because a testable claim was seen as provisional. A product or device could, in this context, be accepted by a committee for formulary listing, but subject to an agreement with the manufacturer to report back to the committee with evidence to support the claims made. These claims could be for product comparative effectiveness, for the impact of the product on resource utilization or some combination of these to support a claim for incremental cost-effectiveness. The claim for comparative effectiveness could encompass clinical endpoints as well as those captured as patient reported outcomes (PROs).

In judging whether or not a model might support testable (i.e., falsifiable) claims, even if the possibility was not considered by the authors(s), three characteristics of the model are important. These are (i) the modeling framework, (ii) the choice of primary outcome measure; and (iii) the time frame for the model. A Markov or discreet event simulation model with a lifetime perspective and with discounted cost per QALY claims as the primary endpoints would be one where comparative claims would be impossible to evaluate. There is no chance of falsification, feedback to decision makers or replication. It would be assessed as immune to failure. Against this, a simple, trial-based decision model with a timeframe of 12 to 18 months with claims expressed in clinical (including PRO) and resource utilization endpoints would be open to hypothesis testing and feedback to a formulary committee. Even with a short-term time horizon, however, the choice of outcome may not be evaluable outside of a protocol-driven observational study. If health care systems do not collect specific QALY measures on an ongoing basis then it is impossible to evaluate cost-per-QALY willingness-to-pay threshold claims from integrated data bases. This assumes, of course, that the QALY measure that might be collected is consistent with the measure utilized in the simulation model.

While claims may be potentially evaluable, what is typically missing in modeled claims is any direction as to how the claims might be assessed in treatment practice. Presenting the same model that has been re-formulated for different markets and different countries, with the model consistently generating positive claims for a sponsor’s product seems rather pointless in the absence of a protocol that proposes how the modeled claims can be evaluated. This is a feature conspicuous by its absence in technology assessment submission guidelines.

At the same time, this evaluation also searched for systematic reviews published in calendar 2016. Two questions were considered relevant:
Commentary

- Did the systematic review of economic evaluations address the issue of the credibility, evaluation and replication of clinical claims in the respective modeled economic evaluations?
- Did the systematic review recommend (or caution against) accepting the claims from the modeled economic evaluations as the basis for formulary decisions?

Finally, the review considered whether or not the cost-effectiveness study was funded or supported by a pharmaceutical or device manufacturer. The question addressed was whether or not the results of the cost-effectiveness modeling supported the manufacturer’s product.

Results

The review identified 40 cost-effectiveness studies (Table 1) together with one systematic review of economic models in moderate-to-severe asthma and COPD.

Economic Models

None of the studies met the standards of normal science in providing evaluable and replicable claims in a form that could be supported by a claims assessment protocol. Overall, 19 of the 40 studies (47.5%) presented their claims in a lifetime model framework. In addition, if we take a cutoff of 6 years or more in the model timeframe, a further seven models would be considered to have non-evaluable claims. Among those models with a timeframe of 5 years or less had the potential to generate or did produce claims that were potentially evaluable. In total, therefore, 26 of the 40 economic evaluations (65.0%) presented modeled claims that were immune to failure given the timeframe of the model.

In terms of the questions raised:

- Two thirds of the published economic evaluations failed to present credible claims that met the expected standards of normal science in presenting claims for cost-effectiveness that were potentially evaluable and replicable
- None of the studies attempted to present evaluable claims, although by default a handful of studies presented claims that could be evaluated
- None of the studies considered how their claims, even if potentially evaluable, could be assessed in treatment practice
- None of the studies cautioned the reader that their claims might not be evaluable and that the reader would have no idea if they were right, wrong or potentially misleading

Systematic Review

The Einarson et al systematic review of models in moderate-to-severe asthma and COPD identified 53 articles, 14 of these were for patients with asthma and 39 in COPD. Models were defined under three heads: (i) prospective trial based models; (ii) predictive decision models; and (iii) retrospective patient record models.

Key points noted in summarizing the results were:

- Markov models accounted for 22 of the 27 decision models
- Among the asthma models:
 - only 3 reported validation of some sort, but most provided no details
 - two used a time period of 12 weeks, seven used 1 year, one used 10 years, six used a lifetime
 - ten examined inhaled corticosteroids and 9 omalizumab
 - nine were sponsored by pharmaceutical companies, 3 were not stated and 2 were public sector (NCE, National Heart and Blood Institute)
- Among the COPD models:
 - Thirty out of 39 were sponsored by the pharmaceutical industry
 - Nineteen models did not mention any validation process
 - Thirteen of the studies used a time frame between 3-5 years, 10 used a time frame of 1 year
 - A Markov model was used in 19 studies

The key point noted in the discussion was that study parameters for the most part were not validated: face validity
The review did not address the question of the credibility of the modeled claims, et al. alone issues of whether the claims were evaluable and replicable. The review did not caution the reader that in accepting the claims made that they did not meet the standards expected of normal science as inputs to the formulary evaluation process.

Discussion

The fact that in those studies funded or sponsored by a pharmaceutical or device manufacturer in the Journal of Medical Economics support the manufacturer’s product is, perhaps, unsurprising. After all, the previous review of modeled studies in the Journal of Medical Economics made the same observation as has the more recent review of studies in Value in Health.” Indeed, the more cynical reader may wonder why there is any surprise at all. After all, does the apparent the lack of any challenge to these published claims simply reflect the difficulty, or more appropriately, the impossibility of challenging the construction of imaginary worlds? Or, does the lack of lack of challenge reflect a lack of interest by decision makers in imaginary worlds and their imaginary claims? Rather than taking claims at face value, holding to the belief that the standards of normal science can be put to one side by rejecting hypothesis testing in favor of “information provision”, decision makers may see these publications as marketing exercises that they can put to one side.

Discretion in Modeled Claims

It is worth recalling the 1994 Editorial in the New England Journal of Medicine regarding the discretionary nature of cost-effectiveness studies and the Journal’s policy on accepting such studies for review.” The position taken was that because of the discretionary nature of the methods used to analyze cost-effectiveness it is ‘incumbent on authors journal editors and the funders of these studies to minimize any source of bias’. Two conditions were proposed: (i) any study supported by industry must be funded by a grant to a not-for-profit entity such as a hospital or a university, not to an individual or group of individuals; and (ii) the Journal must receive written assurance that the agreement between the authors and the funding company ensures the authors’ independence in the design of the study, the interpretation of data and writing of the report, and decisions regarding publication, regardless of the results of the analysis. Studies will not be reviewed by the Journal if any of the authors is receiving a direct salary from the sponsoring study or a competing company, or if any author has an equity interest in, an ongoing consultancy with, or membership on the scientific advisory board of such a company, or a related patent pending.

The discretionary nature of both clinical and cost-effectiveness claims has continued to be of concern, notably in the wider context of integrity in research and publications, including the issues surrounding the replication of randomized clinical trial (RCT) results. Addressing the question of integrity (How do you know it is true?) Buckwalter al al argue that “The current high-stakes research environment has been characterized by an increase in plagiarism, falsification or manipulation of data, selected presentation of results, research bias, and inappropriate statistical analyses where research findings can be biased by ‘falsification or manipulation’.” A recent Cochrane review of interventions to prevent misconduct and promote integrity in research and publication found that “Overall, there is very low quality evidence that various methods of training in research integrity had some effect on participants’ attitudes to ethical issues but minimal (or short-lived) effects on their knowledge.”

At the same time, as noted in previous commentaries in INNOVATIONS in Pharmacy have been increasing concerns over the inability of researchers to replicate the results of RCTs. A Nature survey, reported in May 2016, found that over 70% of researchers had tried and failed to reproduce other experiments and more than half failed to reproduce their own experiments.” At the moment we do not seem to have struck a balance between tolerating tentative conclusions and honest errors and efforts to improve reproducibility in biomedical claims.

Questioning the integrity of published clinical research is reinforced by more fundamental claims that most published research findings can be shown to be false.” If this is accepted then further doubt is cast on those modeled claims that rely on one or two clinical trials (typically the sponsors) or on network indirect comparisons between (possibly false?) comparator trials to support the models clinical assumptions. In the absence of claims replication the clinical evidence base may be considered insufficient to support modeled claims for formulary listing and pricing. Health care decision makers would, as detailed below, be justified in asking for the clinical outcomes assumptions to be evaluated and reproduced, together with claims made for cost-effectiveness. In the case where the modeled claims are immune to failure, those sponsoring such claims run the risk of them being ignored and rejected out of hand as they fall at the first hurdle for establishing their credibility.

Discretion and Imaginary Worlds

One aspect of modeled claims for cost-effectiveness that was not addressed by the Editorial in the New England Journal of Medicine.
Threshold Values

Irrespective of the choice of imaginary world, the primary purpose of the majority of these studies would appear to be to demonstrate that, given the choice of model, its structure and input variables, that the claims made for the cost-effectiveness of the sponsor’s product can be considered because, unless they are shown to be dominant in respect of comparators, the cost-per-QALY claim falls with ‘accepted’ or ‘recognized’ willingness-to-pay thresholds. The thresholds deemed to be appropriate in the various studies vary widely. Some studies adopted notional willingness-to-pay thresholds with US$50,000 being popular, although, if considered appropriate, this could be extended to US$100,000 or US$150,000 to claim cost-effectiveness and appropriateness for formulary listing. Other studies adopted the NICE thresholds of £20,000 and £30,000. For studies based in European treating environments a popular threshold value was €30,000 with a few studies applying the World Health Organisation (WHO) proposed per capita GDP 3-times multiple. It is not clear whether the model outcomes determined the threshold value chosen or the threshold value determined the model. In any event, the argument is moot as the claims for threshold compatibility, including applications of probabilistic sensitivity analysis, were unevaluable. The focus in all cases appeared to support claims for the cost-effectiveness of the sponsor’s product. Whether this reflects publication bias is unknown. We have no idea of how many other, potentially competing, modeled claims were developed which have not been or have yet to be published.

Given the popularity of published constructed claims that conclude that a product is cost-effective, there is surprisingly perhaps no consensus on the use of threshold values, what thresholds represent and the construction of threshold values. Questions on how we might value health improvements and the opportunity cost of budgetary decisions might be more illuminating if we put to one side constructed and unevaluable incremental cost per QALY claims and focused instead on claims that are evaluable and can be reported on to health decision makers in a meaningful timeframe. As it stands, and has been pointed out again in previous INNOVATIONS in Pharmacy commentaries, there is no agreed standard for measuring utilities for cost-per-QALY claims and there is unlikely to be one. Although there are a number of generic and disease-specific instrument that have been promoted as the basis for utility metrics, clinical trials are typically not powered for utility endpoints. As a result the imaginary lifetime models will go to the literature to justify the ‘appropriate’ pricing of pharmaceutical products.

It is also worth noting that NICE, in attempting to move to a more ‘flexible’ version of the EQ-5D (the ‘reference case’ mandated instrument), adopting the EQ-5D-5level instrument as a successor to the EQ-5D-3level version has found that the two generate different utility profiles and it is not possible to crosswalk from the EQ-5D-3L to the EQ-5D-5L. This illustrates a more general point, and a strong argument for abandoning cost-per-QALY claims, that different instruments generate

Notes:

1. Medicine is the apparent disregard for the standards of normal science; the acceptance of modeled claims for cost-effectiveness that are non-evaluable. This is not a question of replication, but rather one, as noted in the introduction to this review, of immunity to failure. This rejection of these standards, as noted in the commentaries disregards standards that have been in place for 350 years. The motto of the Royal Society (founded 1660; Royal Charter 1662) clearly expresses this: nullius in verba (‘take no man’s word for it’). If a modeled claim in unable to generate, credible, evaluable and replicable claims then it should be rejected. The claims should be seen as pseudoscience. A conclusion that is reinforced given the discretion and latitude that is open to model builders in constructing long-term or lifetime cost-outcomes and cost-utility models; time horizons that may stretch for decades in modeled simulations. Examples detailed in this review would include claims generated by the Cardiff Diabetes Model with time horizons of that effectively preclude any empirical challenge.

2. Unfortunately, in health technology assessments, as detailed again in previous commentaries in INNOVATIONS in Pharmacy, agencies and professional organizations such as ISPOR and the AMCP, seem determined to keep the door open to standards for technology assessment that encourage the construction of imaginary worlds. The NICE reference case has been widely accepted as the ‘gold standard’. It is, therefore, not surprising that journal editors are quite prepared to accept modeled claims for competing products and devices that are outside the standards of normal science.

3. Indeed, model builders have considerable latitude even within the so called ‘reference case’ to construct modelled lifetime comparative claims. Professional groups and technology assessment agencies ask the reader to take at face value extrapolations beyond the remit of clinical trials. In the present review 19 of the 40 studies (47.5%) present their claims in a lifetime model. Of these, 12 utilized a lifetime Markov framework. A further 3 studies utilized the lifetime IMS CORE diabetes model. In addition, a further 5 studies utilized a Markov framework for timelines of 5, 7, 10, 25 and 70 years together with two studies utilizing the Cardiff Diabetes Model for 40 year time horizons. None of these studies presented claims that could be evaluated.

4. Threshold Values

Irrespective of the choice of imaginary world, the primary purpose of the majority of these studies would appear to be to demonstrate that, given the choice of model, its structure and input variables, that the claims made for the cost-effectiveness of the sponsor’s product can be considered because, unless they are shown to be dominant in respect of comparators, the
different results. Achieving a willingness-to-pay cost per QALY threshold with one instrument is no guarantee that an alternative, yet equally valid, instrument will come to the same conclusion.

Comorbidities
As noted also in previous commentaries, the presence of comorbidities and their potential impact on outcomes, costs and compliance is typically overlooked in modeled long-term claims for cost effectiveness. Given the likelihood of older patient groups presenting with one or more comorbidities this is a significant oversight by model builders. This is recognized, for example, in the Lobotesis et al assessment of combination stent-retriever thrombectomy in acute ischemic stroke. The authors caution that there may be limitations in relation to resource use data where acute and long term costs are taken from a study based on patients with atrial fibrillation and an average age of 80 years. Apparently, these patients are older than those in the base case clinical study used; they also suffer from atrial fibrillation with possible additional comorbidities.

Assistance and Persistence
A further issue with modeled claims is the treatment of adherence and persistence with therapy. This is seldom acknowledged in claims made, although the fact that in many disease areas only a minority of patients are compliant after two to three years from index prescription will presumably impact long-term claims. One exception here is the qualification in the application of the CORE diabetes model that the model does not take into account ‘potential differences between the respective treatments in adherence and persistence that can influence both effects and costs’. As noted in previous commentaries, it may seem pointless to model over (in this case) 50 years when patients have possibly long ceased to persist with the therapy. Also, it should be noted, the possible impact of new products entering the type 2 diabetes market and consequent therapy switching is also not considered.

Peer Reviews of Imaginary Worlds
The resources devoted by NICE and other agencies to the assessment of a manufacturer’s modeled reference case cost-utility claims stand in contrast to the support given to peer reviewers who are asked to evaluate modeled claims for journals such as the *Journal of Medical Economics* and *Value in Health*. Given time constraints for peer review and claims by journals that they can offer ‘rapid publication’ and a short turnaround of papers (and you can often pay a ‘quick expedition fee’ to guarantee an even faster turnaround) suggests that, at best, the evaluation of a constructed imaginary world will limited. This does not imply any dereliction on the part of journal editors or unpaid peer reviewers, but is simply a fact of life. Journals do not have the luxury of investing resources on a model review to the standards of a NICE or PBAC review.

One solution to the peer review question is to establish standards for accepting or rejecting modeled claims for cost-effectiveness: to ask that the paper meet two acceptance criteria: (i) that the claims are evaluable in a timeframe that is meaningful for feedback to health system decision makers; and (ii) that the model claims are supported by a protocol that details how the claims are to be evaluated in treatment practice. Perhaps as a first step journal editors (and certainly formulary committees) should reject any manuscript that begins with ‘A lifetime Markov model was’.

Qualified Support
In a few cases modeled claims comparisons provide only qualified support for the sponsor’s product. This typically occurs when the modeled lifetime cost-per-QALY estimates exceed notional willingness-to-pay thresholds. Consider, for example, the Goeree et al modeled case for nivolumab in non-small cell lung cancer (NSCLC) in Canada. Application of a lifetime Markov model or a progression-free survival model generated cost-per-QALY estimates versus the comparators docetaxel and erlotinib in excess of $140,000. In this case, while pointing out that funding has been approved in Canada for oncology drugs where the $100,000 willingness to pay threshold has been exceeded, the authors emphasize the unmet need within NSCLC and that given the perceived NSCLC disease burden in Canada, as evidenced by its epidemiological profile, nivolumab ‘has the potential to bring significant health benefits to patients in comparison to standard chemotherapy options (p. 641)’. Nivolumab is seen to ‘represent(s) a major advance in disease management’, ‘provides unprecedented survival benefits’ and a more favorable adverse event profile. These aspects were not, apparently, captured within the model framework but should, it can be argued, be factored into a willingness to accept cost-per-QALY projections which, although immune to failure, are in excess of accepted notional thresholds.

Comparing Imaginary Worlds
It is commonplace for the authors of one long-term imaginary world to compare their world with ‘competitor’ imaginary worlds. It is not clear what this achieves given that the various competitor models also yield claims that are typically immune to failure. All that can be achieved are claims that one model is more ‘representative’ of an unknown future than another model. The potential readers, if they are interested, have no basis in the absence of feedback from the evaluation of modeled claims to judge whether one model is in any way ‘superior’ to another. It seems such a pointless exercise. An exercise that could, presumably, continue indefinitely as manufacturer’s contract with consultants to publish even more product-supporting, non-evaluable modeled claims in disease and therapy areas. While it might be unreasonable to draw to close an analogy with an imaginary world such as that represented by Gormenghast, the description of the novels in
the series as representing ‘a sprawling, gothic structure’ has a
certain resonance 27. But perhaps, as noted in a previous
commentary, we could attempt to close the wardrobe door on
Narnia and return to the real world of normal science 28.

Discussions by authors of model ‘limitations’ also point to a
number of common ‘elements’ that may limit or relegate the
claims generated by the model. Apart from assumptions (or
their absence) regarding compliance behavior and
comorbidities, typical qualifications would include: (i) the use
of clinical trials to support input values where the trials may
lack external validity for input values; (ii) the short-term
nature of the trial data; (iii) reliance on indirect comparisons
for clinical endpoints; (iv) costs sourced from the literature
which may not be those faced by payers; (v) absence of non-
medical or indirect costs; (vi) arbitrary choice of health states
for treatment progression; (vii) cycle length; (viii) estimation
of transition probabilities for health states; (ix) assumed future
patterns of therapy switching; (x) health state utility values; (xi)
choice of utility measure; and (xii) survivorship profiles. Even
with this checklist, there is still no objective basis, other than
evaluating claims made, for declaring the superiority of one
imaginary construct from another.

Systematic Reviews
Given the dominance of constructed imaginary worlds in cost-
effectiveness claims, it is reasonable to ask what role
systematic reviews actually play. Apart, obviously, from the
review pointing to the diversity, latitude and incompatibility of
modeled claims within disease areas, it is far from clear that
such reviews actually perform a useful service. This is in
contrast to the Cochrane reviews, for example, which are
anchored in the scientific method to support evidence-based
medicine. To argue, as the CADTH guidelines so eloquently put
it, that economic models are not intended to test hypotheses
but merely to ‘provide information’, raises the question of how
a formulary committee is to make sense of the diversity and
incompatibility of the information presented. While it can be
appreciated that sponsoring economic models to support a
marketing strategy is an entirely legitimate exercise, the
presence of highly technical competing yet incompatible
messages is hardly a positive step forward. Are formulary
committees expected to undertake a further review of
systematic reviews? Perhaps, in such a review, a formulary
committee following advice above to journal editors, should
immediately reject any study that began ‘A lifetime Markov
model ...’.

The overall impression from the Einarson et al systematic
review is the difficulty of comparing model results and coming
to any general conclusions on the imaginary claims for cost-
effectiveness of therapies, either against specific comparators
or the ‘standard of care’ within either asthma or COPD 18. In
the case of omalizumab, the results varied widely, in some
models supporting a cost-effectiveness case with others
coming to the opposite conclusion. The results for COPD
presented such variation in the choice of the primary drug and
its comparators, that it is also difficult, if not impossible, to
come to any meaningful conclusions that might guide
formulary decision making.

While the difficulties attendant upon any attempt to ‘herd the
cats’ in such a variable modelling environment can be
appreciated, the more substantive issues of credibility,
evaluation and replication are not addressed in the review. On
the information presented, there is no evidence that the issue
of presenting evaluable claims was addressed in any of the
studies. While the issue of the face validity of the model was
apparently addressed in a few studies, internal external and
predictive validity were largely ignored. Unfortunately, in
setting the standards for validation in terms of those proposed
by ISPOR and the Society for Medical Decision Making (SMDM)
in their Good Practices Research reports on constructing
imaginary worlds, the authors overlooked the importance of
predictive validation as standing outside face validity, internal
and external validity 29 30. A modeled claim is not to be judged
on the apparent ‘validity’ of its structure or input assumptions.
This point was made in a recent critique of modeled claims 11
12. Predictive validity is not an option in ‘validation’. Failure to
consider predictive validity puts the standards of normal
science to one side. Irrespective of any conclusions regarding
the extent to which a model is considered to have face, internal
and external validity, the only test (unless we take the
claims at face value) is empirical: can the claims be validated
(or at least not falsified) in treatment practice. Otherwise, all
that Einarson et al have accomplished is to point to the
variability in constructed imaginary worlds. The paradox is
that, at least in COPD and to a lesser extent in the asthma
models, the time frame for many of the models presented is
one that could support evaluable claims. The possibility that
the claims presented could be supported by protocols and
evaluated in clinical practice was not considered.

Potentially Evaluable Claims
This review has identified a number of studies that have the
potential to generate evaluable claims. These include the
Einarson et al 1-year models for paliperidone in schizophrenia
21 47, the Pettigrew et al colorectal cancer model 23, the Qin et
al overactive bladder model 25, metastatic colorectal cancer
model, the Xuan et al duodenal ulcer model 52 and the Goeree
et al model of opioid-induced constipation 58. While there is
the potential to generate claims for a range of outcomes and
summary ICER claims (including cost-per-QALY), none of the
studies considered how these claims might be evaluated in
treatment practice. This raises the issue of the role claims
assessment protocols might have in supporting sponsored and
other comparative claims for cost-effectiveness. If a formulary
committee, as proposed in the Minnesota guidelines could
insist that manufacturers underwrite protocols to support, and
provide feedback on, clinical and cost-effectiveness claims,
then we would go a long way towards, not only abandoning
the construction of imaginary worlds but addressing issues of
the replication RCT-based clinical claims 31.

If journals adopted a policy (i) of requiring cost-effectiveness
claims to be accompanied by an assessment protocol and (ii)
requiring manufacturers to report on the results of the
evaluation in a future issue of the journal, this may go some
way towards alleviating the concerns expressed by the Editors
of the New England Journal of Medicine. Instead of attempting
to enforce review (‘entry’) requirements, which would still
allow the submission of claims based on imaginary worlds
(e.g., a recent modeled imaginary world review in the Journal
of the American Medical Association of PCSK9 inhibitors 32),
the Journal could adopt a protocol policy which would allow
for manufacturer’ sponsored submissions, but with the
‘integrity’ of the model claims checked by the need to feed
back the results of a effectiveness trial or prospective
observational study.

As an additional check, the Journal could require peer reviews
of both the initial modeled claims and the report of claims
evaluation to be published. The former would meet any
concerns as to the quality and feasibility of the claims
assessment protocol while the latter would hopefully ensure
that once published the claims could be assessed in other
treatment environments, providing an accumulating body of
evidence to support clinical and outcomes claims for the
product.

Conclusions
In the recently published review of modeled cost-effectiveness
claims in Value in Health, the discussion concluded on a
pessimistic note: it is unlikely that present practice would be
overturned. Rather, we could expect a continuation of the
commitment to creating and publishing claims that are
‘immune to failure’. It was pointed out that Richard Dawkins,
in Unweaving the Rainbow, recognizes our willingness to feed
on ‘superstition, the paranormal and astrology’. Or, as he
labels this, our continuing appetite for being ‘Hoodwink’ed with
faery fancy’ 33. We might extend the reference and argue that
the ‘imaginary world’ meme is so well entrenched in health
technology assessment that the biologically valuable tendency
of individuals to imitate (c.f., the Dawkins’ example of the
opening of milk bottle tops among European tits or American
Chickadees) perpetuates the acceptance of lifetime Markov
models, conferring a survival advantage to those who
subscribe to the construction of imaginary worlds, supporting
professional advancement.
Table 1
Imaginary Worlds: Modeled Economic Evaluation Studies in the
Journal of Medical Economics January 2016 to December 2016

<table>
<thead>
<tr>
<th>Paper (author)</th>
<th>Target Population or Intervention</th>
<th>Sponsor or Funding (if any)</th>
<th>Modeling Technique and Claims Status</th>
<th>Did the study support the sponsor/funders product?</th>
<th>Claims Assessment and Credibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chan et al 34</td>
<td>Invasive fungal disease in acute myeloid leukemia or myelodysplastic syndrome</td>
<td>No funding declared; one author an employee of Merck</td>
<td>Lifetime decision model of posaconazole versus fluconazole/itraconazole in preventing fungal disease in a Hong Kong hospital. Despite higher cost, posaconazole prophylaxis cost-effective over a lifetime horizon by reduction in costs of treating invasive fungal diseases as costs incurred to avoid one IFD well under Hong Kong GDP per capita.</td>
<td>The study supported the Merck product posaconazole</td>
<td>Claims presented are potentially evaluable. While the authors recommend future research no recommendation for protocols to support claims assessment to meet required standards of normal science.</td>
</tr>
<tr>
<td>Wan et al 35</td>
<td>Nosocomial pneumonia caused by methicillin resistant staphylococcus aureus</td>
<td>Pfizer Investment Co. Ltd</td>
<td>Trial-based cost-effectiveness modeled assessment utilizing bootstrap methods to evaluate success with linezolid versus vancomycin in four Chinese cities. Linezolid dominated vancomycin in 1/3 total cases with vancomycin dominating in only 2% of cases.</td>
<td>Study supported the Pfizer product linezolid</td>
<td>Claims presented are potentially evaluable. While the authors recommend future research no recommendation for protocols to support claims assessment to meet required standards of normal science.</td>
</tr>
<tr>
<td>Einarson et al 36</td>
<td>Long-acting atypical antipsychotics in acutely relapsed schizophrenia</td>
<td>Janssen-Cilag</td>
<td>A 1-year decision sequential therapy relapse/non-response switching model to assess cost-effectiveness of aripiprazole (ARI-LAI), paliperidone (PP-LAI), olanzapine (OLZ-LAI) and risperidone (RIs-LAI). Outcomes: QALYs, hospitalization rates and relapse not requiring hospitalization. Probability sensitivity analysis projected PP-LAI dominated ARI-LAI in 75.8% of 100,000 iterations, RIS-LAI in 83.1% and OLZ-LAI in 95.7%.</td>
<td>Study supported the Janssen-Cilag product paliperidone</td>
<td>Claims presented are potentially evaluable. While the authors recommend future research no recommendation for protocols to support claims assessment to meet required standards of normal science.</td>
</tr>
<tr>
<td>Study</td>
<td>Disease Area</td>
<td>Product</td>
<td>Description</td>
<td>ICER vs.</td>
<td>Protocol Recommendation</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>---------</td>
<td>-------------</td>
<td>---------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Roussel et al</td>
<td>Type 2 diabetes patients failing glycemic control with metformin monotherapy</td>
<td>Novo Nordisk</td>
<td>Application of IMS CORE diabetes model to project lifetime clinical outcomes and direct costs in a French treating environment. Comparisons liraglutide vs. sitagliptin and glimepride. Projected ICER of €10,275 per QALY gained vs. sitagliptin and €20,709 per QALY gained vs. glimepride (both under €30,000 threshold).</td>
<td>Study supported the Novo Nordisk product liraglutide</td>
<td>Claims presented are non-evaluable and do not meet required standards of normal science.</td>
</tr>
<tr>
<td>Pettigrew et al</td>
<td>Metastatic colorectal cancer</td>
<td>Amgen Canada</td>
<td>A net cost impact analysis to determine total patient cost of panitumumab vs. cetuximab in Canada (5 provinces) in 14-20 week timeframe. Limitations noted: no efficacy or QALY estimates, and health resource utilization from expert opinion. Panitumumab cost-saving in all scenarios.</td>
<td>Study supported the Amgen product panitumumab</td>
<td>Claims presented are potentially evaluable. While the authors recommend future research no recommendation for protocols to support claims assessment to meet required standards of normal science</td>
</tr>
<tr>
<td>Moshyk et al</td>
<td>Chronic hepatitis C genotype 3</td>
<td>Bristol-Myers Squibb (BMS)</td>
<td>A Markov lifetime cost-utility model replicating the natural history of hepatitis C and complications. Treatments: daclatasvir (DCV) + sofosbuvir (SOF) vs. DCV + ribavirin (RBV) and pegalated interferon (pINF) + RBV in treatment naive and treatment experienced populations. Conclusion DCV+SOF safe and effective option and could be considered cost-effective following pINF+RBV treatment.</td>
<td>Study supported the BMS product daclatasvir</td>
<td>Claims presented are non-evaluable and do not meet required standards of normal science.</td>
</tr>
<tr>
<td>Qin et al</td>
<td>Overactive bladder with urge urinary incontinence</td>
<td>Pfizer Inc</td>
<td>Decision model to estimate 52-week costs of initiating treatment with fesoterodine vs. no pharmacotherapy in vulnerable elderly population in a hypothetical health plan. OAB related costs included fesoterodine drug acquisition costs, healthcare resource use and OAB related co-morbidities. Estimated cost saving of $1,616 per patient in US.</td>
<td>Study supported the Pfizer product fesoterodine</td>
<td>Claims presented are potentially evaluable. While the authors recommend future research no recommendation for protocols to support claims assessment to meet required standards of normal science</td>
</tr>
</tbody>
</table>

References:
- Roussel et al.
- Pettigrew et al.
- Moshyk et al.
- Qin et al.
<table>
<thead>
<tr>
<th>Study</th>
<th>Disease</th>
<th>Company</th>
<th>Model Description</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roze et al 41</td>
<td>Type 1 diabetes</td>
<td>Medtronic International Trading</td>
<td>Application of IMS CORE diabetes model to project lifetime cost-effectiveness of sensor-augmented pump therapy (SAP) with a low glucose-suspend (LGS) feature vs. continuous subcutaneous infusion (CSII) plus self-monitoring in a UK treating environment (SMBG). Study concludes that SAP+LGS likely to be cost-effective compared to CSII+SMBG.</td>
<td>Study supported the Medtronic sensor augmented pump (SAP) product</td>
</tr>
<tr>
<td>Usmani et al 42</td>
<td>Transplant ineligible patients with newly diagnosed multiple myeloma</td>
<td>Celgene Corporation</td>
<td>Lifetime partitioned survival model with 3 health states progression-free survival, post-progression survival and dead to project lifetime, total direct costs, total life years (LY) and QALYs. Treatment: lenalidomide + dexamethasone (Rd) vs. bortezomib +melphalan + prednisone (VMP) as initial treatment. Incremental cost per QALY and LY gained with Rd vs. VMP estimated $53,826 and $35,552 respectively. Rd may be a cost-effective alternative to VMP given oncology willingness-to-pay thresholds.</td>
<td>Study supported the Celgene product lenalidomide</td>
</tr>
<tr>
<td>Vandewalle et al 43</td>
<td>Myelofibrosis</td>
<td>Novartis</td>
<td>A discrete state lifetime cohort model to compare impact on overall survival of ruxolitinib versus best available therapy (BAT) in a Portuguese treatment setting. Applying a Weibull parametric survival model a projected discounted (at 5%) median survival for ruxolitinib of 5.7 years vs 3.3 years for BAT. Discounted incremental lifetime healthcare costs €97,052. At willingness to pay of €50,000 per life year probability of ruxolitinib being cost-effective against BAT was > 95%.</td>
<td>Study supported the Novartis product ruxolitinib</td>
</tr>
</tbody>
</table>

Claims presented are non-evaluable and do not meet required standards of normal science.
<table>
<thead>
<tr>
<th>Whalen et al 44</th>
<th>Chronic myelogenous leukemia</th>
<th>Bristol Myers-Squibb (BMS)</th>
<th>Lifetime Markov model comparing dasatinib–initiated treatment sequences for patients failing imatinib compared to high dose imatinib and nilotinib. Dasatinib is associated with modeled increased survival and quality of life compared to high dose imatinib and to a smaller extent nilotinib. Respective ICER per QALY $170,00 and $160,000.</th>
<th>Study supported the BMS product dasatinib</th>
<th>Claims presented are non-evaluable and do not meet required standards of normal science.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Francois et al 45</td>
<td>Neurogenic orthostatic hypotension</td>
<td>Lundbeck</td>
<td>A lifetime Markov model to predict the number of falls and treatment responses in neurogenic orthostatic hypotension (nOH) and the predicted impact of droxipoda to treat symptomatic nOH in patients with Parkinson’s disease vs. standard of care. Outcomes: projected number of falls, QALYs and direct costs. Droxipoda was cost-effective vs. standard of care with ICERS of $47,001/QALY gained, $24,866 per fall avoided with moderate/major industry and $1,559 per avoided fall with no/minor injury. Droxipoda a cost-effective option.</td>
<td>Study supported the Lundbeck product droxipoda</td>
<td>Claims presented are non-evaluable and do not meet required standards of normal science</td>
</tr>
<tr>
<td>Quon et al 46</td>
<td>Recurrent venous thromboembolism</td>
<td>Pfizer Canada Inc and Bristol-Myers Squibb (BMS) Canada</td>
<td>A lifetime Markov model following venous thromboembolism (VTE) patients in a Canadian treating environment. Extended treatment with apixaban compared to enoxaparin/warfarin. Modeled impact of apixaban associated with fewer recurrent VTEs, VTE-related deaths and bleeding events and lowest overall cost compared to other NOAcs, but at slightly increased cost. Apixaban can offer substantial clinical benefits and is a cost-effective alternative to enoxaparin/warfarin.</td>
<td>Study supported the Pfizer/BMS product apixaban.</td>
<td>Claims presented are non-evaluable and do not meet required standards of normal science</td>
</tr>
<tr>
<td>Study</td>
<td>Disease Area</td>
<td>Model/Company</td>
<td>Study Details</td>
<td>Funding/Support</td>
<td>Scientific Evaluability</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Lopez-Belmonte et al 47</td>
<td>Herpes zoster vaccination</td>
<td>Sanofi Pasteur-MSD</td>
<td>Lifetime Markov model applied to Spanish population cohort 50 years and over comparing vaccinated and non-vaccinated tracks. Vaccinating 30% of population resulted in QALY gains in range €30,000 to €50,000 range with new vaccine zostavax.</td>
<td>Study supported the Sanofi Pasteur-MSD product zostavax</td>
<td>Claims presented are non-evaluable and do not meet required standards of normal science</td>
</tr>
<tr>
<td>Perez-Ruiz et al 48</td>
<td>Hyperuricemia in gout</td>
<td>Menarini Group</td>
<td>A five-year Markov model of febuxostat vs allopurinol in sequential treatment of hyperuricemia in Spain. Addition of febuxostat to any therapeutic strategy was an efficient option with ICERs ranging from €5,268 to €9,737 and below €30,000/QALY threshold.</td>
<td>Study supported the Menarini Group product febuxostat</td>
<td>Claims presented are potentially evaluable in a shorter timeframe</td>
</tr>
<tr>
<td>Beauchemin et al 49</td>
<td>Advanced breast cancer</td>
<td>Canadian Institutes for Health Research</td>
<td>Application of Global Pharmacoeconomics of Metastatic Breast Cancer (GPMBC) Markov lifetime model of interventions in breast cancer.</td>
<td>Not applicable</td>
<td>Claims presented are non-evaluable and do not meet required standards of normal science</td>
</tr>
<tr>
<td>Goeree et al 50</td>
<td>Second-line advanced squamous non-small cell lung cancer (NSCLC)</td>
<td>Bristol-Myers Squibb</td>
<td>Lifetime progression free survival and Markov models applied to evaluating expected costs, outcomes and incremental cost-utility (QALYs) of docetaxel and erlotinib vs nivolumab for NSCLC in a Canadian treating environment. Nivolumab cost utility estimates were $152,229 and $141,836 respectively vs. docetaxel and erlotinib.</td>
<td>Study provided qualified support for BMS product nivolumab</td>
<td>Claims presented are potentially evaluable in a shorter timeframe</td>
</tr>
<tr>
<td>Haig et al 51</td>
<td>Diabetic macular edema</td>
<td>Novartis Pharma AG</td>
<td>Lifetime Markov model to evaluate the impact of ranibizumab (RAN) monotherapy of combination therapy (RAN + laser photoagulation) versus laser monotherapy for visual impairment due to diabetic macular edema (DME) in a Canadian treating environment. Building on a previous model long-term costs and outcomes followed 3 years of treatment with patients cycling between 8 health states best-corrected visual acuity (BCVA) status. Given a Canadian ICER</td>
<td>Study supported the Novartis AG product ranibizumab</td>
<td>Claims presented are non-evaluable and do not meet required standards of normal science</td>
</tr>
</tbody>
</table>
threshold of C$50,000 both RAN monotherapy and combination therapy were cost-effective compared to laser.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Condition</th>
<th>Model/Company</th>
<th>Description</th>
<th>Study Supported</th>
<th>Claims Presented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruhn et al 52</td>
<td>Type 2 diabetes</td>
<td>GlaxoSmith Kline (GSK)</td>
<td>Cost-utility assessment with the CORE diabetes model in a 50 year timeframe to assess albiglutide against insulin lispro, insulin glargine and sitagliptin.</td>
<td>Study supported the GSK product albiglutide</td>
<td>Claims presented are non-evaluable and do not meet required standards of normal science</td>
</tr>
<tr>
<td>Hernandez et al 53</td>
<td>Relapsing-remitting multiple sclerosis</td>
<td>Biogen</td>
<td>A 10-year Markov cohort cost-utility model to evaluate peginterferon beta-1a vs. interferon beta-1a and glatiramer acetate in a US treating environment. Over 10 years peginterferon beta-1a was dominant when compared with interferon beta-1a and glatiramer.</td>
<td>Study supported the Biogen product peginterferon beta-1a</td>
<td>Claims presented are non-evaluable and do not meet required standards of normal science</td>
</tr>
<tr>
<td>Guerin et al 54</td>
<td>Mitral regurgitation</td>
<td>Abbott Vascular</td>
<td>A 5-year 4-state Markov model to evaluate efficacy of a MitraClip strategy vs. medical management in a French treating environment. Primary endpoint deaths avoided. Over 5 years among a hypothetical cohort of 1000 patients, 276 deaths avoided. Cost per death avoided €20,720.</td>
<td>Study supported the Abbott Vascular product MitraClip</td>
<td>Claims presented are potentially evaluable in a shorter timeframe</td>
</tr>
<tr>
<td>Su et al 55</td>
<td>Relapsing-remitting multiple sclerosis</td>
<td>Biogen</td>
<td>A lifetime Markov model with 21 health states to evaluate delayed-release dimethyl fumarate (DMF) as first line treatment in a Canadian treatment environment vs. DMTs glatiramer acetate and rebif 44mcg. On traditional Canadian willingness-to-pay thresholds DMF a cost-effective option compared to other first line DMTs.</td>
<td>Study supported the Biogen product DMF</td>
<td>Claims presented are non-evaluable and do not meet required standards of normal science</td>
</tr>
<tr>
<td>Rønborg et al. 56</td>
<td>Dust mite respiratory allergic disease</td>
<td>ALK</td>
<td>Cost minimization comparison between Alutard SQ as standard of care and SQ SLIT-tablet ACARIZAX. Direct and indirect annual cost savings with SQ-SLIT of approximately €1,000.</td>
<td>Study supported the ALK product SQ-SLIT</td>
<td>Claims presented are evaluable and replicable in a Danish treating environment and other countries (recommended as a therapy by Global Initiative for Asthma [GINA]).</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>-----</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Roze et al. 57</td>
<td>Type 2 diabetes</td>
<td>Medtronic International Trading</td>
<td>Application of IMS CORE diabetes model to project lifetime cost-effectiveness of continuous subcutaneous insulin infusion (CSII) to achieve improved glycemic control vs. optimization of basal bonus MDI therapy where patients still unable to achieve good glycemic control. ICER estimated at €62,895 per QALY gained and €60,474 per QALY with indirect costs included. As ICER below willingness-to-pay threshold of €80,000, CSII likely to represent good ‘value for money’ in poorly controlled type 2 diabetes patients.</td>
<td>Study supported the Medtronic product CSII</td>
<td>Claims presented are non-evaluable and do not meet required standards of normal science</td>
</tr>
<tr>
<td>Lee et al. 58</td>
<td>Hepatocellular carcinoma</td>
<td>Bayer Healthcare</td>
<td>Decision model driven cost comparison of Gd-EOB-DTPA MRI vs., ECCM-MRI and multi-detector computed tomography detection and characterization of liver lesions in Thai and Korean treating environments from payer and hospital perspectives. Input data estimated and validated by experts. Costs of diagnostic alternatives and related treatment options from literature... Conclusion: Gd-EOB-DTPA-MRI gives better diagnostic certainty and cost savings.</td>
<td>Study supported the Bayer contrast agent product Gd-EOB-DTPA MRI</td>
<td>Claims presented are potentially evaluable and replicable in other treating environments and countries</td>
</tr>
<tr>
<td>Labotesis et al 59</td>
<td>Acute ischemic stroke</td>
<td>Medtronic</td>
<td>A lifetime Markov model to evaluate cost-effectiveness in neurothrombectomy of stent-retriever thrombectomy in combination with intravenous tissue-type plasminogen activator (IV t-PA) vs. IV t-PA alone. Combination therapy associated with improved quality of life, overall cost-savings with higher treatment costs offset by long-term cost savings. In a UK treatment environment net benefit of £79,402. Conclusion: combined therapy cost-effective in acute ischemic stroke.</td>
<td>Study supported the Medtronic stent retriever product Solitaire</td>
<td>Claims presented are non-evaluable and do not meet required standards of normal science</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------</td>
<td>-----------</td>
<td>--</td>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Saab et al 60</td>
<td>Genotypes 1 or 4 hepatitis C</td>
<td>AbbVie</td>
<td>A lifetime Markov model of chronic hepatitis C for both treatment naive and experienced patients evaluated the cost-effectiveness of direct-acting antiviral therapies in a US treating environment. Outcomes modeled included rates of compensated/decompensated cirrhosis, hepatocellular carcinoma, liver related deaths, total costs, life-years and quality adjusted life years. Among the currently recommended treatments ombitasvir/paritaprevir/ritonavir + dasabuvir +/- ribavarin (3d+/-R) for GT1 and ombitasvir/paritaprevir/ritonavir + ribavarin (2D+R) for GT4 had a favorable cost-effectiveness profile.</td>
<td>Study supported the AbbVie combination therapy products</td>
<td>Claims presented are non-evaluable and do not meet required standards of normal science</td>
</tr>
<tr>
<td>Bianic et al 61</td>
<td>Liver transplants</td>
<td>Novartis Pharma</td>
<td>A lifetime Markov model with flexibility to allow for results over shorter time scales to compare cost-effectiveness of everolimus (EVR) plus reduced tacrolimus (TAC) vs. standard dose TAC in an Italian treating environment. Modeled ICERs favored the cost-effective combination EVR+TAC for both survival and quality of life.</td>
<td>Study supported the Novartis product everolimus</td>
<td>Claims presented are potentially evaluable in the short-term. Evaluable claims not presented. No recommendation for protocols to support claims assessment to meet required standards of normal science</td>
</tr>
<tr>
<td>Authors</td>
<td>Disease</td>
<td>Sponsor</td>
<td>Model Description</td>
<td>Outcomes</td>
<td>Results</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>-------------------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Einarson et al</td>
<td>Chronic schizophrenia</td>
<td>Janssen Pharmaceuticals</td>
<td>A 1-year decision model adapted to a Portuguese environment to compare paliperidone palmitate (PP-LAI) to risperidone (RIS-LAI), haloperidol (HAL-LAI) and olanzapine (OLZ). Clinical and cost data from the literature. Outcomes: INCERs for cost-utility and cost-effectiveness assessments. Results: PP-LAI dominated HAL-LAI and RIS-LAI and cost-effective over OLZ against NICE/Portuguese willingness-to-pay thresholds.</td>
<td>Claims presented are potentially evaluable in the short-term. Evaluable claims not presented. No recommendation for protocols to support claims assessment to meet required standards of normal science.</td>
<td></td>
</tr>
<tr>
<td>Hurry et al</td>
<td>Anaplastic lymphoma kinase positive (ALK+) non-small cell lung cancer</td>
<td>Novartis Pharmaceuticals</td>
<td>A 4-year partitioned survival model with three health states for cost-effectiveness of ceritinib vs pemetrexed, best supportive care and historical control (HC) in a Canadian treating environment for patients previously treated with crizotinib. Over 4 years ceritinib associated with gain 0.86 QALYs and total direct costs of $89,740. ICER vs BSC $149,117, $80,100 vs pemetrexed and $104,436 vs. HC. Ceritinib may be considered a cost-effective option.</td>
<td>Study supported Novartis product ceritinib. Crizotinib also a Novartis product. Claims presented are potentially evaluable in the short-term. Evaluable claims presented over 4-years.</td>
<td></td>
</tr>
<tr>
<td>Johnson et al</td>
<td>Genotype 1 hepatitis c virus infection</td>
<td>Abbvie</td>
<td>A 70-year Markov model with 1-year cycle and 6 health states. Modeled comparison ombitasvir/paritaprevir/ritonavir and dasabuvir/-ribavirin (OMB/PTVR/r + DSV/-RBV) versus regimens including pegylated interferon for treatment naïve/experienced in a UK treatment setting. Comparator regimens other than PegINF/RBV where ICERs per QALY were £13,864 and £10,258 respectively. Conclusion: product a cost-effective oral treatment compared to standard treatment regimens in the 70-year timeframe.</td>
<td>Study supported Abbvie combination therapy products. Claims presented are non-evaluable and do not meet required standards of normal science.</td>
<td></td>
</tr>
<tr>
<td>Study Title</td>
<td>Indication</td>
<td>Company</td>
<td>Description</td>
<td>Outcome</td>
<td>Notes</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>--------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Muduma et al 65</td>
<td>Liver transplant</td>
<td>Astellas Pharma Europe Limited</td>
<td>A 25-year Markov model to evaluate cost-utility of immunosuppressive regimens prolonged release (PR) tacrolimus, immediate release (IR) tacrolimus and ciclosporin in liver transplants in a UK treating environment. PR tacrolimus resulted in increased life expectancy and quality adjusted life expectancy relative to IR tacrolimus and ciclosporin. Overall, ICER of £1,889 per QALY gained.</td>
<td>Study supported Astellas product tacrolimus PR</td>
<td>Claims presented are non-evaluable and do not meet required standards of normal science</td>
</tr>
<tr>
<td>Solon et al 66</td>
<td>Characterization of diminutive colon polyps</td>
<td>Olympus Europa</td>
<td>Decision model with 7-year time horizon to model a cost-consequences and budget impact analysis of narrow band imaging (NBI) vs. white light endoscopy (WLE) in a UK treating environment. NBI offered cost-savings within minimal impact on health outcomes and associated adverse events with annual cost savings of £141,192,057.</td>
<td>Study supported Olympus NBI product</td>
<td>Potential to reformulate claims for cost savings to make them evaluable in a shorter time frame. As stated do not meet required standards of normal science.</td>
</tr>
<tr>
<td>Xuan et al 67</td>
<td>Newly diagnosed duodenal ulcer</td>
<td>Livzon Pharmaceuticals Group Inc</td>
<td>A literature-based one-year decision tree model to assess cost-effectiveness of 10mg once daily ilaprazole vs. once daily 20mg omeprazole in a China treatment environment. Ilaprazole was cost-effective with an ICER of ¥132,056 which is within the WHO threshold of 3 times per capita GDP.</td>
<td>Study supported Livzon product ilaprazole</td>
<td>Claims presented are potentially evaluable given timeframe of study</td>
</tr>
<tr>
<td>Jakubowiak et al 68</td>
<td>Relapsed multiple myeloma</td>
<td>Amgen Inc</td>
<td>A lifetime partitioned survival model (the Kyprolis Global Economic Model-K-GEM) to assess the cost-effectiveness of carfilzomib-lenalidomide-dexamethasone (KRd) vs. lenalidomide-dexamethasone (Rd). KRd was estimated to be more effective than Rd in QALY gains and with an ICER of $107,520 per QALY. Assuming a willingness-to-pay threshold of $150,000 KRd may represent an efficient allocation of resources.</td>
<td>Study supported Amgen product carfilzomib</td>
<td>Claims presented are non-evaluable and do not meet required standards of normal science</td>
</tr>
<tr>
<td>Study</td>
<td>Disease Area</td>
<td>Company</td>
<td>Model Description</td>
<td>Outcomes Highlights</td>
<td>Sponsorship</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>---------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Chuang et al</td>
<td>Type 2 diabetes</td>
<td>AstraZeneca Pharmaceuticals</td>
<td>Application of the Cardiff Diabetes Model with a 40-year time horizon to evaluate cost-effectiveness of exenatide (EQW) vs. dulaglutide, liraglutide and lixisenatide in patients not adequately controlled on metformin. QALY gains ranged from 0.043 to 0.102 against comparators. EQW dominated liraglutide. Cost per QALY gained £596, £1,004 and respectively. Probability EQW cost effective ranged from 76-99%.</td>
<td>Study supported AstraZeneca product exenatide</td>
<td>Claims presented are non-evaluable and do not meet required standards of normal science</td>
</tr>
<tr>
<td>Wielage et al</td>
<td>Overactive bladder</td>
<td>Astellas Pharma Global Development</td>
<td>Markov state-transition model with 3-year time horizon to assess mirabegron vs. six antimuscarinics in US Medicare Advantage and commercial perspectives. Primary outcome cost per QALY. Costs per QALY respectively $66,347 and $59,690. Product judged cost-effective.</td>
<td>Study supported AstraZeneca product exenatide</td>
<td>Potential to reformulate claims to make them evaluable in a shorter time frame. As stated do not meet required standards of normal science</td>
</tr>
<tr>
<td>Virabhak et al</td>
<td>Chronic hepatitis C virus genotype 1b</td>
<td>AbbVie</td>
<td>Lifetime Markov state transition model to compare ombitasvir/paritaprevir/ritonavir (OBV/PTV/r) vs. daclatasvir+asunaprevir (DVC/ASV) and no treatment in patients without cirrhosis and OBV/PTV/r vs. DCV/ASV and sofosbuvir/ledipasvir (SOF/LDV) in Y93H mutation negative patients with and without cirrhosis in treatment naïve/experienced in a Japanese treatment environment. Results: OBV/PTV/r appears to be a cost-effective treatment against DCV/ASV and dominates no treatment without cirrhosis</td>
<td>Study supported AbbVie combination therapy products</td>
<td>Claims presented are non-evaluable and do not meet required standards of normal science</td>
</tr>
<tr>
<td>Gordon et al. 72</td>
<td>Type 2 diabetes</td>
<td>AstraZeneca</td>
<td>Application of the Cardiff Diabetes Model with a 40 year time horizon to evaluate cost effectiveness of exenatide BID vs. bolus insulin lispro (TID) as add on when glycemic control sub-optimal with titrated basal insulin glargine and metformin from a Swedish healthcare perspective. Results: exenatide BID associated with incremental cost of €1,270 and QALY increase of 0.64 compared to lispro TID over 40 years. Cost per QALY gained €1,971.</td>
<td>Study supported AstraZeneca product exenatide</td>
<td>Claims presented are non-evaluable and do not meet required standards of normal science</td>
</tr>
<tr>
<td>Goeree & Goeree 73</td>
<td>Opioid induced constipation</td>
<td>Purdue Pharma</td>
<td>One-year cost-utility decision model comparing combination oxycodone with naloxone versus oxycodone in managing moderate-to-severe pain in Canadian patients with opioid-induced constipation. Costs offsets to analgesic costs resulted in 1-year cost utility of naloxone ranging from C$178- C$7,732 per QALY gained in base case analysis.</td>
<td>Study supported Purdue Pharma product Targin</td>
<td>Claims presented are potentially evaluable although no protocol presented for assessment in Canadian treating environment</td>
</tr>
</tbody>
</table>

References

8Langley PC. Dreamtime: Version 5.0 of the Australian Guidelines for Preparing Submissions to the Pharmaceutical Benefits Advisory Committee (PBAC). Inov Pharm. 2017;8(1): No. 5

11 Pigliucci M. Nonsense on stilts: How to tell science from bunk. Chicago: University of Chicago Press., 2010

15 Langley PC. True North: Building Imaginary Worlds with the Revised Canadian (CADTH) Guidelines for Health Technology Assessment. Inov Pharm. 2017;8(2): No. 9

16 Langley PC, Rhee T. The Imaginary Worlds of ISPOR: Modeled Cost-Effectiveness Claims Published in Value in Health from January 2016 to December 2016. Inov Pharm. 2017;8(2): No. 14

23 Flier J. Irreproducibility of published bioscience research: Diagnosis, pathogenesis and therapy. Molecular Metabolism. .2016;6:2-9

24 Ioannidis J. Why most published research findings are false. Plos Medicine. 2005;2(8):e124

28 Lewis C. Narnia. The Lion, the Witch and the Wardrobe. London: G Bles, 1950

Commentary

FORMULARY EVALUATIONS

